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 
ABSTRACT  
 
The problems of signal transmission in modern satellite 
systems are determined by certain features, both the 
construction of the system itself, and the problems of signal 
processing and signal processing. A characteristic feature of 
the satellite communication channel is the significant 
uncertainty of the signal received on the frequency (frequency 
uncertainty of the signal.) Therefore, for the demodulators of 
satellite modems, the problem of synchronization on the 
frequency of the carrier oscillation is the most significant. 
Based on this, when developing algorithms for coherent 
signal demodulation, the solution to the synchronization 
problem is crucial. The process of estimating the carrier 
frequency of a signal received in satellite systems is 
considered. Quantitative characterization of the minimum 
boundary variance of satellite carrier frequency estimation is 
substantiated. Functional dependencies are proposed to 
determine the Cramer-Rao lower bound, which is proposed as 
a quantitative characteristic of the minimum boundary 
variance of the carrier frequency estimation of a radio 
communication channel. It is established that the 
Cramer-Rao lower bound, adopted for determining the 
estimate of the minimum limiting variance of the carrier 
frequency estimation, is functionally dependent on the energy 
of the single signal pulse, the interval of information pulses of 
the complex envelope received, and the interval at which the 
estimate is made. The dependencies obtained make it possible 
to set the Cramer-Rao lower bound and the minimum 
variance of the carrier frequency estimation by its value, 
provided that other signal parameters are known. Under real 
conditions, the minimum variance of carrying out an MP 
estimation of the carrier frequency with the uncertainty of all 
satellite signal parameters may differ significantly from the 
minimum variance obtained based on the application of the 
proposed Cramer-Rao lower bound, which determines the 
further direction of prospective studies. Prospective research, 
development and creation of algorithms and techniques 

 
 

aimed at the rules of maximum likelihood of a carrier 
frequency with a minimum limiting dispersion under the 
conditions of uncertainty of all signal parameters should be 
aimed at maximally approximating the indicated dispersion 
of the estimate of the carrier frequency of the real signal to the 
lower Cramer-Rao boundary determined for carrier frequency 
under conditions of certainty of other signal parameters. 
 
Key words: received signal, carrier frequency estimation, 
minimum limiting variance of carrier frequency estimation, 
Cramer-Rao lower bound. 
 
1. INTRODUCTION 
Problems of signal transmission in modern satellite systems 
are determined by certain features of both the construction of 
the system itself and the problems of signal reception and 
transmission. The existing energy of the satellite 
communication channel causes an urgent need for coherent 
signal processing and the use of powerful noise-tolerant 
coding. The noise-tolerant coding system is an integral part of 
the satellite modem. The vast majority of systems use 
high-precision encoding with Viterbo decoding and 
cascading codes. Widespread are turbo codes and codes with 
low density of parity checks [1, 2, 3, 4]. 
Although in recent years, amplitude-phase modulation 
methods are often used in satellite communication systems, 
the energy of the satellite channel, as a rule, determines the 
use of phase modulation [1, 3]. The task of estimating the 
carrier frequency of the signal, estimating the carrier 
frequency of the signal is reduced to the problem of estimating 
the frequency of the maximum in the spectrum of a fragment 
of a sinusoidal signal against the background of additive 
Gaussian noise. 
 

1.1 Problem analysis  
A characteristic feature of the satellite communication 
channel is a significant uncertainty of the signal received on 
the frequency (frequency uncertainty of the signal.) 
Therefore, for demodulators of satellite modems, the most 
significant problem is the synchronization of the carrier 
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frequency. Based on this, in the development of algorithms 
for coherent signal demodulation, the solution of the 
synchronization problem is of decisive importance. 
The complex signal envelope contains unknown values, 
namely the frequency, phase, signal delay and transmitted 
information sequence (  ,, , d ). That is, the task of 

synchronization is actually reduced to estimating the true 
parameters of the received signal -  ,, , d , 

knowledge of the parameters of which is necessary for 
demodulation of the signal  tz . 

