
Deepjyot Kaur Ryait et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5872 –
5879

ABSTRACT

The Software Defined Networking (SDN) is one of the
most promising technology in networking, which
decouples the control plane from the data plane.
Therefore, all the control logic is transfer to the SDN
controller, which provides a centralized logical view of
an entire network. But it also increases the chance of a
failure in the network due to a single controller. To
overcome this situation, multiple controllers are
required in the network. When multiple controllers are
used in SDN networks which arise some load
balancing related issues like controller overloaded
when it exceeds the load from its threshold value, then
the controller failure or cascaded failure of controllers
is happening in the network.

The purpose of this paper is to propose an algorithm
for load balancing in multiple controllers in SDN by
using the queuing technique. After then compare both
queuing models (M/M/1: ∞/∞ and M/M/1: N/∞) on the
basis probability of various parameters like Ls, Lq,
Ws, and Wq of the system. These parameters help to
evaluate the performance of SDN controllers. On the
basis of probability, to analyze which queuing model is
more preferable. Moreover, the resulting highlight if
the length of system and queue is nearly 8.9% and
7.2% in M/M/1: ∞/∞ model but in M/M/1: N/∞ is
3.8%and 3.03%. Similarly, the waiting time of packet
in system and queue is 1.011% and 0.9% in M/M/1:
∞/∞ but in M/M/1: N/∞ model is 0.508% and 0.39%.
On the probability basis, these parameter shows the
M/M/1: N/∞ model is more preferable than another
model.

Key words: Load Balancing Multiple Controllers,
Queuing Model, SDN

1.INTRODUCTION

Today in the Network Communication technologies
involves fast and swift development and innovations.
The Software Defined Networking is considered the
most promise technology in the networking field.
Because the SDN brings revolutionary in the network
industry by offering programmability, flexibility, easy
management, adjustable and dynamic reconfiguration
of the network devices. This is happened due to the

separation between the control plane and the data
plane. Thus, all the control logic is transfer to the
controller.

But in traditional networks, there is a lack of
programmability facility in the network’s elements.
The main reason behind this is a strong bound exists
between the functional components. The new paradigm
networking decouples the control plane from data
plane which is known as the Software Defined
Networks (SDN). Due to this separation, SDN offers
programmability, adjustable, and dynamic
reconfiguration of the networking devices. The SDN
increases the efficiency of the network by improving
the network control which enables the network
providers to respond to the changing or varying the
business requirements swiftly [1-8]. Currently, several
industries are supporting the Software Defined
Networks paradigm like Microsoft, Google, Cisco,
Facebook, HP, IBM, Samsung, VMware, Juniper, etc.

The SDN architecture consists of three different planes
which are interacting through well-defined API’s (or
interfaces) in Figure 1. In the data plane, all forwarding
elements exist, which is control or manage by the
controller. The controller lies in the control plane
whose responsibility to configure or reconfigure the
forwarding devices by customizing their policies in a
dynamic manner [1-5, 14,22]. The control plane act as
an intermediate between the application and data plane.
In application plane is responsible for various network
applications and services which are implemented to
control the logic of the network domain. These
applications always run on the top of the controller.The
communication between the application and control
plane is possible through the northbound APIs such as
the REST (REpresentational State Transfer) API’s and
the communication between the data plane and the
control plane is possible through the southbound APIs
such as the OpenFlow protocol. Thus, Software
Defined Networks enhance the innovation in the
network field which copes up the requirements of the
network user on demand.

2. SIGNIFICANCE OF SDN CONTROLLER AND
ITS ROLES

Moreover, the controller acts as a prominent module of
the SDN paradigm because it has the potential to

Implementation of Queuing Models with SDN for Load

Balancing in Multiple Controller Environment

Deepjyot Kaur Ryait1, Manmohan Sharma2

1School of Computer Applications, Lovely Professional University, Phagwara, India,djryait@gmail.com
2School of Computer Applications, Lovely Professional University, Phagwara, India,manmohan.sharma71@gmail.com

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse248942020.pdf

https://doi.org/10.30534/ijatcse/2020/248942020

Deepjyot Kaur Ryait et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5872 – 5879

perform all manipulations and implementation in the
network. Moreover, it also provides a centralized
logical view of an entire network. But simultaneously
it increases the maximum chance of a failure in the
network due to a single controller [9]. As a
consequence, it collapses the entire network.

