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 
ABSTRACT 
 
Computed Tomography (CT) images are becoming a valuable 
aid in advanced lung cancer investigation. Automated 
segmentation of lung structures from CT images is the 
elemental step in many lung cancer diagnosis systems, where 
the malignant nodules are identified at its initial stage. Lung 
segmentation is a challenging task because of the variant 
density distribution amongst the lung region, similar 
densities in the pulmonary structures, and scanning protocols.  
This work intended to recognize the efficient region-based 
segmentation framework to segment lung volumes. The 
standard region-based approaches, such as watershed and 
region growing, are adapted to segment the lung region. The 
specified segmentation methods segment lung in the axial 
space and achieve promising segmentation results. The 
performance of the system is assessed by computing the DSC, 
Hausdorff distance and AVD between the automatically 
segmented lung volumes and the volumes manually outlined 
by radiological experts. The marker-controlled watershed 
method followed by a sequence of morphological operations 
segments the lung parenchyma accurately with a dice score of 
92.5 and the region growing method with a dice score of 93.8 
concerning the expert-traced contours. The obtained results 
confirm the effectiveness of the system. It is suggested that the 
performance of the described framework could be further 
enhanced by fusing shape-based features. 
 
Key words : lung cancer diagnosis, region growing, 
volumetric lung segmentation, watershed algorithm. 
 
1. INTRODUCTION 
 
Lung cancer endures the preeminent cause of cancer death 
among men and women in the world [1]. The National Lung 
Screening Trial (NLST) has manifested that the low dose 
helical CT based cancer-screening process demotes the 
mortality rate by detecting lung cancer at the preclinical 
stage. Volume-based image investigation possesses a 
significant role in intensifying the detection and diagnosis of 
lung cancer on CT images.  Thoracic computed tomography 
imaging system permits the physician to observe the inner 
organs, bones, and tissues of the individual. Chest CT scan 
image has four organs-at-risk such as the esophagus, heart, 
left and right lungs and spinal cord. The right and left lungs 

 
 

can be bounded separately, but they are considered as a single 
structure for lung dosimetry. CT screening is an important 
procedure routinely conducted to identify cancer in the 
anatomical structures (organs-at-risk) at the initial stage [2]. 
Hand-operated investigation demands a notable amount of 
time to segment the ROIs, and it is essential for the ROIs 
(lung parenchyma) to be segmented precisely to discover the 
changes in the anatomical structure. Automatic analysis of 
lung pathologies and 3D lung parenchyma segmentation are 
the current interest in the field of medical image analysis. 
 
Lung segmentation is defined as the delineation of the region 
enveloped by the pleura, which comprises lung parenchyma 
commonly with pulmonary bronchi, vessels, and nerves. 
Lung segmentation is a pre-processing step in 
computer-aided diagnosis systems such as lung cancer and 
pulmonary diseases. This paper intended to examine the 
performance of two traditional region-based methods in 
segmenting the lung volume from the pile of CT slices in 
axial orientation. In literature, various methods are reported 
to separate the lung parenchyma from the CT scan images. 
Conventional segmentation methods are categorized into four 
categories: 1) Intensity-based segmentation methods that 
segment the image based on the intensity value of a pixel or a 
voxel. Thresholding [3], [4] technique departs the image 
based on pixel intensity. This method uses a threshold value 
to convert a grayscale input image into a binary output that 
designates the segmented regions. The technique compares 
each image pixels with the defined threshold value, and if the 
pixel value is higher than the threshold, the binary output 
pixel is set to the one; unless, it is set to zero. The threshold is 
determined by previous domain knowledge or histogram 
based algorithms. Hence, the CT images are obtained from 
distinct scanner machines, identifying the optimal threshold 
value is still a challenging assignment. Global thresholding 
fails to operate when the foreground and background pixels 
have coinciding grayscales but are separated in space. The CT 
image could not be segmented properly with global 
thresholding.  
 
2) Region-based segmentation methods set apart the identical 
region attentively by developing the region of interest from a 
seed point or a preliminary target volume. The 
region-growing method starts with a pixel or voxel as a prime 
region and explores the neighborhood pixels or voxels that 
meet a similarity condition with the region of interest. This 
process develops the regions continuously until no other 
similar pixel or voxel is observed. Hao et al. [5] have proposed 
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a region-growing strategy to segment ultrasound images. 
Though this method is simple to implement, it takes more 
time because it requires examining every possible pixel or 
voxel. 3) The edge-based segmentation method segments the 
images based on the predominant edges present in the image. 
This method is not reliable when the surfaces of the objects 
are, and the edges are not connected. In CT image, the lung 
area includes air valves and veins, and this distracts the 
algorithm by producing wrong edges. 4) Traditional 
clustering algorithms such as K-means and FCM are 
commonly used to segment the images based on the spatial 
relationship between the pixels. These techniques are fit to 2D 
images, and for 3D images, it consumes longer time and 
memory.  These methods are limited by computer power and 
used no or little prior-knowledge. 
 