The best results can be obtained by a joint assessment of 
unknown signal parameters. However, in practice, it is not 
possible to implement such an estimate in a channel with low 
energy and high frequency uncertainty of the received signal. 
Therefore, the estimation of the carrier frequency offset of the 
received signal relative to the nominal value is performed 
before other synchronization procedures are activated, 
namely: phase synchronization and clock synchronization [1, 
2]. 
The complexity of the task of estimating the carrier frequency 
in the satellite channel is determined by the need to process 
signals in continuous and batch modes. 
 
2. MAIN MATERIAL 
2.1 Directions for improving the accuracy of estimating 
the carrier part of the signal 
When solving the problem of estimating the carrier frequency 
of a modulated signal, we assume that on the observation 
interval, the duration of K information symbols, a complex 
envelope of the received signal is given, which is 
characterized by unknown parameters { d ,  ,  ,  } 

[1,3]. The task is to estimate one element of the vector { d , 

 ,  ,  }, namely, the parameter   – the carrier 

frequency. 
To solve the problem of estimating the carrier frequency of 
the FM signal in conditions of uncertainty of information 
about the initial phase of the signal (), the value of its delay 
( ) and the transmitted information sequence ( d ), it is 

advisable to apply the rule of maximum likelihood. It is 
known that the use of the rule of maximum likelihood to 
estimate the carrier frequency (MP-estimate) provides 
asymptotically effective and asymptotically unbiased 
estimates [5, 6, 7]. 
In the presence of information about the parameters { d ,  , 

 } MP-estimation of the carrier frequency can provide the 
minimum limiting variance, which will be determined by the 
lower Cramer-Rao boundary [4,5]. 
Currently, a number of methods are known for estimating the 
frequency of a sinusoidal signal, which is based on recurrent 

procedures. Such as Pisarenko method, MUSIK method, auto 
regression method [6, 7]. 
However, the variance of estimates that provide these 
methods, as shown in [8,9], significantly loses the variance of 
estimates determined by the lower Cramer – Rao boundary. 
Thus, the development of a method of MP-estimation of the 
carrier frequency with a minimum limiting variance, in order 
to obtain its quantitative values, requires prior development of 
functional dependences designed to determine the lower 
Cramer-Rao boundary, which is an urgent scientific problem. 
 
2.2 Analysis of previous works  
The question of determining the lower Cramer-Rao codon as 
which the minimum limiting variance of the carrier frequency 
estimate according to the rule of maximum similarity will be 
adopted is devoted to a number of works. 
The authors of [10] proposed a weighted Bayesian Cramer 
Rao-boundary for the joint determination of the 
synchronization time and carrier frequency shift, which takes 
into account the previous distribution of estimation 
parameters and is the exact lower limit for all considered 
signal-to-noise ratios. The issue of determining the minimum 
limiting variance of the carrier frequency estimate was not 
considered in this paper. 
In [11, 12, 13], the Cramer-Rao boundary for the variance of 
the combined Doppler carrier frequency shift and signal delay 
with an arbitrary signal spectrum is presented. The presented 
results are proposed to be used for cases when the width of the 
signal spectrum does not allow the use of other estimation 
methods within the narrowband model. Direct estimation of 
the carrier frequency and determination of the minimum 
limiting variance for it is not considered in the work. 
The authors of [14] propose a lower Cramer-Rao boundary for 
estimating the frequency of a coherent sequence of pulses 
passively intercepted on a moving antenna. The author 
proposes to make such an assessment in order to determine 
the location of the transmitting radar. The direct carrier 
frequency of these pulses and its evaluation were not 
considered in the work, although the work is indicative from 
the point of view of the application of the lower Cramer-Rao 
limit for the MP of the carrier frequency estimation. 
The work [15, 16] is devoted to solving the problem of 
estimating the signal delay in time, taking into account the 
change in the shape of the signal pulse during navigation in 
the premises. The Cramer-Rao lower bound criterion is used 
to estimate the delay time. The work is quite indicative in 
terms of signal evaluation, but directly the assessment of the 
carrier frequency is not considered in it. 
In [17], the authors propose an algorithm based on 
conditional maximization of expectations for joint estimation 
of the data transmission channel in multiplexing systems with 
orthogonal frequency distribution channels, phase noise of 
generators and Doppler carrier frequency offset. For this 
assessment, the paper proposes a lower hybrid Cramer-Rao 
boundary. The issues of calculating the lower Cramer-Rao 
boundary for the carrier frequency and determining the 
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minimum limiting variance for it are not considered in the 
paper. 
The issue of determining the minimum marginal variance in 
assessing the quality of the receiving radio system was 
considered in [18, 19]. The papers directly propose 
expressions for estimating the minimum noise dispersion 
(according to the Alan parameter) of both receiving systems 
and internal synchronization systems, and substantiate the 
conclusions that such estimation may affect system 
performance at the level of carrier frequency shift estimation 
and channel performance estimation. The minimum variance 
of the frequency estimate (by the Alan parameter) is derived 
in terms of the spectral noise density at frequencies close to 
the signal frequency. Determination of the value of the lower 
Cramer-Rao boundary for the proposed minimum limiting 
variance was not performed. 
 
