
Prasad Kaviti et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4328 – 4335

4328


ABSTRACT

Density based clustering is one of the most popular clustering
techniques that groups data in dense regions. These dense
regions are identified with the help of a few parameters which
are sensitive to estimate. Clustering accuracy depends on
effective selection of these parameters. The proposed method
uses density-based clustering and R-Tree. R-Tree provides
faster evaluation of nearest neighbours and also is capable to
store and handle multi-dimensional data efficiently. The
proposed algorithm has two steps: i)R-tree is constructed
from multispectral image data. Data is partioned into dense
clusters/regions using nearest neighbours on the R-tree data,
ii) A threshold parameter `t' which is similar to `epsilon' in
DBSCAN algorithm is used to regulate the dense regions
formed in the initial step by merging neighbour dense regions
which are within `t'-radius. This procedure ignored the
sensitive parameters like `minpts' in DBSCAN by evaluating
the nearest neighbours using R-Tree. Hence the number of
parameters also reduced. Results show that generation of
nearest neighbours is faster and better in the proposed method
when compared to traditional density-based clustering
methods DBSCAN, OPTICS and K-Means.

Key words : Density Clustering, multispectral images,
R-Tree based clustering, DBSCAN Algorithm.

1. INTRODUCTION

Clustering is the process that includes identification and
grouping of similar or dissimilar objects [22]. Clustering
analysis is widely used by varied sectors such as business
analytics, data manipulation, and image analysis. Clustering
methods can be classified in different methods like
partitional, hierarchical, density-based [13] and grid-based
methods [9]. One of such popular clustering techniques is
Density-based clustering [15].

The fundamental idea of Density-based clustering is to further
grow the given cluster until the density in the neighbourhood
falls short of the threshold, i.e., for each cluster within a given
data points, the radius of the cluster has to contain at least a

minimum number of points. There are a number of
density-based clustering methods [8] [18] such as Mean Shift
[20], DBSCAN [13], OPTICS [14], DENCLUE, VDBSCAN,
DVBSCAN,DBCLASD and ST-DBSCAN [21].

DBSCAN discovers high-density regions in spatial databases
with noise and creates clusters out of them [10]. The main
advantage with DBSCAN is it detects clusters of arbitrary
shape and noise points [19]. But determining the initial
parameters eps, minpts is difficult and if there is variation in
the density, noise points are not detected. Ordering points to
identify the clustering structure (OPTICS) is an algorithm for
clustering data whose characteristics are strikingly similar to
that of DBSCAN. OPTICS doesn't consider the parameter
epsilon. Instead of choosing `epsilon' value manually,
OPTICS considers the value as greater than the maximum
distance between pair of data points in the dataset. But it leads
to quadratic complexity since every neighbourhood query
returns the full dataset. The quality in contrast between
OPTICS and DBSCAN is that the former can handle data of
fluctuating densities. Clustering returned by OPTICS is very
similar to that from that which is created by DBSCAN. In this
paper, instead of minpts evaluation in DBSCAN, nearest
neighbours can be evaluated using R-Tree and then
density-based clustering is performed. The results are
compared with standard algorithms like DBSCAN with
kd-Tree, K-Means, OPTICS. Results shown higher efficiency
towards the proposed method

Figure 1: Data flow of Density-based Clustering with R-Tree

2. NEAREST NEIGHBOUR SEARCH ALGORITHMS

Different techniques are used for nearest neighbour search
[3]. To reduce complexities, a variety of techniques are
proposed [4] which are suitable for different applications such
as multimedia data manipulation, information extraction,
databases, data mining and pattern recognition to name but a

R-Tree based Density Clustering for Multispectral Images

Prasad Kaviti1 ,Valli Kumari Vatsavayi2

1Dept. of Computer Science and Systems Engg.AUCE(A), Andhra University
 prasadkaviti@gmail.com