To overcome this situation, a fault tolerance
mechanism is required which using the multiple
controllers in the network. Therefore, the significance
of multiple controllers increases the scalability,
reliability, and high availability of services in the
network. The various roles of multiple controllers in
the Software Defined Networks (SDN) are Equal,
Master, and Slave controller [9-10,15-19]. The
OpenFlow specification supports multiple controllers’
environment, in which the controller has anyone role
of the following is (in Figure 2):
 Equal Role: In the equal role all the

controllers configured in the switch have full
control to update or modify the flows. The
switch must send the PACKET_IN message
to all the controllers and also switch process
the PACKET_OUT, FLOW_MOD, etc. from
all the controllers.

 Master Role: The master controller has the
responsibility for managing the switches of
the data plane. These switches will send the
control message to the master controller only.

 Slave Role: The slave controller plays the
backup role for the master controller. It also
receives the HELLO and KEEPALIVE
messages. But it cannot send and receive the
control messages.

That is why, the master-slave relationship is more
preferable than equal role of controller in the multiple
controller’s environment. But when multiple
controllers are used in SDN networks, it introduces or
bring some challenges which is related to the load
balancing.

3. NEED OF LOAD BALANCING IN SDN

CONTROLLERS

Load balancing is a vital issue in the multiple
controllers for optimal utilization of available
resources of the network and also prevent to reduce the
overheads in the control plane [16]. To achieve the
load balancing between the multiple controllers in the
network, need to distribute the load of the overloaded
controller to the other controllers of the network. The
load imbalance between the controllers also reduces
the overall resource utilization of the network [16,17].
Because when multiple controllers become imbalance
then some controllers reach their performance
bottleneck due to an increase the response delay
whereas other controllers are underloaded or idle state
in the network [19].

In SDN, the controller is a very crucial component
because it manages all traffic of the network. Thus, the
controller is responsible for taking all routing decision
of the network while data plane act as a simple
forwarding device. Thus, when a controller handles
more traffic than its capacity [11-19]. Then these
problems are occurring such as controller failure,
controller overload when it exceeded its threshold
value and cascaded failure of controllers is happened in
the network [19].

4. PROPOSED DESIGN OF ALGORITHM FOR
LOAD BALANCING

In this paper to resolve these issues to design an
adaptive algorithm for load balancing in SDN
controllers by using the queuing theory techniques,
which help to maintain the load fluctuation between
the multiple controllers. The motive of this paper is to
evaluate a load of multiple SDN controllers by using
the queuing model. Because the fault tolerance and
load balancing are a complicated issue in the SDN for
the multiple controllers. In the proposed model using
the Markov and the Queuing Theory Model to design
an adaptive load balancing algorithm for multiple
controllers.

The Markov process is a simple stochastic process, in
which the distribution of future state depends only on
the present state and not on how it arrived in the

Figure 2: Various Role of SDN Controllers

Figure 1: Software Defined Network Architecture

Deepjyot Kaur Ryait et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5872 – 5879

present state. Therefore, these processes hold the
memoryless property [20,21]. According to the
memoryless property, the prediction of the future event
(state) depends on the basis of the present event only
and not upon any previous states.
Therefore, the probability of the future state (Xt+1) at
time instant (t+1) depends on the present state (Xt) at
time instant t is defined as:

P [Xt+1 | Xt, Xt-1, …, X2, X1, X0] = P [Xt+1 | Xt]

where Xt is the present state, Xt-1 is the immediate
past state and Xt+1 is the future state of the Markov
process respectively. Thus, the memoryless property is
also applicable in the queuing model and it is also
known as the network queuing model.

In the queuing model, there are two types of events
that occur either arrival rate or service rate. The arrival
rate and time between the arrivals are followed by the
Poisson Distribution and Exponential Service
Distribution respectively [12,13,20-23].

The arrival rate of a packet in the system at time
instant t is represented as  and service rate of a packet
in the system (or processing of packet) at time instant t
is represented as µ. The traffic intensity or utilization
factor of the system is represented as �. To calculate
the value of the traffic intensity is �=/µ. The idle
time of the system is represented by P0=1-�. In Figure
3, shows how the queuing technique is applicable in
SDN Controller. The outline of the load balancing
algorithm shown in Figure 4 and flow-chart in Figure
5.

