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 
ABSTRACT 
 
Density based clustering is one of the most popular clustering 
techniques that groups data in dense regions. These dense 
regions are identified with the help of a few parameters which 
are sensitive to estimate. Clustering accuracy depends on 
effective selection of these parameters. The proposed method 
uses density-based clustering and R-Tree. R-Tree provides 
faster evaluation of nearest neighbours and also is capable to 
store and handle multi-dimensional data efficiently. The 
proposed algorithm has two steps: i)R-tree is constructed 
from multispectral image data. Data is partioned into dense 
clusters/regions using nearest neighbours on the R-tree data, 
ii) A threshold parameter `t' which is similar to `epsilon' in 
DBSCAN algorithm is used to regulate the dense regions 
formed in the initial step by merging neighbour dense regions 
which are within `t'-radius. This procedure ignored the 
sensitive parameters like `minpts' in DBSCAN by evaluating 
the nearest neighbours using R-Tree. Hence the number of 
parameters also reduced. Results show that generation of 
nearest neighbours is faster and better in the proposed method 
when compared to traditional density-based clustering 
methods DBSCAN, OPTICS and K-Means. 
 
Key words : Density Clustering, multispectral images, 
R-Tree based clustering, DBSCAN Algorithm. 
 
1. INTRODUCTION 
 
Clustering is the process that includes identification and 
grouping of similar or dissimilar objects [22]. Clustering 
analysis is widely used by varied sectors such as business 
analytics, data manipulation, and image analysis. Clustering 
methods can be classified in different methods like 
partitional, hierarchical, density-based [13] and grid-based 
methods [9]. One of such popular clustering techniques is 
Density-based clustering [15]. 
 
The fundamental idea of Density-based clustering is to further 
grow the given cluster until the density in the neighbourhood 
falls short of the threshold, i.e., for each cluster within a given 
data points, the radius of the cluster has to contain at least a 

 
 

minimum number of points. There are a number of 
density-based clustering methods [8] [18] such as Mean Shift 
[20], DBSCAN [13], OPTICS [14], DENCLUE, VDBSCAN, 
DVBSCAN,DBCLASD and ST-DBSCAN [21]. 
 
DBSCAN discovers high-density regions in spatial databases 
with noise and creates clusters out of them [10]. The main 
advantage with DBSCAN is it detects clusters of arbitrary 
shape and noise points [19]. But determining the initial 
parameters eps, minpts is difficult and if there is variation in 
the density, noise points are not detected. Ordering points to 
identify the clustering structure (OPTICS) is an algorithm for 
clustering data whose characteristics are strikingly similar to 
that of DBSCAN. OPTICS doesn't consider the parameter 
epsilon. Instead of choosing `epsilon' value manually, 
OPTICS considers the value as greater than the maximum 
distance between pair of data points in the dataset. But it leads 
to quadratic complexity since every neighbourhood query 
returns the full dataset. The quality in contrast between 
OPTICS and DBSCAN is that the former can handle data of 
fluctuating densities. Clustering returned by OPTICS is very 
similar to that from that which is created by DBSCAN. In this 
paper, instead of minpts evaluation in DBSCAN, nearest 
neighbours can be evaluated using R-Tree and then 
density-based clustering is performed. The results are 
compared with standard algorithms like DBSCAN with 
kd-Tree, K-Means, OPTICS. Results shown higher efficiency 
towards the proposed method 

 
Figure 1: Data flow of Density-based Clustering with R-Tree 
 
2.  NEAREST NEIGHBOUR SEARCH ALGORITHMS 
 
Different techniques are used for nearest neighbour search 
[3]. To reduce complexities, a variety of techniques are 
proposed [4] which are suitable for different applications such 
as multimedia data manipulation, information extraction, 
databases, data mining and pattern recognition to name but a 

 
R-Tree based Density Clustering for Multispectral Images 

 
Prasad Kaviti1 ,Valli Kumari Vatsavayi2 

1Dept. of Computer Science and Systems Engg.AUCE(A), Andhra University 
 prasadkaviti@gmail.com  

2Dept. of Computer Science and Systems Engg.AUCE(A), Andhra University 
vallikumari@gmail.com  

 

ISSN 2278-3091              
Volume 9, No.4, July – August 2020 

International Journal of Advanced Trends in Computer Science and Engineering 
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse23942020.pdf 

https://doi.org/10.30534/ijatcse/2020/23942020 
 

 