2Dept. of Computer Science and Systems Engg.AUCE(A), Andhra University
vallikumari@gmail.com

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse23942020.pdf

https://doi.org/10.30534/ijatcse/2020/23942020

Prasad Kaviti et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4328 – 4335

4329

few. By paying attention to different applications and data,
each of these techniques has to use a structure for
maintaining, indexing points and searching [5]. Some of
these structures are techniques for nearest neighbour search
[17] such as B-Tree, X-Tree, Ball-Tree, kd-Tree, R-Tree, etc
[16]. A brief overview of some of these data structures is
presented as follows.

kd-Tree : A kd-Tree (short for k-dimensional tree) is a
space-partitioning data structure for organizing points in a
k-dimensional space [6]. At every level of a kd-Tree there is
splitting in all children nodes concerning a specific
dimension, using a plane which is perpendicular to the
corresponding axis, also known as the hyperplane. Beginning
with the root node, the algorithm moves through the tree
iteratively, in the same way in the case of the search point
were being inserted (i.e. depending on whether the point is
lesser than or greater than the current node in the split
dimension, it goes left or right).

kd-Trees are not suitable, however, for efficiently finding the
nearest neighbour in high dimensional spaces [7]. As a
general rule, if the dimensionality is k, the number of points
in the data, N, should be N 2k. Else, when using kd-Trees
for high-dimensional data, too many points in the tree will be
examined which leads to complex evaluation, hence, is not
much efficient than an exhaustive search, and other methods
such as approximate nearest neighbour are used instead.

Ball-Tree :A ball tree is also a binary tree with a hierarchical
(binary) structure[1]. To begin with, two clusters (each
resembling a ball) are created and, as it is a multi-dimensional
space, each ball may be roughly called a hypersphere. Any
point in n-dimensional space must belong to any one of the
clusters alone but not to both [2]. It will belong to the cluster
whose centroid is closest to it. Any ball can be randomly
picked if the distance of a point from the centroids of both the
balls is same. Even if both (virtual) hyperspheres intersect,
the points must belong to only one of the two balls. Next, each
of the balls is again divided into two sub-clusters so that each
one is now considered a ball; meaning that in these
sub-clusters, two more centroids exist and similarly, the point
belongs to that ball whose distance from the sub-centroid is
closest. Again, the clusters are sub-divided, and each has new
sub-sub balls and so on iteratively until certain depth. The
main disadvantage is slower than kd-Trees in low
dimensions.

R-Tree : R-Trees are hierarchical data structures based on
B+-Trees [11]. R-Trees are used for dynamic organization of
a set of multi-dimensional objects indexing them by the
minimum bounding d-dimensional rectangles (for simplicity,
MBRs in the sequel).Each node of the R-Tree corresponds to
the MBR that bounds its children [12]. Instead of pointing to
children nodes, the leaves of the tree contain pointers to the
database objects directly. When data is organized in an
R-Tree, the neighbours within a given distance rand the k

nearest neighbours of all points can efficiently be computed
using a spatial join. This is beneficial for many algorithms
based on such queries.

Figure 2: R-Tree with random points

When performing a range search on R-Tree, we can start from
the top tree level and drill down, ignoring all the boxes that
don't intersect our query box. For a small query box, this
means discarding all but a few boxes at each level of the tree.
A range search in an R-Tree takes O(K log(N)) time on
average (where K is the number of results), compared to O(N)
of a linear search. In other words, it's extremely fast.

kd-Tree is similar to R-Tree, but instead of sorting the points
into several boxes at each tree level, we sort them into two
halves (around a median point) either top and bottom or left
and right oscillating between x and y split on each level.
Compared to R-Tree, kd-Tree can usually contain points
alone (not rectangles) and cannot handle insertion or deletion
of points, but it's easier to construct and quite quick.

kd-Tree and Ball-Tree are the best with Euclidean distance,
but they can be only used for Euclidean distance-based nearest
neighbour search due to its inherent nature. Further, on
high-dimensional datasets, kd-tree and Ball-Tree tend to
perform poorly. Their performance can be inefficient
compared to a brute force approach in such scenarios.