2.3 Statement of the research problem 
In solving the specific scientific problem of this article, it 
should be borne in mind that the specified lower Cramer-Rao 
boundary and the associated minimum variance of the 
estimate will be used in methods for estimating the carrier 
frequency of the received phase-modulated signal. 
Coherence of signal processing in the demodulator of satellite 
communication systems causes extremely strict requirements 
for the accuracy of estimating the phase of the carrier 
oscillation in the corresponding loop of the demodulator with 
phase-automatic frequency tuning (PAFT demodulator) [1, 3, 

4]. Because of this, the band bandwidth ВС  should not 
normally exceed thousandths of the clock frequency of the 
received signal - about 10–3 1/T [1, 6, 8]. And for reliable 
entry of the auto tuning system into synchronization, the 
value of the variance of the carrier frequency estimate of the 

FM signal 
2
С  should not exceed ВС

2
. That is, the value 


2
С  should not be greater than 10–5 1/T2 [1]. In the following, 

we assume that for the variance of the FM signal carrier 
frequency estimation at low signal / noise ratios per bit of 
information (from 0 to 12 dB) the following requirement must 

be met 105 622  *TC  [1, 6, 8]: 
 

105 622  *TC .                          (1) 
 

2.4 Determination of the lower limit of the variance of the 
evaluation of the carrier part of the signal 
It is known that the complex envelope of the received signal is 
given at the interval of observation T 0  by the vector 

 d,,,    [1, 3]. Where  2 . 

Determine the lower bound of the variance of the estimate of 
one of the elements of the vector  d,,,   , 

namely  . 

If the signal is characterized by a set of parameters 

   M,...,, 010  and  z
_

л  is an unbiased estimate of 

some parameter k , then the lower limit of the variance of 

the estimate k
 is determined by the element of the matrix 

J 1 , the inverse of the Fisher information matrix [5, 20]. 
 

   J kk
kkk zvar  2  

 
Where J kk  is the element of the matrix J 1 . 

The elements of the matrix J  are defined as follows [21]: 
 

  





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






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


ki

wik
zpln

EJ
2

 

 
Here EW  means statistical averaging with respect to noise , 
and the  zp  common probability density function of the 

vector z  for a given   
M010

,...,, . 

Given that the noise is uncorrelated Gaussian with zero mean 

and variance  2
, we write a common probability density 

function [20]: 
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
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
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
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qQiIp expaz 22
22 2

1
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Where:  











,,,, da   

  ;z tRI nen  ,    tIQ nmn
z ; 

   































k
n

k
nn ktthtjexpr dt  – complex 

envelope of the reference signal; 

  ;r tRi nen 










   ;r tIq nmn 











 

2
110

2
1  N,...,,,...,Nn,nTt sn ; 

T s  – the interval of the samples of the complex envelope of 
the received signal; 
 
N – - interval of observations, expressed in the number of 

intervals T s . 
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When forming the elements of the Fisher matrix for the 

parameter 










 ,,  is usually proposed the following 

approach, which is defined in a number of works 
[5,6,7,20,21]. It is shown that for large K (K >> 1) the 
components of the matrix can be represented as: 
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Where  Ed  is the averaging of the elements of 
the Fisher matrix in the information sequence; 

J jk  – matrix element for parameters 










 ,, . 