 



Prasad Kaviti et al., International Journal of Advanced Trends in Computer Science and  Engineering, 9(4), July – August  2020, 4328  – 4335 

4329 
 

 

few. By paying attention to different applications and data, 
each of these techniques has to use a structure for 
maintaining, indexing points and searching [5]. Some of 
these structures are techniques for nearest neighbour search 
[17] such as B-Tree, X-Tree, Ball-Tree, kd-Tree, R-Tree, etc 
[16]. A brief overview of some of these data structures is 
presented as follows. 
 
kd-Tree : A kd-Tree (short for k-dimensional tree) is a 
space-partitioning data structure for organizing points in a 
k-dimensional space [6]. At every level of a kd-Tree there is 
splitting in all children nodes concerning a specific 
dimension, using a plane which is perpendicular to the 
corresponding axis, also known as the hyperplane. Beginning 
with the root node, the algorithm moves through the tree 
iteratively, in the same way in the case of the search point 
were being inserted (i.e. depending on whether the point is 
lesser than or greater than the current node in the split 
dimension, it goes left or right). 
 
kd-Trees are not suitable, however, for efficiently finding the 
nearest neighbour in high dimensional spaces [7]. As a 
general rule, if the dimensionality is k, the number of points 
in the data, N, should be N 2k. Else, when using kd-Trees 
for high-dimensional data, too many points in the tree will be 
examined which leads to complex evaluation, hence, is not 
much efficient than an exhaustive search, and other methods 
such as approximate nearest neighbour are used instead. 
 
Ball-Tree :A ball tree is also a binary tree with a hierarchical 
(binary) structure[1]. To begin with, two clusters (each 
resembling a ball) are created and, as it is a multi-dimensional 
space, each ball may be roughly called a hypersphere. Any 
point in n-dimensional space must belong to any one of the 
clusters alone but not to both [2]. It will belong to the cluster 
whose centroid is closest to it. Any ball can be randomly 
picked if the distance of a point from the centroids of both the 
balls is same. Even if both (virtual) hyperspheres intersect, 
the points must belong to only one of the two balls. Next, each 
of the balls is again divided into two sub-clusters so that each 
one is now considered a ball; meaning that in these 
sub-clusters, two more centroids exist and similarly, the point 
belongs to that ball whose distance from the sub-centroid is 
closest. Again, the clusters are sub-divided, and each has new 
sub-sub balls and so on iteratively until certain depth. The 
main disadvantage is slower than kd-Trees in low 
dimensions. 
 
R-Tree : R-Trees are hierarchical data structures based on 
B+-Trees [11]. R-Trees are used for dynamic organization of 
a set of multi-dimensional objects indexing them by the 
minimum bounding d-dimensional rectangles (for simplicity, 
MBRs in the sequel).Each node of the R-Tree corresponds to 
the MBR that bounds its children [12]. Instead of pointing to 
children nodes, the leaves of the tree contain pointers to the 
database objects directly. When data is organized in an 
R-Tree, the neighbours within a given distance rand the k 

nearest neighbours of all points can efficiently be computed 
using a spatial join. This is beneficial for many algorithms 
based on such queries. 
 

 
 
 

Figure 2: R-Tree with random points 
 
When performing a range search on R-Tree, we can start from 
the top tree level and drill down, ignoring all the boxes that 
don't intersect our query box. For a small query box, this 
means discarding all but a few boxes at each level of the tree. 
A range search in an R-Tree takes O(K log(N)) time on 
average (where K is the number of results), compared to O(N) 
of a linear search. In other words, it's extremely fast. 
 
kd-Tree is similar to R-Tree, but instead of sorting the points 
into several boxes at each tree level, we sort them into two 
halves (around a median point) either top and bottom or left 
and right oscillating between x and y split on each level. 
Compared to R-Tree, kd-Tree can usually contain points 
alone (not rectangles) and cannot handle insertion or deletion 
of points, but it's easier to construct and quite quick. 
 
kd-Tree and Ball-Tree are the best with Euclidean distance, 
but they can be only used for Euclidean distance-based nearest 
neighbour search due to its inherent nature. Further, on 
high-dimensional datasets, kd-tree and Ball-Tree tend to 
perform poorly. Their performance can be inefficient 
compared to a brute force approach in such scenarios. 
 