3.R-TREE CONSTRUCTION

Geographical information systems and spatial databases are
widely used in the current world. Along with this,
spatio-temporal database, processing of points and
trajectories of moving objects are widely studied. New kinds
of data such as audio, video, images, maps are a part of the
final product, be it images or multimedia _les, are being
developed. All the above applications must rely on the R-Tree
data structure for storing and retrieval. The application of this
data structure is extensive right from spatial-temporal to
multimedia databases.

Prasad Kaviti et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4328 – 4335

4330

R-Tree can quickly evaluate the nearest neighbours, which
has extended its usage in major fields such as GIS (urban
structures, water bodies, vegetation etc.), multimedia, spatial
data and other higher-dimensional data structures along with
time series and many others.

The R-Tree [11] in the proposed method takes a 3-band RGB
Image as input. Each pixel in the image is a data point to the
R-Tree. To insert a pixel into the tree, an MBR(Minimum
Bounding Rectangle) has to be defined for each pixel point.
Since a pixel point has 3 values, (R, G and B) the MBR will be
a cube with each value of R, G, Bon their corresponding axes
(R = x, G = y, B = z). The MBR for a point is defined
as ,

. In this proposed method, the
MBRfor a point is initialized as ,

and so as to
maintain symmetry in the dimensions across all axes. In this
way, the length of the MBR cuboid formed will be the same on
its corresponding axis.

To construct the R-Tree for the input data, after defining the
MBR for each point, start from an empty root node `N'. If `N'
is a leaf and number of entries in `N' < `M'(Maximum number
of entries allowed to a node), insert the data point `P' into `N'.
If `N' is not a leaf, then find minimum expansion required in
the MBR of each of the existing entries in `N' such that `P'
could be inserted and add `P' to the entry that requires least
MBR expansion. Least MBR expansion is evaluated as the
minimum difference over all the set of differences of MBR(E),
MBR(P) for all entries 'E' in root node 'N'. Finally, if `N' is a
leaf and number of entries in `N' `M', split `N' into two, say
Split1 and Split2. Splitting is performed by taking the
maximum of all the lower bounds and minimum of all the
upper bounds of the MBR for each of the entries along each of
the available axes. The result will be two lists say List1 and
List2, each containing new entries obtained by the above
explained criteria. Select two entries (Split1 and Split2), one
from each list having greatest normalized separation. Now,
for each entry `E' in `N', add `E' to `Split1' if minimum
expansion required for `Split1' to add `E' is less than
minimum expansion required for `Split2', else add `E'
to`Split2'. All the pixels of the image are inserted into the
R-Tree by following this procedure.

Algorithm 1 R-Tree construction for 3-dimensional data.
Input: An RGB Image I
Output: Nearest neighbours with R-Tree

1: Defining MBR (Minimum Bounding Region) for each
point ‘P’ with
[
]

where:
(R, G, B) = Pixel values of Point P

 = Lower bounds of region
enclosing P

 = Upper bounds of region
enclosing P
2: Let N - root node, P - data point, L - leaf node, M -
maximum entries of a node, E -
entries .
3: procedure Node Insertion
4: if and then
5: Insert P in N
6: else if then
7: for entry E in N do
8: mbr difference = MBR(E) - MBR(P)
9: dictionary[E] = mbr difference
10: end for
11: Q = entry E in 'dictionary' with min(mbr difference)
12: MBR(Q) = MBR(Q)+min(mbr difference)
13: Insert P in Q
14: else if N == L and then
15:
16: for each MBR(E) do
17: for each dim in (R,G,B) do
18: .append(E with max(lower()))
19: .append(E with min(upper()))
20: end for
21: end for
22: Divide , with M
23: spilt1, split2 = Select values in , with
greatest normalized separation
24: for entry E in N do
25: for entry E' in split1 do
26: mbr difference = MBR(E') - MBR(E)
27: list1.append(mbr difference)
28: end for
29: d1 = min(list1)
30: for entry E' in split2 do
31: mbr difference = MBR(E') - MBR(E)
32: list2.append(mbr difference)
33: end for
34: d2 = min(list2)
35: if then
36: Add E to split1
37: else
38: Add E to split2
39: end if
40: d2 = minimum increase in area of MBR (split2)
required to add E to split2
41: Add E to group with min(d1, d2)
42: end for
43: end if
44: end procedure
45: Repeated the procedure till all the nodes are inserted.