Advanced techniques have developed in an attempt to 
overcome the difficulties in heuristic approaches [6-8]. 
Numerous ambiguity models and optimization methods have 
proposed to segment the lung from chest CT scan. Cootes et 
al. [9] have proposed a shape-training models based on the 
collection of shapes, where a flexible point distribution model 
is produced during the object search into the image. A fully 
automated lung segmentation algorithm based on adaptive 
border marching has been proposed to segment the lungs, 
including juxta-pleural nodules that are adjacent to the chest 
wall [10]. This method minimize the over segmentation of 
adjacent regions. A robust active shape model approach [11] 
has been proposed to segment the lungs with pathological 
conditions, and an optimal surface finding approach is 
adapted to improve the segmented results. Besides, not all 
these approaches are standard for distinct applications.  
 
In this work, two common region-based segmentation 
methods have been adapted for automatic 3D-lung 
segmentation. The first method is based on a region-growing 
algorithm [12] and the second method utilizes a marker 
controlled watershed approach [13]. The performances of 
these approaches are analyzed in terms of dice coefficient 
(DSC), hausdorff distance and average hausdorff diatance 
(AVD) and recommendations are given based on the obtained 
results. The structure of this paper is as follows: This section 
studies the related research carried on lung segmentation. 
Section 2 provides the detailed methods for 3-D lung 
segmentation. The experimental results are discussed in 
section 3. Finally, the conclusion and informations for future 
work are provided in Section 4.   
 
2. METHODOLOGY 
 
2.1 Dataset 
 
The Cancer Imaging Archive (TCIA) is a service that affords 
a free archive of cancer images for public access [14]. In 
TCIA, the medical image data (both CT and RTSTRUCT) are 
stored in Digital Imaging and Communications in Medicine 
(DICOM) file format. RTSTRUCT file carries the 

hand-operated contours that have been used in the clinic for 
treatment planning, and this is used as ground-truth for 
validation. Figure 1 presents the axial and sagittal orientation 
of the chest CT scan image. From Figure 1, it is apparent that 
the bone structures (white region) have a higher density than 
body muscles (gray region) and muscles have a higher density 
than lung parenchyma (dark region). 

 

  
Figure 1: CT sample images in axial and sagittal plane views 
 
Hounsfield Unit (HU) is a conventional system for measuring 
the density of a voxel in CT scan. In a CT scan, HU is 
equivalent to the degree of x-ray attenuation, and it is 
allocated to each voxel to show the image that represents the 
density of the anatomical tissue [15]. The HU value for the 
anatomical structure of chest CT scan is presented in Table 1.  
 
Table 1: Hounsfield unit value for the anatomical structure of 

chest CT scan 
Anatomical structure 

or substance 
Hounsfield Unit 

(HU) value 
Air -1000 

Lung -700 to -900 
Water 0 
Muscle 50 
Bone >1000 

 
2.1 2.2 Marker controlled watershed algorithm 
 
A marker-based watershed segmentation method is developed 
to segment lung parenchyma from chest CT images. The 
original watershed segmentation has a great response to thin 
edges; this may stop the algorithm by returning 
over-segmented results. Hence, lung segmentation with 
regular watershed transform to the gradient CT image can be 
settled in over segmentation due to other dominant edges. The 
idea of markers is included to control the over segmentation 
problem of the traditional watershed method. A marker is a 
coupled element associated with an image that modifies the 
gradient image. Two types of markers, such as internal and 
external, are used in marker-controlled watershed 
segmentation. The internal marker expresses the region of 
interest, and an external marker expresses the boundary 
region. The marker-controlled watershed segmentation is an 
effective method for segmenting the regions with shuttered 
contours, where the edges are meant as ridges. After the 
initial segmentation, the boundaries of the watershed regions  
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Figure 2: Segmentation of lung volumes using marker-controlled watershed 
 

are smoothened by adopting proper morphological operation. 
Figure 2 shows the framework for segmenting lung volumes 
using marker-controlled watershed approach.  

A. Algorithm 
 

1. The input CT image is intensified using the windowing 
operation (1), where the lung region voxels are 
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where minw is minimum range in HU and maxw is 
maximum range in HU.  