Algorithm for Load Balancing in SDN for
Multiple Controllers by using Queuing
Technique

Initial Requirement:
CC is represented for Current Controller; SC is
represented for Slave Controllers in the network;
 = Arrival Rate of the packet; µ = Service Rate of
the packet; �= Traffic Intensity of Controller;
Traffic Intensity (�) act as a threshold value of the
Controller in the network.
Result:
0: No need for load balancing
1: Successfully load balancing perform
/* Load Balancing between Multiple Controllers
in SDN*/
if Load of CC > � then
 {

for (i=0; i<n; i++)
{

 /* Calculate the traffic intensity
value of all slave controllers SCi*/
 �i=i/µi

Select controller SCiwhose has
lowest traffic intensity value in the
network.
}
return 1;

 }
else
 {
 return 0;
 }

Output: As the consequences, this algorithm helps
to resolves all the issues which are related to load
balancing in the network such as overloaded
controller, controller failure in the network.
Moreover, also avoid cascaded failure of controllers
in the network due to load unbalancing between
controllers.

Figure 3: Use of Queuing Technique in SDN Controller

Figure 4: Algorithm for Load Balancing in Multiple
Controllers

Figure 5: Flow Chart for Load Balancing in SDN
Controllers

Deepjyot Kaur Ryait et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5872 – 5879

4.1 Queuing Model (M/M/1: ∞/∞) v/s (M/M/1: N/∞)

In the queuing model {M/M/1: ∞/∞}, the average
number of arrival rate per unit of time is  and the
average number of service rate per unit of time is µ.
The steady state equation of M/M/1: ∞/∞ model is
expressed as the sum of three independent compound
probabilities [21]. Therefore,

To obtain the steady state of the differential equation
of M/M/1: ∞/∞ model is the product of three
possibilities events occur [21] are shown in Figure 6
(a) and Figure 6(b). Therefore,

ݐ)	݊ܲߜ + (ݐߜ
ݐߜ

= 	 ൜−
( + μ)ܲ݊(ݐ) + ܲ݊ − (ݐ)1 + μܲ݊ + ;(ݐ)1

݊	ݎ݋݂ > 0 ൠ				(1)

ݐ)0ܲߜ + (ݐߜ

ݐߜ = {−ܲ0(ݐ) + μܲ1(ݐ); ݊	ݎ݋݂																																					 = 0}										(2)

To solve the above differential equations of the
queuing model M/M/1: ∞/∞, to find the value of P1
from equation (2).

P1=(/µ) P0

Then put n=1 in equation (1) and get P2=(/μ)ଶ P0 and
so on.
Similarly,

Pn=�௡P0 (3)

After calculating the probability of Pn of ‘n’ packets in
the system and probability that the queuing system is
idle by P0. The queuing system also provides four
important properties which are related to each other
[21]:

 To calculate the length of system (Ls) by
using equation (4).
Ls= �/(1-�)(4)

 To calculate the length of queue (Lq) by using
equation (5).
Lq=Ls+� (5)

 To calculate the average waiting time of
packet in the system (Ws) by using equation
(6).

Ws= Ls/ (6)

 To calculate the average waiting time of
packet in the queue (Wq) by using equation
(7).
Wq=Lq/(7)

But in M/M/1: ∞/∞ queuing model create infinite
queue length which also affects the value parameters
like length of queue (Lq), length of system (Ls),
waiting time in queue (Wq), and waiting time in
system (Ws) in Figure 10.

Thus, it is preferable to use M/M/1: N/∞ queuing
model in which the length of the queue is finite. So,
the number of arrivals will not exceed the N in any
case [21]. Therefore, the capacity of the system is
limited to say N.

Let

Arrival Rate
() = n

௡ୀ	 ൜
	, ݂݅	݊ = 0,1,2, … . .ܰ− 1
0	, ݂݅	݊ ≥ ܰ																										

Service Rate
(µ)= µn

μ௡ୀ	{μ	,݂ݎ݋	݊ = 1,2,3, … ..		}

Similarly, solve differential equations of the queuing
model M/M/1: N/∞, and get value of P0 and Pn in
equation (8) and (9).