Prasad Kaviti et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4328 – 4335

4331

4.NEAREST NEIGHBOUR SEARCH WITH R-TREE

We employ another data structure known as priority queue to
obtain nearest neighbours from the spatial tree. On keen
observation, we find that the boxes that are nearer to the query
point are prone to have the user searched points when we look
for a specific set of boxes for K closest points. To leverage the
advantage of this procedure, we begin our search at the top
level by organizing the largest boxes in a queue to encompass
everything: closest to farthest. Now, we open the closest box,
which essentially removes it from the queue and inserting all
its children into the queue by the side of the larger ones.

This procedure is iteratively processed wherein the nearest
box is opened and the children are inserted back into the
queue. Any point is confirmed to be the nearest point if when
it is deleted from a queue and is an actual point. Progressively,
the next nearest point is the second point from the top and so
on. This algorithm works fast because of its processing
wherein it must deal with only a few boxes as the overall tree
is approximately the same size with respect to its tree
branches (well balanced) and therefore ignoring the
remaining branches.

An R-Tree is best known to find nearest neighbours [12]
efficiently due to its spatial indexing structure. In this
particular algorithm, the nearest neighbours for a given query
point are searched in the following manner. Let ̀ N' be the root
of the tree and `P' be the query point and `L' be the leaf.
Starting from the root, for each entry say `E' in `N', the
distance between `P' and `E' is calculated. These distances are
sorted in ascending order. The entry `E' with minimal
distance is picked out. If `E' is not a leaf, then `N' is replaced
with `E' (i.e, N = E) and the process is restarted. But if `E' is a
leaf (i.e, E = L) then, `L' is the first nearest neighbour (1-NN)
of `P' and hence `L' is added to the list of nearest neighbours.
If there are `k' deferent `L' with same distance, then all of
them are added to the list of nearest neighbours and they are
the k - nearest neighbours of `P'. Finally, the list of nearest
neighbours (NN) is returned.

Algorithm 2 aims to find the nearest neighbours of a query
point `P' by searching only those entries `E' that have the
minimum distance from `P' and ignoring all other entries,
thereby reducing the average search time complexity. In
mathematical terms, let the set of data points in the tree be
(P0,P1, P2,…,Pn). Let `Pi' be the query point. Then a point
`Pj' is a nearest neighbour of `Pi' if P0 <Pj<Pn and
distance(Pi,Pj) < distance(Pi,X)where X belongs to set of all
{P0, P1, P2,…..,Pn} and X! = Pj.

Algorithm 2 Nearest neighbour Search with R-Tree
Input: Data point P, R-Tree of Image
Output: Nearest neighbours to 'P'

1: Let N be the root node and P be a data point
2: for each entry E in N do
3: dist[E] = distance(P,E)
4: Sorted (dist) in ascending order
5: end for
6: for entry E with dist[0] do
7: if E is not leaf then
8: N=E
9: repetition from step 2
10:else
11: for each data point in E do
12: added data point to List(NN)
13: end for
14: end if
15: end for
16: returned NN

5.DENSITY-BASED CLUSTERING WITH R-TREE

The proposed method is a variant of density-based clustering.
This method can be used to process data points in
multi-dimensional space. To achieve this, an N-dimensional
R-Tree is designed. An R-Tree is a data structure that uses
spatial access methods for indexing multi-dimensional data.
With the help of R-Tree, performance improvement can be
observed in the nearest neighbour search for large data due to
it's spatial indexing nature.