3.R-TREE CONSTRUCTION 
 
Geographical information systems and spatial databases are 
widely used in the current world. Along with this, 
spatio-temporal database, processing of points and 
trajectories of moving objects are widely studied. New kinds 
of data such as audio, video, images, maps are a part of the 
final product, be it images or multimedia _les, are being 
developed. All the above applications must rely on the R-Tree 
data structure for storing and retrieval. The application of this 
data structure is extensive right from spatial-temporal to 
multimedia databases. 
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R-Tree can quickly evaluate the nearest neighbours, which 
has extended its usage in major fields such as GIS (urban 
structures, water bodies, vegetation etc.), multimedia, spatial 
data and other higher-dimensional data structures along with 
time series and many others. 
 
The R-Tree [11] in the proposed method takes a 3-band RGB 
Image as input. Each pixel in the image is a data point to the 
R-Tree. To insert a pixel into the tree, an MBR(Minimum 
Bounding Rectangle) has to be defined for each pixel point. 
Since a pixel point has 3 values, (R, G and B) the MBR will be 
a cube with each value of R, G, Bon their corresponding axes 
(R = x, G = y, B = z). The MBR for a point is defined 
as , 

. In this proposed method, the 
MBRfor a point is initialized as , 

and so as to 
maintain symmetry in the dimensions across all axes. In this 
way, the length of the MBR cuboid formed will be the same on 
its corresponding axis. 
 
To construct the R-Tree for the input data, after defining the 
MBR for each point, start from an empty root node `N'. If `N' 
is a leaf and number of entries in `N' < `M'(Maximum number 
of entries allowed to a node), insert the data point `P' into `N'. 
If `N' is not a leaf, then find minimum expansion required in 
the MBR of each of the existing entries in `N' such that `P' 
could be inserted and add `P' to the entry that requires least 
MBR expansion. Least MBR expansion is evaluated as the 
minimum difference over all the set of differences of MBR(E), 
MBR(P) for all entries 'E' in root node 'N'. Finally, if `N' is a 
leaf and number of entries in `N' `M', split `N' into two, say 
Split1 and Split2. Splitting is performed by taking the 
maximum of all the lower bounds and minimum of all the 
upper bounds of the MBR for each of the entries along each of 
the available axes. The result will be two lists say List1 and 
List2, each containing new entries obtained by the above 
explained criteria. Select two entries (Split1 and Split2), one 
from each list having greatest normalized separation. Now, 
for each entry `E' in `N', add `E' to `Split1' if minimum 
expansion required for `Split1' to add `E' is less than 
minimum expansion required for `Split2', else add `E' 
to`Split2'. All the pixels of the image are inserted into the 
R-Tree by following this procedure. 
 
Algorithm 1 R-Tree construction for 3-dimensional data. 
Input: An RGB Image I 
Output: Nearest neighbours with R-Tree 
 
1:  Defining MBR (Minimum Bounding Region) for each 
point ‘P’ with 
[
] 
 
 
 

where: 
(R, G, B) = Pixel values of Point P 

 = Lower bounds of region 
enclosing P 

 = Upper bounds of region 
enclosing P 
2:  Let N - root node, P - data point, L - leaf node, M - 
maximum entries of a node, E - 
entries  . 
3:  procedure Node Insertion 
4:   if  and  then 
5:    Insert P in N 
6:   else if  then 
7:   for entry E in N do 
8:    mbr difference = MBR(E) - MBR(P) 
9:     dictionary[E] = mbr difference 
10:    end for 
11:    Q = entry E in 'dictionary' with min(mbr difference) 
12:   MBR(Q) = MBR(Q)+min(mbr difference) 
13:    Insert P in Q 
14:   else if N == L and  then 
15:     
16:   for each MBR(E) do 
17:    for each dim in (R,G,B) do 
18:     .append(E with max(lower( ))) 
19:     .append(E with min(upper( ))) 
20:    end for 
21:   end for 
22:   Divide , with M 
23:   spilt1, split2 = Select values in , with 
greatest normalized separation 
24:   for entry E in N do 
25:    for entry E' in split1 do 
26:     mbr difference = MBR(E') - MBR(E) 
27:     list1.append(mbr difference) 
28:    end for 
29:    d1 = min(list1) 
30:    for entry E' in split2 do 
31:     mbr difference = MBR(E') - MBR(E) 
32:    list2.append(mbr difference) 
33:    end for 
34:    d2 = min(list2) 
35:    if then 
36:     Add E to split1 
37:    else 
38:     Add E to split2 
39:    end if 
40:    d2 = minimum increase in area of MBR (split2) 
required to add E to split2 
41:    Add E to group with min(d1, d2) 
42:   end for 
43:   end if 
44:  end procedure 
45:  Repeated the procedure till all the nodes are inserted. 
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4.NEAREST NEIGHBOUR SEARCH WITH R-TREE 
 