 
It can be shown that up to a constant value that does not 

depend on the parameters 










 ,, , the logarithm of the 

likelihood function (2) can be represented as follows [20]: 
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From here: 
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Taking into account that       0 qQEiIE nnwnnw  

we get: 
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Where: 


aa ki,  – vector element 

a  at i, k = 0,1,2. 

Note that,   qitr nnn j
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Let's make a number of transformations 
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From here:  
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That is, expression (4) can be represented as 
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To determine the lower limit of the variance of the parameter 
estimation  , we calculate the component of the matrix 

(3) taking into account the averaging over the information 
sequence  JEF ikdik   for i, k = 0,1,2.  

Let's define F  . 
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From here  

   











































 iTh
iTh

j

rd
*

rd

t
t

ddt

tt

n
n*

l
m

m
l

n

n
*

n

 

 
We will average the obtained expression in the information 
sequence. 



Oleksandr Turovsky  et al.,  International Journal of Advanced Trends in Computer Science and  Engineering, 9(4),  July – August  2020, 5838  –  5845 

5842 
 

 

Usually for 


d i  the following model is offered [5,16, 20,22]: 
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Where Ds – some positive value; 


d i  – independent random variables with zero mean and 

correlation functions. 
 
By condition (6) we obtain:  
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The impulse response of the Nyquist filter is a valid function. 
So the right part in this expression is an imaginary function, 
because of this: 
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and 0F r  
 
The same can be shown 0F r . Analysis of expression (4) 
shows that the Fisher matrix is symmetric: FF kiik  . That 
is, the matrix (3) takes the following form: 
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Hence, the lower limit of the variance of the estimate   is 

determined as follows: 
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Thus, to find the lower limit of the variance of the estimates of 
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From here 

   































 mThlTh
rd

*
rd ttddtt

nn
*
l

m
m

l

n
*

n

 
Therefore, based on (1) and (6), the expression for this 
component of the matrix (3) can be represented as: 
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We can show that  0 TN S  the expressions for the 

considered components of the Fisher matrix are rewritten in 
the form [22]: 
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Where E S  is the energy of the elementary signal reference. 
Changing the order of summation and integration, rewrite 
expression (8) in the form 
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Similarly for expression (9) we write:  
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Carrying out the corresponding order of determination F   

of the transformation F   with respect to and taking into 

account that the function  h2  is even, K is not clear, the 
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obtain: 
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In the same way, changing the order of summation and 
integration, we rewrite expression (10) in the form: 
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Carrying out the appropriate order  of definition F   and 

F   transformation relative F
. But using the 

provisions of Parseval's theorem and the theorem on the 
differentiation of the Fourier transform to determine J 2  we 
obtain: 
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Thus, substituting (11), (12) and (13) in (7) we obtain the 
expression of the minimum variance that was sought: 
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It is obvious that at long observation intervals ( 1K ) the 
normalized Cramer-Rao boundary of the carrier frequency 
estimation of the phase-modulated signal can be represented 
as: 

 

 
N/EK

T*CRLB
S 0

22

2 11
2
1


        (15) 

 

Where  

  2 . 

 

The Value   T*CRLB 2  (Cramer-Rao lower bound) is 
called the Cramer-Rao lower bound. The value of which is 
determined by expression (15) and can be taken to determine 
the minimum limiting variance of the carrier frequency 
estimate. 
Thus, the lower Cramer-Rao boundary adopted to determine 
the minimum estimate of the limiting variance of the carrier 
frequency estimate functionally depends on the energy of a 
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single signal pulse ( E S ), the interval of information pulses 

of the complex envelope of the received signal (T s ) and the 

interval on which the estimate ( N 0 ). 