The dataset used in the input contains colour images of 3
bands. The R-Tree is first initialised with 3 dimensions, one
for each colour band. Insertion is then performed by
specifying the index of the data point and the bounds of the
region enclosing the data point, in this case a cube. Each of
the bands is given as bounds following the
format ,

 where
,are lower length bounds,

 are the higher length bounds of
the cube along the X,Y,Z axes.

On each of the data points a nearest neighbour query is run. In
this search, for an individual query point, all the
neighbouring points with bounds overlapping this query point
are returned as neighbours. As well as the children of the
neighbouring points if they overlap with the query point are
also returned as its neighbours. The role of bounds provided
earlier proves to be effective in determining the overlaps.
Starting from the point with the highest neighbours, a label is
assigned to the point as well as it's neighbours and they are
marked as classified. The process is repeated until all the
points are marked as classified.

Prasad Kaviti et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4328 – 4335

4332

Algorithm 3 R-Tree based density clustering
Input: Nearest neighbours from algorithm 2, Threshold t
Output: Clustered image I'

1: Let O - List(P, Length(NN), NN), C - List of clustered
points, CL - Cluster label to
be assigned 0 to k, t - Threshold
2: sort O in descending by Length(NN)
3: for each item i in O do
4: if point P in O[i] is not in C then
5: Assign Label CL to P in O[i]
6: for each neighbor neigh in NN of O[i] do
7: if neigh not in CL then
8: Assign Label CL to neigh
9: add neigh to C
10:end if
11: end for
12: end if
13: Add P of O[i] to C
14: CL = CL + 1
15: end for
16: NC 0New list of clusters
17: for each initial cluster, centroid is calculated
18: for each centroid c not in NC do
19: flag = 0
20: for each centroid CC other than c and not in NC do
21: if Distance (c, CC) t then
22: Add CC to cluster c
23: flag = 1
24: end if
25: end for
26: if (flag == 1) then
27: Add c to NC
28: end if
29: end for
30: for each c not in NC do
31: for each CC in NC do
32: add c to cluster having min(Distance(c, CC))
33: end for
34: end for

The result of the above process generates large number of
clusters as R-Tree and is highly sensitive towards similar
data. To reduce the number of clusters initially formed, a
manual parameter “t" is introduced. The parameter “t"
indicates the radius or distance within which all the clusters
can be grouped as one. This reduces the number of clusters
formed to an adequate number based on the value of “t". This
similarity check using “t"is performed only on the cluster
centres rather than each individual point to reduce time
complexity.

Starting from a random cluster centre `A', a label `0' is
assigned to it and it is marked as classified. Now the distance
between `A' and another centre `B' that has not yet been

marked as classified is calculated. If this distance is within the
value of parameter “t", the same label `0' is assigned to all
points within the cluster `B' and `B' is marked as classified.
This process is repeated for all other cluster centres that are
within the “t" radius of `A'. If there are no more clusters that
can be grouped with `A', the label is incremented and the
whole process is restarted with a new random cluster centre
that has not been marked as classified. The process terminates
when all the cluster centres have been marked as classified or
when no more clusters can be grouped. The final number of
clusters formed is significantly less than that of the initial
process and varies with the parameter “t".

6.EXPERIMENTAL RESULTS

Tests were conducted on two RGB images (Image A, Image
B) from the 'BSDS' (Berkeley Segmentation dataset) [25] of
resolution 481 x 321 and one USGS [26] Sentinel
multispectral satellite image (Image C) of resolution 640 x
480. To determine the accuracy of the proposed method, two
of the most popular clustering metrics namely `Silhouette'
[23] and `Davies-Bouldin index' (DBI) [24] are considered.
The Silhouette and DB Index scores are calculated for each of
these images using proposed Density-based clustering with
R-Tree algorithm and compared with the scores obtained
from K-Means, DBSCAN and OPTICSrun on the same
images. Silhouette scores near to 1 and DB Indexes near to 0
are resulting the best.