2. For each axial slice in the input 3D CT scan image, do 
steps 3 - 7. 

3. Obtain the gradient image G  from the CT image using 
the Sobel masking operator (2). Sobel convolution 
kernels applied separately to the image in horizontal and 
vertical direction and computed the gradient images  

xG  and yG  respectively. 

 
22

yx GGG 
 (2) 

4. Generate internal and external markers from the CT 
image. Apply the global thresholding to generate the 
internal marker, which represents the region of interest. 
Two larger regions are selected, and the corresponding 
voxels are set as internal markers. External marker is a 
wide strip around the internal marker with the thickness 
of 10mm. The binary dilation is applied to the internal 
marker to obtain the external marker. 

 

(a)  

 

(b) 
 

Figure 3: Histogram plot of the chest CT image before and 
after windowing operation; (a) Input CT image & Histogram; 
(b) Enhanced Image & Histogram 

5. Watershed marker is obtained by merging the internal 
and external markers. 

6. Watershed transform algorithm takes the gradient image 
and watershed marker as input, and then segments the 
image by retaining the significant edges between the 
markers. 
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7. Top-hat transform is applied to the obtained segmented 
image that detects and includes the small details on the 
wall of the lung region. 

2.3 Region growing algorithm 
 
Region-growing algorithm consists of four main stages: 
automatic seed selection, algorithm-stopping condition, 
region growing, and process to correct the segmented lungs. 
This algorithm is applied to all the slices with the thickness of 
minimum 2.5 mm in axial direction. 
 

A. Algorithm 
 

1. The input CT image is intensified using the windowing 
operation (1), where the lung region voxels are 
highlighted.  Intensity windowing function converts the 

HFv  (voxel in HU) in the range of [-1000, 3054] into 

grayv  (voxel in grayscale) in the range of [0, 255]. 

2. Initialize the volume mask                                                 
V   mjni ,,0;,,0     and set the voxel’s 
values as zero. 0jiV  

3. For each axial slice in the input 3D CT scan image, do 
steps 4 - 6. 

4. Set the initial seed by histogram peak finding method 
[16] for the current slice in the volume mask and 
enqueue all seeds into queue. 

5. For each voxel in the queue, check its neighbor and 
enqueue the voxel into queue, if the neighboring voxel is 
similar to the current voxel. Repeat this step until the 
queue is empty. 

6. Rolling ball filter is applied to fill the gaps on the 
boundary and 20mm diameter of ball is used that 
includes juxta- pleural nodules. 

 
 
3.  RESULTS AND DISCUSSION 
 
In this experiment, Lung CT Segmentation Challenge 2017 
(LCTSC) database of 60 thoracic CT studies has been 
employed.  Evaluation has performed against the manual 
contours available in DICOM RTSTRUCT file that is 
provided in the LCTSC dataset. These manual contours are 
used as ground truth label to assess the performance of the 
proposed approach. The lung data considered for this test is 
excluded from tumor, main bronchi, airways and vessels 
greater than mm25  diameter. 
 

    

    

    

(a) Input 
image 

(b) Ground 
truth 

(c) Region 
growing  

(d) Marker- 
controlled 
watershed 

Figure 4: Axial position CT images show the segmented 
results of region growing and marker-controlled watershed 
algorithm. Each row shows the segmented results for different 
slices of a case (LCTSC-Train-S1-001) 

The visualization of the segmented results shown in Figure. 4 
and Figure. 5 confirms that the above-mentioned algorithms 
segments 3D lung parenchyma from the CT scan images. The 
effectiveness of these approaches is analyzed further in 
quantitative measures with dice coefficient, hausdorff 
distance and AVD. 

   
(a) (b) (c) 

Figure 5: Volumetric lung segmentation. (a) Ground truth 
(left column, green color); (b) lungs delineated by region 
growing (middle column, red color); (c) lungs delineated by 
watershed method (last column, blue color) 

3.1 Evaluation metrics 
 
Dice Coefficient 
 
Dice coefficient (DSC) is a measure of relative overlap 
between the segmented result and the ground truth result, 
where 1 represents perfect match and 0 represents no overlap. 
 