The proposed expression allows us to determine the lower 
boundary of Cramer-Rao, provided that other signal 
parameters are known. That is, the assessment is carried out 
in ideal conditions. 
Typically, the signal, in the conditions of a real satellite 
channel, part of the information about the parameters of the 
received signal may be missing. Based on this, the minimum 
variance of the MP-estimate of the carrier frequency on the 
real satellite signal may differ slightly from the value of the 
lower Cramer-Rao boundary obtained under the same 
conditions [12, 13]. 
Obviously, techniques and algorithms for estimating the 
carrier frequency of a real satellite signal based on achieving a 
minimum estimation variance should ensure that their values 
relative to these dependencies are as close as possible to the 

dependence   T*CRLB 2 . These provisions identify 
promising areas for further work initiated in this article. 
It should be noted that this approach of determining the lower 
limit of the estimation variance and, in general, to the 
estimation of the carrier frequency is to some extent quite 
effectively used to estimate the carrier frequency of the signal 
transmitted in packet mode. That is substantiated and 
presented in [25]. 
In this work [25] the functional dependences are determined, 
based on them a rule is formed and an algorithm for 
estimating the carrier frequency of a signal received by a 
satellite communication system in packet mode according to 
the rule of maximum likelihood using sliding fast Fourier 
transform is proposed. This algorithm makes it possible to 
estimate the frequency according to the rule of maximum 
likelihood, taking into account the condition of uncertainty of 
all parameters of the signal received by the satellite 
communication system in packet mode at short intervals of 
observation. 
It should be noted that the quality of the carrier frequency 
estimate is significantly affected by the parameters of the 
noise environment, which can be formed by various 
environmental factors, among which are both external and 
internal noise. Among the list of internal noises of some 
interest in the process of frequency estimation may take into 
account the internal noise associated with changes in 
nonlinear properties of composite materials of the 
synchronization system under the influence of increasing 
number of additional tracks of charge carriers due to decay in 
the material structure of radioisotope inclusions [26]. This 
can affect the growth of the internal noise of the 
synchronization system and requires its consideration in the 
development of advanced systems. 
Also an important element of reliability, noise protection and 
stability of the synchronization system, which directly affects 
the accuracy of carrier frequency estimation, is the adopted 
model of the synchronization system. The use of combined 

synchronized synchronization systems, which have a high 
order of astatism, can have a good effect on reducing the 
dynamic errors of the frequency estimation process, as 
evidenced by the studies presented in [27]. 
 

3. CONCLUSION 
The paper proposes functional dependences designed to 
determine the lower Cramer-Rao boundary as a quantitative 
characteristic of the minimum limiting variance of the carrier 
frequency estimate of the signal received by the radio 
communication system. 
It is established that the lower Cramer-Rao boundary adopted 
to determine the minimum estimate of the limiting variance 
of the carrier frequency estimate functionally depends on the 
energy of a single signal pulse, the interval of information 
pulses of the complex envelope of the received signal and the 
interval on which the estimation is performed. 
The dependences obtained in this work make it possible to 
establish the lower Cramer-Rao boundary and the minimum 
variance of the carrier frequency estimate by its value, 
provided that other signal parameters are known. 
In real conditions, the minimum variance of the MP-carrier 
frequency estimation in case of uncertainty of all satellite 
signal parameters can differ significantly from the minimum 
variance obtained on the basis of the application of the lower 
Cramer – Rao boundary. 
Prospective research, development and creation of algorithms 
and techniques aimed at MP-estimation of carrier frequency 
at minimum limit variance in conditions of uncertainty of all 
parameters of the received signal should be aimed at 
maximum approximation of minimum limit variance of 
carrier signal estimation of real signal to Cramer-Rao lower 
boundary. determined to estimate the carrier frequency under 
conditions of certainty of other signal parameters. 
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