Image K-Means DBSCAN OPTICS DBC with
R-Tree

Image A 0.73 0.60 0.76 0.86
Image B 0.77 0.67 0.77 0.88
Image C 0.78 0.66 0.71 0.83

Table 1: Comparison of Silhouette values for BSDS
Images(A,B) and Sentinel Image(C)using K-Means,
DBSCAN, OPTICS, proposed Density-based Clustering with
R-Tree algorithm

Image K-Means DBSCAN OPTICS DBC with
R-Tree

ImageA 0.42 0.91 0.76 0.31
Image B 0.16 0.98 0.98 0.11
ImageC 0.21 0.66 0.34 0.07

Table 2: Comparison of DB Index values for BSDS
Images(A,B) and Sentinel Image(C)using K-Means,
DBSCAN, OPTICS, proposed Density-based Clustering with
R-Tree algorithms

Prasad Kaviti et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4328 – 4335

4333

Figure 3(a), Figure 4(a) are the two original BSDS images
and Figure 3(b, c, d, e) and Figure 4(b, c, d, e) are the
resulting clustered images using K-Means, DBSCAN,
OPTICS

Figure 3: Clustering results for BSDS Image A: (a) Original
Image (b) Clustering result using K-Means Algorithm (c)
Clustering result using DBSCAN algorithm (d) Clustering
result using Optics Algorithm (e) Clustering result using
proposed Density-based clustering with R-Tree

Figure 4: Clustering results for BSDS Image B: (a) Original
Image (b) Clustering result using K-Means Algorithm (c)
Clustering result using DBSCAN algorithm (d) Clustering
result using Optics Algorithm (e) Clustering result using
proposed Density-based clustering with R-Tree

Figure 5: Clustering results for Sentinel Image C: (a)
Original Image (b) Clustering result using K-Means
Algorithm (c) Clustering result using DBSCAN algorithm (d)
Clustering result using Optics Algorithm (e) Clustering result
using proposed Density-based clustering with R-Tree and
proposed Density-based clustering with R-Tree on those two
BSDS images. Similarly, Figure 5(a) is the original Sentinel
image and Figure 5(b, c, d, e) are the resulting clustered
images using K-Means, DBSCAN, OPTICS and proposed
Density-based clustering with R-Tree on that Sentinel image.

Figure 6: Comparison of Silhouette values for three images
(A, B, C) using algorithms K-Means, DBSCAN, OPTICS,
Density-based Clustering with R-Tree

Prasad Kaviti et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4328 – 4335

4334

Figure 7: Comparison of DB Index values for three images
(A, B, C) using algorithms K-Means, DBSCAN, OPTICS,
Density-based Clustering with R-Tree

Comparison of Silhouette scores for BSDS images(A,B) and
Sentinel image(C) using K-Means, DBSCAN, OPTICS,
Density-based Clustering with R-Tree Comparison of
Silhouette scores for BSDS images(A, B) and Sentinel
image(C) using K-Means, DBSCAN, OPTICS and proposed
Density-based Clustering with R-Tree algorithms is presented
in table 1. As per the result analysis, the proposed
density-based clustering algorithm is scoring more accuracy
than other algorithms with 0.86, 0.88, 0.83Silhouette scores
for Image A, Image B and Image C respectively.