Therefore,

P0= ቂ
ଵି�

ଵି�ಿశభ
ቃ(8)

Pn=�௡P0 {	݂ݎ݋	݊ = 0,1,2,3, … .ܰ	}(9)

Similarly, evaluate expression of Ls, Lq,Wsand Wqin
queuing model M/M/1: N/∞ are given below: -

 To calculate the length of system (Ls) by
using equation (10).

Figure 6 (b): Possible of events occur in time interval (t+δt)

Figure 6 (a): Probability of events occur in time interval
(t+δt)

Deepjyot Kaur Ryait et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5872 – 5879

Ls= �/(1-�)ቂଵାே�
ಿశభି(ேାଵ)�ಿ

ଵି�ಿశభ
ቃ(10)

 The effective arrival rate (௘௙௙ = (1− ேܲ)

 To calculate the length of queue (Lq) by using

equation (11).
Lq=Ls -

೐೑೑
ஜ

 (11)

 To calculate the average waiting time of
packet in the system (Ws) by using equation
(12).

Ws=

௅ೞ
೐೑೑

 (12)

 To calculate the average waiting time of
packet in the queue (Wq) by using equation
(13).

Wq=

௅೜
೐೑೑

 (13)

5. NUMERICAL EVALUATION AND RESULT

When the current controller increases its load from the
threshold value then how to distributed the load
between other controllers by using the proposed
algorithm for the load balancing in the SDN. Suppose
in the network (in Figure 7), the current controller
whose arrival rate and service rate are 8 and 9
respectively.

Queue Model M/M/1: ∞/∞ Queue Model M/M/1: N/∞

Calculate the probability of traffic intensity(�), idle
time (P0), no queue occurs in the system and also the
probability of ten packets in the system (P10) by using
both queuing model M/M/1: ∞/∞ and M/M/1: N/∞
show in Figure 8 (a and b) respectively. The
comparison between both models shown in Figure 9.

And also compare the various parameters like expected
length of system (Ls), expected length of the queue in
the system (Lq), expected waiting time of a packet in
the system (Ws) and also expected waiting time of a
packet in the queue (Wq) in both queue models shown
in Figure 10.

0.0
0.2
0.4
0.6
0.8
1.0

Traffic
Intensity

P0 No Queue P10

M/M/1:∞/∞

0.0
0.2
0.4
0.6
0.8
1.0

Traffic
Intensity

P0 No Queue P10

M/M/1:N/∞

0.0

0.2

0.4

0.6

0.8

1.0

Traffic
Intensity

P0 No Queue P10

PR
O

BA
BI

LI
TY

Comparision Between Queuing
Models

M/M/1:∞/∞ M/M/1:N/∞

0.0

2.0

4.0

6.0

8.0

10.0

PR
O

BA
BI

LI
TY

Probability of various parameters
Ls, Lq, Ws & Wq

M/M/1:∞/∞ M/M/1:N/∞

Figure 8 (a): M/M/1: ∞/∞ Model

Figure 8 (b): M/M/1: N/∞ Model

Figure 9: Comparison between M/M/1: ∞/∞ and
M/M/1: N/∞ Model

Figure 10: Compare both Models w.r.t. Ls, Lq,
Ws&Wq parameter’s

Figure 7: Representation of Queuing Models in Network

Deepjyot Kaur Ryait et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5872 – 5879

In Figure 10, it is more preferable to use the M/M/1:
N/∞ queuing model because the probability of these
parameters in sequence like (Ls, Lq, Ws&Wq) are
reduced as compare to the M/M/1: ∞/∞ model. The
blue curve represents the M/M/1: ∞/∞ and the orange
curve represents the M/M/1: N/∞ Model.

Suppose in the network (in Figure 11) has three
controllers whose arrival and service rate are given in
Table 1, by using M/M/1: N/∞ Model in which the
finite length of the queue is 10. Then calculate all
parameters of these three controllers are shown in
graph form in Figure 12, Figure 13, and Figure 14,
Figure 15 (a) & (b).