We employ another data structure known as priority queue to 
obtain nearest neighbours from the spatial tree. On keen 
observation, we find that the boxes that are nearer to the query 
point are prone to have the user searched points when we look 
for a specific set of boxes for K closest points. To leverage the 
advantage of this procedure, we begin our search at the top 
level by organizing the largest boxes in a queue to encompass 
everything: closest to farthest. Now, we open the closest box, 
which essentially removes it from the queue and inserting all 
its children into the queue by the side of the larger ones. 
 
This procedure is iteratively processed wherein the nearest 
box is opened and the children are inserted back into the 
queue. Any point is confirmed to be the nearest point if when 
it is deleted from a queue and is an actual point. Progressively, 
the next nearest point is the second point from the top and so 
on. This algorithm works fast because of its processing 
wherein it must deal with only a few boxes as the overall tree 
is approximately the same size with respect to its tree 
branches (well balanced) and therefore ignoring the 
remaining branches. 
 
An R-Tree is best known to find nearest neighbours [12] 
efficiently due to its spatial indexing structure. In this 
particular algorithm, the nearest neighbours for a given query 
point are searched in the following manner. Let ̀ N' be the root 
of the tree and `P' be the query point and `L' be the leaf. 
Starting from the root, for each entry say `E' in `N', the 
distance between `P' and `E' is calculated. These distances are 
sorted in ascending order. The entry `E' with minimal 
distance is picked out. If `E' is not a leaf, then `N' is replaced 
with `E' (i.e, N = E) and the process is restarted. But if `E' is a 
leaf (i.e, E = L) then, `L' is the first nearest neighbour (1-NN) 
of `P' and hence `L' is added to the list of nearest neighbours. 
If there are `k' deferent `L' with same distance, then all of 
them are added to the list of nearest neighbours and they are 
the k - nearest neighbours of `P'. Finally, the list of nearest 
neighbours (NN) is returned. 
 
Algorithm 2 aims to find the nearest neighbours of a query 
point `P' by searching only those entries `E' that have the 
minimum distance from `P' and ignoring all other entries, 
thereby reducing the average search time complexity. In 
mathematical terms, let the set of data points in the tree be 
(P0,P1, P2,…,Pn). Let `Pi' be the query point. Then a point 
`Pj' is a nearest neighbour of `Pi' if P0 <Pj<Pn and 
distance(Pi,Pj) < distance(Pi,X)where X belongs to set of all 
{P0, P1, P2,…..,Pn} and X! = Pj. 
 
 
 
 
 
 
 

Algorithm 2 Nearest neighbour Search with R-Tree 
Input: Data point P, R-Tree of Image 
Output: Nearest neighbours to 'P' 
 
1: Let N be the root node and P be a data point 
2: for each entry E in N do 
3:  dist[E] = distance(P,E) 
4:  Sorted (dist) in ascending order 
5: end for 
6: for entry E with dist[0] do 
7:  if E is not leaf then 
8:  N=E 
9:  repetition from step 2 
10:else 
11:  for each data point in E do 
12:   added data point to List(NN) 
13:  end for 
14: end if 
15: end for 
16: returned NN 
 
5.DENSITY-BASED CLUSTERING WITH R-TREE 
 
The proposed method is a variant of density-based clustering. 
This method can be used to process data points in 
multi-dimensional space. To achieve this, an N-dimensional 
R-Tree is designed. An R-Tree is a data structure that uses 
spatial access methods for indexing multi-dimensional data. 
With the help of R-Tree, performance improvement can be 
observed in the nearest neighbour search for large data due to 
it's spatial indexing nature. 
 
The dataset used in the input contains colour images of 3 
bands. The R-Tree is first initialised with 3 dimensions, one 
for each colour band. Insertion is then performed by 
specifying the index of the data point and the bounds of the 
region enclosing the data point, in this case a cube. Each of 
the bands is given as bounds following the 
format , 

 where 
,are lower length bounds, 

 are the higher length bounds of 
the cube along the X,Y,Z axes. 
 