Comparison of DB Index values for BSDS images(A, B) and
Sentinel image(C) using K-Means, DBSCAN, OPTICS and
proposed Density-based Clustering with R-Tree algorithms is
presented in table 2. As per the observation, the proposed
density-based clustering algorithm is scoring DB Index
values near to 0 i.e, highly accurate than other algorithms
with 0.31, 0.11, 0.07 DB Index scores for Image A, Image B
and Image C respectively. Figure 6 is the graphical
representation for Silhouette values comparison and similarly
Figure 7 is the graphical representation for comparing DB
Index values for three images.

7.CONCLUSION

Density based clustering using R-Tree reduces the need of
specifying two parameters to just one unlike traditional
DBSCAN. The `minPts' are automated through Nearest
Neighbours Search and have minor to zero-effect on overall
clustering efficiency. The R-Tree also proved to be efficient in
handling multi-dimensional data and faster generation of
Nearest Neighbours and accurate clustering of data points
than other high-dimensional tree structures like `Kd-Tree'
and ̀ Ball Tree'. Experiments were performed on RGB-images
from the `Berkeley segmentation dataset' and satellite image
and the results compared
with three different clustering algorithms. The metrics used
were `Silhouette' and `DBI'. Both metrics were observed to
achieve a higher value in their respective terms than other

Density based clustering methods. The visual representation
shows that the clusters are well formed thus exposing the
details of the image.

REFERENCES

1. Mohamad Dolatshah, Ali Hadian, Behrouz
Minaei-Bidgoli, “Ball*-tree: Efficient spatial
indexing for constrained nearest-neighbour search
in metric spaces",arXiv:1511.00628 [cs.DB]

2. Stephen M. Omohundro, “Five Balltree
Construction Algorithms (1989)", International
Computer Science Institute

3. Kumar N., Zhang L., Nayar S. (2008) What Is a
Good Nearest Neighbours Algorithm for Finding
Similar Patches in Images?. In: Forsyth D., Torr P.,
Zisserman A. (eds)Computer Vision - ECCV 2008.
ECCV 2008. Lecture Notes in Computer Science,
vol 5303. Springer, Berlin, Heidelberg
https://doi.org/10.1007/978-3-540-88688-4_27

4. Kibriya A.M., Frank E. (2007) An Empirical
Comparison of Exact Nearest Neighbour
Algorithms. In: Kok J.N., Koronacki J., Lopez de
Mantaras R., Matwin S., Mladeni_cD., Skowron A.
(eds) Knowledge Discovery in Databases: PKDD
2007. PKDD 2007.Lecture Notes in Computer
Science, vol 4702. Springer, Berlin, Heidelberg

5. Mohammad Reza Abbasifard, Bijan Ghahremani,
Hassan Naderi,“A Survey on Nearest Neighbor
Search Methods", International Journal of Computer
Applications (0975 {8887) Volume 95{ No.25, June
2014
https://doi.org/10.5120/16754-7073

6. Russell A. Brown, Building a Balanced k-d Tree in
O(kn log n) Time, Journalof Computer Graphics
Techniques (JCGT), vol. 4, no. 1, 50-68,
2015,http://jcgt.org/published/0004/01/03/

7. Rina Panigrahy, “An Improved Algorithm Finding
Nearest Neighbor Using Kd-trees",Microsoft
Research, Mountain View CA, USA

8. Fatma G unseliYa_sar ;G ozdeUlutagay,
Challenges and possible solutions to density based
clustering", 2016 IEEE 8th International
Conference on Intelligent Systems (IS)

9. GözdeUlutagay, Efendi Nasibov, “Fuzzy and crisp
clustering methods based on the neighbourhood
concept: A comprehensive review", Journal of
Intelligent and Fuzzy Systems: Applications in
Engineering and Technology - FUZZYSS'2011: 2nd
International Fuzzy Systems Symposium, Volume
23 Issue 6, November 2012 Pages 271-281.

10. Bhuyan, Rupanka, Borah, Samarjeet, “A Survey of
Some Density Based Clustering Techniques", DO -
10.13140/2.1.4554.6887, 2013.