Controllers Arrival Rate Service Rate
C1 8 9
C2 4 5
C3 3 6

0.9
0.8

0.5

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C1 C2 C3

PR
O

BA
BI

LI
TY

Traffic Intensity (�)

C1

C2

C3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C 1 C 2 C 3

PR
O

BA
BI

LI
TY

Idle Time (P0) No Queue

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

C1 C2 C3

PR
O

BA
BI

LI
TY

Traffic Intensity (�)

Join Queue in System

Figure 13: Probability w.r.t. P0 and No Queue occur in
the System

Figure 14: Probability w.r.t. Traffic Intensity and Join
Queue in the System

Figure 11: Scenario of network usingM/M/1: N/∞
Model for Load balancing in SDN

Figure 12: Probability of Traffic Intensity of the Controllers

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

C 1 C 2 C 3

PR
O

BA
BI

LI
TY

Ls Lq Ws Wq

Table 1: Arrival and Service Rate of the
Controllers in the Network

Deepjyot Kaur Ryait et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5872 – 5879

In this scenario, controller C3 has the lowest traffic
intensity value as compare to controller C2. When the
current controller C1 exceeded its threshold value in
the network, then the controller C3 is selected to
manage the load of the network.

6. CONCLUSION

In this paper proposed an algorithm for load balancing
in SDN controllers by using the queuing techniques.
These techniques help to manages the load between the
multiple SDN controllers in the networks. Because the
fault tolerance and load balancing are complicated and
interrelated issues in the SDN for controllers. The main
contribution of this paper is to propose an algorithm
for load balancing in the multiple controllers by using
the queuing technique. In a Figure 9 and Figure 10 also
highlights the comparison between both queuing
models respectively. If the probability of idle time in
system (P0)is 11% in M/M/1: ∞/∞ model and 15% in
M/M/1: N/∞ model. But the probability of other
parameters like Ls = 8.09%, Lq=7.2%, Ws=1.011%
&Wq=0.9% approximately in M/M/1: ∞/∞ model.
Similarly, the probability of other parameters Ls =
3.87%, Lq=3.03%, Ws=0.508% &Wq=0.39% in
M/M/1: N/∞ model is approximately. The probability
of these parameter shows the M/M/1: N/∞ model is
more preferable than another model. Because the
probability of these parameters ((Ls, Lq, Ws&Wq) are
reduce as compare to another model.

REFERENCES

1. D. Kreutz, F. M. Ramos, P. E. Verissimo, C.
E. Rothenberg, S. Azodolmolky, and S. Uhlig,
“Software-Defined Networking: A
Comprehensive Survey,” in Proceedings of
the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

2. W. Braun and M. Menth, “Software-Defined
Networking Using OpenFlow: Protocols,
Applications and Architectural Design
Choices,” Open Access Future Internet, vol.
6, no. 2, pp. 302-336, 2014.

https://doi.org/10.3390/fi6020302
3. Y. Yu, X. Li, X. Leng, L. Song, K. Bu, J.

Yang, Y. Chen, L. Zhang, K. Cheng and X.
Xiao, “Fault Management in Software-
Defined Networking: A Survey,” IEEE
Communications Surveys & Tutorials, vol.
21, no. 1, pp 349-392, 2018.

4. C. M. Duran, E. A. Leal and J. F. Botero,
“Improving fault tolerance in critical networks
through OpenFlow,” in IEEE Colombian
Conference on Communications and
Computing (COLCOM), IEEE, 2017.

5. A. Malik, B. Aziz, A. Al-Haj and M. Adda,
“Software-Defined Networks: A Walkthrough
Guide From Occurrence To Data Plane Fault
Tolerance,” Open Access, pp. 1-26, 2019.

6. J. Chen, J. Chen, F. Xu, M. Yin and W.
Zhang, “When Software Defined Networks
Meet Fault Tolerance: A Survey,” G. Wang et
al. (Eds): International Conference on
Algorithms and Architectures for Parallel
Processing (ICA3PP), Part III, vol. 9530, pp.
351-368, 2015.

7. M. R. Parsaei, S. H. Khalilian and R. Javidan,
“A Comparative Study on Fault Tolerance
Methods in IP Networks versus Software
Defined Networks,” International Academic
Journal of Science and Engineering, vol. 3,
no. 4, pp. 146-154, 2016.