YX
YX

D



2

 (3) 
 
where X is ground truth and Y is the segmented result. 
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Table 2: Results on lung segmentation using marker 
controlled watershed 

Study ID 
(Train) 

Marker Controlled 
Watershed 

DSC Hausdorff AVD 
LCTSC-Train-S1-001 0.93 21.26 15.54 
LCTSC-Train-S1-002 0.94 13.34 9.64 
LCTSC-Train-S1-003 0.96 14.89 6.64 
LCTSC-Train-S1-004 0.92 19.12 10.07 
LCTSC-Train-S1-005 0.92 13.87 8.56 
LCTSC-Train-S1-006 0.93 21.45 9.67 
LCTSC-Train-S1-007 0.89 29.01 12.45 
LCTSC-Train-S1-008 0.93 14.98 8.57 
LCTSC-Train-S1-009 0.95 13.78 8.01 
LCTSC-Train-S1-010 0.88 24.36 11.52 

 
Hausdorff Distance 
 
The Hausdorff Distance (HD) between two finite vectors X 
and Y is defined by (4) 

 

       XYhYXhYXHD ,,,max,    (4)  
 
where  YXh ,   is called the directed Hausdorff distance is 
computed by (5) 
 
  yxYyXxYXh  minmax,

 (5) 
 
The HD is sensitive to noise and outliers. Since, noise and 
outliers are usual in medical image segmentation; it is advised 
that do not assess the performance of algorithms with HD 
alone. 

Table 3: Results on lung segmentation using region growing  
 

Study ID 
(Train) 

Region Growing 
DSC Hausdorff AVD 

LCTSC-Train-S1-001 0.94 15.17 6.59 
LCTSC-Train-S1-002 0.93 14.97 8.63 
LCTSC-Train-S1-003 0.97 12.65 7.03 
LCTSC-Train-S1-004 0.95 16.51 5.98 
LCTSC-Train-S1-005 0.94 15.23 6.90 
LCTSC-Train-S1-006 0.95 17.75 5.45 
LCTSC-Train-S1-007 0.90 23.15 9.65 
LCTSC-Train-S1-008 0.92 15.76 5.78 
LCTSC-Train-S1-009 0.97 10.82 6.54 
LCTSC-Train-S1-010 0.91 18.48 9.23 

 
Average Hausdorff Distance 
 
The Average Hausdorff Distance (AVD), is the averaged 
Hausdorff Distance across all points. The AVD is less 
sensitive to noise and outliers than the HD. It is defined by (6) 

 

      XYdYXdYXAVD ,,,max,   (6) 
 
where  YXd ,   is the directed Average Hausdorff distance 
that is computed by (7) 
 

  



Xx

yxYy
X

YXd min1,
 (7) 

 
The Hausdorff distance and the average Hausdorff distance 
are computed based on the distances among all pairs of 
voxels. As all possible pairs are considered, these metrics are 
reliable and robust, especially in volumetric images. The 
experiment results of 3D Lung segmentation using watershed 
and region growing algorithm is validated with 10 clinical CT 
images from LCTSC dataset. The performance of these two 
algorithms in terms of DSC, Hausdorff distance and AVD are 
presented in Table 2 and Table 3 for comparative analysis.  
 

Table 4: Performance comparison of lung segmentation 
methods 

Metrics Watershed Region Growing 
DSC 0.92 ± 0.02 0.94 ± 0.02 

Hausdorff 18.06 ± 5.34 16.04 ± 3.35 
AVD 10.06 ± 2.55 7.17 ± 1.47 

 
The statistical results of the algorithms are provided in      
Table 4. Compared to marker-controlled watershed method, 
region-growing method segments the lung volumes 
accurately. However, the result of region growing method is 
fully depends on the initialization of the seed points. Though 
it adapts automatic initialization of seed using the histogram 
peak finding method [13] , it requires the expertise input for 
the CT images with pathological conditions. As well, this 
could segment the lung, which has homogeneous region. 
From the experimental results, it is noted that the watershed 
method followed by morphological operations segment the 
lung volumes efficiently without demanding initializations. 

4. CONCLUSION 
The segmentation framework implemented with watershed 
and region-growing algorithms segment the lung 
parenchyma from the chest CT images precisely. The 
experiment result confirms that two traditional approaches 
such as watershed and region-growing automatically segment 
the lung volume from CT image with an average dice 
coefficient of 0.92 and 0.94 respectively. In order to include 
the juxta-pleural nodules, morphological operations are 
performed after segmenting the regions from the 3D volume 
CT scan images. Region-growing algorithm achieves the 
average Haousdorff distance of 7.17 and watershed algorithm 
is 10.06. Watershed based segmentation is robust against the 
lung with high pathological conditions, but the 
region-growing algorithm has limitations when the lung 
region has abnormalities. Though these methods have 
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achieved promising results; still, the overall system needs to 
be renewed. 3D and 2D visualization of obtained results 
reveal that the inclusion of other regions parts, such as the 
trachea and spinal cord, which has the same intensity. In 
future, a segmentation algorithm needs to be designed to 
segment all these organs too. 
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