11. A. Guttman, R-trees: A dynamic index structure for
spatial searching, In: Proc. Of13th Int. Conf. on

Prasad Kaviti et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4328 – 4335

4335

Mang. of Data ACM SIGMOD, vol. 2, 1984, pp.
47-57.

12. Norbert Beckmann, Hans-Peter Kriegel , Ralf
Schneider , Bernhard Seeger , “The R*-tree: an
efficient and robust access method for points and
rectangles", SIGMOD'90 Proceedings of the 1990
ACM SIGMOD international conference on
Management of data, Pages 322-331
https://doi.org/10.1145/93605.98741

13. Hans-Peter Kriegel, Peer Kröger , Jörg Sander,
Arthur Zime, \Density-based clustering",05 April
2011, https://doi.org/10.1002/widm.30

14. M. Ankerst, M. M. Breunig,, H. P. Kriegel, and J.
Sander, " OPTICS: Ordering Points To Identify the
Clustering Structure," Proceedings of the 1999 ACM
SIGMOD International conference on Management
of data, pp. 49-60, 1999.

15. M. T. H. Elbatta, and W. M. Ashour, "A dynamic
method for discovering density varied clusters,"
International Journal of Signal Processing and
Pattern Recognition,vol: 6(1), pp. 123-134, February
2013.

16. J.L. Bently, “Multidimensional search trees in
database applications", IEEE Trans.Software Eng. 5
(4) (1979) 333-340.

17. M.G. Barrios, A.J. Quiroz, “A clustering procedure
based on the comparison between the k nearest
neighbours graph and the minimal spanning tree,
Statistics and Probability", Letters 62 (2003) 23-34.

18. P. Viswanath, V.S. Babu, “Rough-DBSCAN: A fast
hybrid density based clustering method for large data
sets", Pattern Recognition Letters 30(16) (2009)
1477{1488.
https://doi.org/10.1016/j.patrec.2009.08.008

19. M. Ester, H.P. Kriegel, X. Xu, A density-based
algorithm for discovering clusters in large spatial
databases with noise", In: Proc. 2nd ACM SIGKDD,
Portland, Oregon,1996, pp. 226{231.

20. Fukunaga, Keinosuke; Larry D. Hostetler (January
1975). "The Estimation of the Gradient of a Density
Function, with Applications in Pattern
Recognition". IEEE Transactions on Information
Theory. 21 (1): 32{40.
doi:10.1109/TIT.1975.1055330.

21. DeryaBirant, AlpKut, “ST-DBSCAN: An
algorithm for clustering spatial-temporal data", Data
and Knowledge Engineering, Volume 60, Issue 1,
January 2007, Pages208-221

22. Anil K. Jain and Martin H. C. Law. “Data
clustering: A user's dilemma". In Sankar K.Pal,
Sanghamitra Bandyopadhyay, and Samb-hunath
Biswas, editors, PReMI, volume3776 of Lecture
Notes in Computer Science, pages 1-10. Springer,
2005.

23. Rousseeuw, Peter, \Silhouettes: A Graphical Aid to
the Interpretation and Validation of Cluster
Analysis", Elsevier Science Publishers B. V., J.

Comput. Appl. Math., November 1987, Volume 20,
doi:10.1016/0377-0427(87)90125-7.

24. Davies, David L. and Bouldin, Donald W., “A
Cluster Separation Measure", IEEE Computer
Society, February 1979, Volume 1, Pages
224{227,10.1109/TPAMI.1979.4766909.

25. D. Martin and C. Fowlkes and D. Tal and J. Malik,
“A Database of Human Segmented Natural Images
and its Application to Evaluating Segmentation
Algorithms and Measuring Ecological Statistics",
Proc. 8th Int'l Conf. Computer Vision, July,2001,
Volume 2, Pages 416{423.

26. Earth Resources Observation and Science (EROS)
Center, “USGS EROS Archive -Sentinel-2",
doi:/10.5066/F76W992G.