On each of the data points a nearest neighbour query is run. In 
this search, for an individual query point, all the 
neighbouring points with bounds overlapping this query point 
are returned as neighbours. As well as the children of the 
neighbouring points if they overlap with the query point are 
also returned as its neighbours. The role of bounds provided 
earlier proves to be effective in determining the overlaps. 
Starting from the point with the highest neighbours, a label is 
assigned to the point as well as it's neighbours and they are 
marked as classified. The process is repeated until all the 
points are marked as classified. 
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Algorithm 3 R-Tree based density clustering 
Input: Nearest neighbours from algorithm 2, Threshold t 
Output: Clustered image I' 
 
1: Let O - List(P, Length(NN), NN), C - List of clustered 
points, CL - Cluster label to 
be assigned 0 to k, t - Threshold 
2: sort O in descending by Length(NN) 
3: for each item i in O do 
4: if point P in O[i] is not in C then 
5: Assign Label CL to P in O[i] 
6: for each neighbor neigh in NN of O[i] do 
7: if neigh not in CL then 
8:  Assign Label CL to neigh 
9: add neigh to C 
10:end if 
11: end for 
12: end if 
13: Add P of O[i] to C 
14: CL = CL + 1 
15: end for 
16: NC  0New list of clusters 
17: for each initial cluster, centroid is calculated 
18: for each centroid c not in NC do 
19:  flag = 0 
20:  for each centroid CC other than c and not in NC do 
21:  if Distance (c, CC)  t then 
22: Add CC to cluster c 
23:  flag = 1 
24: end if 
25: end for 
26: if (flag == 1) then 
27: Add c to NC 
28: end if 
29: end for 
30: for each c not in NC do 
31: for each CC in NC do 
32: add c to cluster having min(Distance(c, CC)) 
33: end for 
34: end for 
 
The result of the above process generates large number of 
clusters as R-Tree and is highly sensitive towards similar 
data. To reduce the number of clusters initially formed, a 
manual parameter “t" is introduced. The parameter “t" 
indicates the radius or distance within which all the clusters 
can be grouped as one. This reduces the number of clusters 
formed to an adequate number based on the value of “t". This 
similarity check using “t"is performed only on the cluster 
centres rather than each individual point to reduce time 
complexity. 
 
Starting from a random cluster centre `A', a label `0' is 
assigned to it and it is marked as classified. Now the distance 
between `A' and another centre `B' that has not yet been 

marked as classified is calculated. If this distance is within the 
value of parameter “t", the same label `0' is assigned to all 
points within the cluster `B' and `B' is marked as classified. 
This process is repeated for all other cluster centres that are 
within the “t" radius of `A'. If there are no more clusters that 
can be grouped with `A', the label is incremented and the 
whole process is restarted with a new random cluster centre 
that has not been marked as classified. The process terminates 
when all the cluster centres have been marked as classified or 
when no more clusters can be grouped. The final number of 
clusters formed is significantly less than that of the initial 
process and varies with the parameter “t". 
 
6.EXPERIMENTAL RESULTS 
 
Tests were conducted on two RGB images (Image A, Image 
B) from the 'BSDS' (Berkeley Segmentation dataset) [25] of 
resolution 481 x 321 and one USGS [26] Sentinel 
multispectral satellite image (Image C) of resolution 640 x 
480. To determine the accuracy of the proposed method, two 
of the most popular clustering metrics namely `Silhouette' 
[23] and `Davies-Bouldin index' (DBI) [24] are considered. 
The Silhouette and DB Index scores are calculated for each of 
these images using proposed Density-based clustering with 
R-Tree algorithm and compared with the scores obtained 
from K-Means, DBSCAN and OPTICSrun on the same 
images. Silhouette scores near to 1 and DB Indexes near to 0 
are resulting the best. 