8. B. Isong, I. Mathebula and N. Dladlu, “SDN-
SDWSN Controller Fault Tolerance
Framework for Small to Medium Sized
Networks,” in the 19th IEEE/ACIS
International Conference on Software
Engineering, Artificial Intelligence,
Networking and Parallel/Distributed
Computing (SNPD), IEEE Computer Society,
pp. 43-51, 2018.
https://doi.org/10.1109/SNPD.2018.8441131

9. L. Sidki, Y. Ben-Shimol and A. Sadovski,
“Fault Tolerant Mechanisms for SDN
Controllers,” in IEEE Conference on Network
Function Virtualization and Software Defined
Networks (NFV-SDN), IEEE, pp. 1-6, 2016.

10. Y. Zhang, L. Cui, W. Wang and Y. Zhang, “A
Survey on Software Defined Networking with
Multiple Controllers,” Journal of Network and
Computer Applications (Elsevier), pp. 1-58,
2017.

11. I. F. Akyildiz, A. Lee, P. Wang M. Luo and
W. Chou, “Research Challenges for traffic
Engineering in Software Defined Networks,”
IEEE Network, 2016.

12. B. Xiong, X. Peng and J. Zhao, “A Concise
Queuing Model for Controller Performance
in Software-Defined Networks,” Journal of
Computers, vol. 11, no. 3, pp. 232-237, 2016.

13. T. Issa et al., “Analytical Load Balancing
Model in Distributed Open Flow Controller
System,” Science Research Publishing, vol.
10, pp. 863-875, 2018.

14. O. Blial, M.B. Mamoun and R. Benaini, “An
Overview on SDN Architectures in Multiple

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ls Lq Ws Wq

PR
O

BA
BI

LI
TY

C1

C2

C3

Deepjyot Kaur Ryait et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5872 – 5879

5879

Controllers,” Journal of Computer Networks
and Communications Journal, vol. 2016, pp.
1-8, 2016.
https://doi.org/10.1155/2016/9396525

15. W. H. F. Aly, “Generic Controller Adaptive
Load Balancing (GCALB) for SDN
Networks,” Journal of Computer Networks
and Communications, 2019.

16. A. Mahjoubi, O. Zeynalpour, B. Eslami and
N. Yazdani, “LBFT: Load Balancing and
Fault Tolerance in distributed controllers,” in
2019 International Symposium on Networks,
Computers and Communications (ISNCC),
IEEE, 2019.

17. W. H. F. Aly, “Controller Adaptive Load
Balancing for SDN Networks,” in 2019
Eleventh International Conference on
Ubiquitous and Future Networks (ICUFN),
IEEE, 2019.

18. A. U. Rehman, R. L. Aguiar and J. P. Barraca,
“Fault- Tolerance in the Scope of Software-
Defined Networking (SDN),” IEEE Access,
vol. 7, pp. 1-18, 2019.

19. J. Cui, Q. Lu, H. Zhong, M. Tian and L. Liu,
“A Load-Balancing Mechanism for
Distributed SDN Control Using Response
Time,” IEEE Transactions on Network and
Service Management”, vol. 15, no. 4, pp.
1197-1206, 2018.

20. A. Mondal, S. Misra and I. Maity, “Buffer
Size Evaluation of OpenFlow Systems in
Software-Defined Networks,” IEEE Systems
Journal, vol. 13, no. 2, pp. 1359-1366, 2019.

21. L. Kleinrock, Queueing Systems – Volume 1:
Theory. Wiley-Interscience, 1975.

22. G. Nencioni, B. E. Helvik, A. J. Gonzalez, P.
E. Heegaard and A. Kamisinski, “Availability
Modelling of Software-Defined Backbone
Networks,” in 2016 46th Annual IEEE/IFIP
International Conference on Dependable
Systems and Networks Workshop (DSN-W),
IEEE, 2016.

23. M. Escheikh and K. Barkaoui, “Scalable Load
Balancing Scheme for Distributed Controllers
in Software Defined Data Centers,” in 2019
Sixth International Conference on Software
Defined System (SDS), IEEE, 2019.
https://doi.org/10.1109/SDS.2019.8768708