Image   K-Means  DBSCAN  OPTICS  DBC with 
R-Tree 
 
Image A  0.73  0.60  0.76   0.86 
Image B  0.77   0.67   0.77  0.88 
Image C  0.78  0.66   0.71   0.83 
 
Table 1: Comparison of Silhouette values for BSDS 
Images(A,B) and Sentinel Image(C)using K-Means, 
DBSCAN, OPTICS, proposed Density-based Clustering with 
R-Tree algorithm 
 
 
Image  K-Means  DBSCAN  OPTICS  DBC with 
R-Tree 
 
ImageA 0.42  0.91  0.76   0.31 
Image B 0.16  0.98   0.98   0.11 
ImageC 0.21 0.66 0.34   0.07 
 

 
Table 2: Comparison of DB Index values for BSDS 
Images(A,B) and Sentinel Image(C)using K-Means, 
DBSCAN, OPTICS, proposed Density-based Clustering with 
R-Tree algorithms 
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Figure 3(a), Figure 4(a) are the two original BSDS images 
and Figure 3(b, c, d, e) and Figure 4(b, c, d, e) are the 
resulting clustered images using K-Means, DBSCAN, 
OPTICS 
 

 
 

Figure 3: Clustering results for BSDS Image A: (a) Original 
Image (b) Clustering result using K-Means Algorithm (c) 
Clustering result using DBSCAN algorithm (d) Clustering 
result using Optics Algorithm (e) Clustering result using 
proposed Density-based clustering with R-Tree 

 
Figure 4: Clustering results for BSDS Image B: (a) Original 
Image (b) Clustering result using K-Means Algorithm (c) 
Clustering result using DBSCAN algorithm (d) Clustering 
result using Optics Algorithm (e) Clustering result using 
proposed Density-based clustering with R-Tree 
 

 
Figure 5: Clustering results for Sentinel Image C: (a) 
Original Image (b) Clustering result using K-Means 
Algorithm (c) Clustering result using DBSCAN algorithm (d) 
Clustering result using Optics Algorithm (e) Clustering result 
using proposed Density-based clustering with R-Tree and 
proposed Density-based clustering with R-Tree on those two 
BSDS images. Similarly, Figure 5(a) is the original Sentinel 
image and Figure 5(b, c, d, e) are the resulting clustered 
images using K-Means, DBSCAN, OPTICS and proposed 
Density-based clustering with R-Tree on that Sentinel image. 
 

 
 
 
Figure 6: Comparison of Silhouette values for three images 
(A, B, C) using algorithms K-Means, DBSCAN, OPTICS, 
Density-based Clustering with R-Tree 
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Figure 7: Comparison of DB Index values for three images 
(A, B, C) using algorithms K-Means, DBSCAN, OPTICS, 
Density-based Clustering with R-Tree 
 
Comparison of Silhouette scores for BSDS images(A,B) and 
Sentinel image(C) using K-Means, DBSCAN, OPTICS, 
Density-based Clustering with R-Tree Comparison of 
Silhouette scores for BSDS images(A, B) and Sentinel 
image(C) using K-Means, DBSCAN, OPTICS and proposed 
Density-based Clustering with R-Tree algorithms is presented 
in table 1. As per the result analysis, the proposed 
density-based clustering algorithm is scoring more accuracy 
than other algorithms with 0.86, 0.88, 0.83Silhouette scores 
for Image A, Image B and Image C respectively. 
 
Comparison of DB Index values for BSDS images(A, B) and 
Sentinel image(C) using K-Means, DBSCAN, OPTICS and 
proposed Density-based Clustering with R-Tree algorithms is 
presented in table 2. As per the observation, the proposed 
density-based clustering algorithm is scoring DB Index 
values near to 0 i.e, highly accurate than other algorithms 
with 0.31, 0.11, 0.07 DB Index scores for Image A, Image B 
and Image C respectively. Figure 6 is the graphical 
representation for Silhouette values comparison and similarly 
Figure 7 is the graphical representation for comparing DB 
Index values for three images. 
 
7.CONCLUSION 
 
Density based clustering using R-Tree reduces the need of 
specifying two parameters to just one unlike traditional 
DBSCAN. The `minPts' are automated through Nearest 
Neighbours Search and have minor to zero-effect on overall 
clustering efficiency. The R-Tree also proved to be efficient in 
handling multi-dimensional data and faster generation of 
Nearest Neighbours and accurate clustering of data points 
than other high-dimensional tree structures like `Kd-Tree' 
and ̀ Ball Tree'. Experiments were performed on RGB-images 
from the `Berkeley segmentation dataset' and satellite image 
and the results compared 
with three different clustering algorithms. The metrics used 
were `Silhouette' and `DBI'. Both metrics were observed to 
achieve a higher value in their respective terms than other 

Density based clustering methods. The visual representation 
shows that the clusters are well formed thus exposing the 
details of the image. 
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