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ABSTRACT 
 
This paper presents a hybrid algorithm named (DE-ACO) 
which is combining two well-known nature-inspired 
algorithms namely Ant Colony Optimization (ACO) and 
Differential Evolution (DE). The main idea of this 
hybridization is to improve the performance of the ACO 
algorithm, it consists to use the DE algorithm to explore the 
promising search space in order to exploit the best solutions 
by the ACO algorithm to achieve the optimal solution. The 
performance of the proposed technique is firstly, evaluated 
over some test functions, and secondly, employed to optimize 
the parameters of Low Noise Amplifier (LNA) circuit. The 
simulation using Advanced Design System (ADS) are given 
to highlight the validity of this proposed method. 
 
Key words: Low Noise Amplifier, Ant Colony Optimization, 
Differential Evolution, Hybridization.  
 
1. INTRODUCTION 
 
Low noise amplifier (LNA) is a crucial block in radio 
frequency (RF) transceivers. It is usually placed at the front 
side of RF receiver and it is main function it to amplify the 
weak signal received by the antenna while adding a little 
noise. The most important parameters required of an LNA are 
high gain, low noise, low power dissipation, high linearity 
and stable impedance. The design and optimization of the 
LNA is a complex and time-consuming task, because it 
includes an essential trade-off among various parameters and 
satisfaction of the required specifications [1].  
 
In recent years, the researchers have attempted to solve hard 
problems using metaheuristic optimization techniques [2]. 
The advantage of these techniques that are efficient, 
robustness and easy to be implemented and employed. A set of 
metaheuristic techniques is proposed in the literature and are 
used by the designers to optimize the sizing of the analog 
components automatically, such as Particle Swarm 
Optimization [3,4], Genetic Algorithm [5], Differential 
Evolution [6,7,8], Artificial Bee Colony [9,10] and Ant 

Colony Optimization [11,12,13]. However, to get a 
high-quality solution by means of these metaheuristic 
algorithms, recent researchers are attempted to propose and 
develop hybrid algorithms [14]. The main purpose of 
hybridization is to construct an efficient algorithm by taking 
the benefit from the standard algorithms in order to overcome 
their drawbacks. In this context a lot of hybrid algorithms 
have been proposed in the literature and applying for the field 
of analog circuit design. Performance optimization of LNA 
using an adaptive DE and PSO (Particle Swarm 
Optimization) is shown in [15]. A hybrid method combining 
Genetic Algorithms with the Simulated Annealing (SA) 
technique for dealing with a current conveyor, an operational 
transconductance amplifier and a low noise amplifier, is 
presented in [16]. Hybrid algorithms (SA-ACO and 
GA-ACO) for optimal sizing of a CMOS second generation 
current conveyor and an operational amplifier, are given in 
[17]. 
  
Ant Colony Optimization (ACO) is a stochastic 
computational technique for dealing with combinatorial 
optimization problems. It is based on the indirect 
communication within a colony of artificial ants which share 
information of the best trails by using a chemical substance, 
called pheromone.   However, ACO algorithm suffer from its 
high computation time when it compared with the 
Differential Evolution (DE) algorithm. In this paper a hybrid 
algorithm named DE-ACO is proposed. The hybridization 
consists of employing DE algorithm for a good initialization 
and to reduce the computing time of ACO Algorithm. A set of 
benchmark test function is used to assess the performances of 
the proposed algorithm. Additionally, it is applied for optimal 
sizing of Low noise amplifier operating at 2.4 GHz. 
 
The remainder of this article is organized as follows: The 
ACO, DE and DE-ACO algorithms are described in Section 
2. Section 3 presents the application of the proposed 
algorithm to test function. The results of optimization of LNA 
are presented in the section 4, and conclusions are given in 
Section 5. 
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2. METHODS 
 
This section, highlight structure of the Ant Colony 
Optimization (ACO), the Differential Evolution (DE) and the 
hybrid (DE-ACO) algorithm.   
 
2.1 Ant Colony Optimization 
 
The Ant Colony Optimization (ACO) is a swarm-based 
metaheuristic method, that imitates the behavior of ant 
colonies to seek the closest trail from their nests to food 
sources [18]. Originally, ACO was applied to deal 
graph-related problems, for instance the TSP problem [19]. 
To fix such problem, ants randomly select the vertex to attend. 
When ant k is located at the vertex i, the probability of going 
to the vertex j is computed by the expression (1).  
 

                  k
i

ij ij k
ik

ij il ill J

*
if j J

P *

0 otherwise

 

 


  
   



                        (1) 

 
Where,  k

iJ  is the set of neighbors of vertex i of the thk  ant, 

ij  is the amount of pheromone trail on edge (i, j), α and β are 
weightings that control the pheromone trail and the visibility 
value. ij  has an expression as indicated below: 
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Where ijd : is the distance between vertices i  and  j.  
The pheromone values are updated in each iteration by all m 
ants that have constructed a solution in the iteration itself. 
The pheromone value ij , associated with the edge 
connecting vertices i  and  j, is updated as shown in equation 
(3) :   
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Where  ρ  is the pheromone evaporation rate, m is the number 
of ants, and k

ij  is the amount of pheromone deposed on edge 
(i, j) by ant  k : 
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L

0 otherwise


  


     (4) 

 
Q is a constant and  kL is the length of the tour constructed by 
ant k.  Figure 1 present the flowchart of the ACO algorithm.  

 

 
Figure 1: Flowchart of ACO algorithm 

 
2.2 Differential Evolution 
 
Differential Evolution (DE) is a stochastic population-based 
optimization algorithm proposed by Storn and Price in 1995 
[20].  It is inspired by the evolutionary nature of the world’s 
species. As any other evolutionary algorithm, DE algorithm 
seeks at evolving a population of NP, D-dimensional 
parameter vectors, so-called individuals. After initialization 
stage which consist of generation an initial population 
according to equation (5):  
 
                         ji jmin jmax jminX X rnd X X                      (5) 

 
Where, j=1,2,…,D, i=1,2,…,NP, rnd random number 
generate from [0,1], and Xjmin, Xjmax minimum and 
maximum of jth population respectively.  
The DE algorithm employs three operation: mutation, 
crossover, and selection.  
The first operation is defined as follows:    
 
                                g 1 g g g

r1 r2 r3iV X F X X                           (6) 

 
g
iV  is a mutant vector obtained by the differential mutation 

operation. Where G is the number of generations.  r1, r2, and 
r3 (r1 ≠ r2 ≠ r3 ≠ i) are mutually exclusive integers randomly 
select from the range [1, NP] (NP: number of population) and 
F is a scaling factor and is in range of [0,2].  Once the 
mutation is made, the next operation is the crossover which is 
used to generate a trial vector g

ijU  by selecting solution 

component values either from  g
ijV  or the target vector g

ijX  

using the following equation : 
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Where j = 1, 2, …, NP, randj ϵ [0,1], CR is the crossover rate 
ϵ [0, 1] and jrand is a randomly selected index ϵ {1,2, …, NP}. 
The last operation is the selection operation which is 
employed in which the trial vector g

iU  replaces the target 

vector g
iX , if the objective function value of the trial vector is 

better than the target vector, otherwise the target vector 
survives for the next generation. The selection operation is 
described as: 
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where f is the objective function. Figure 2 present the 
flowchart of DE algorithm. 
  

 
Figure 2: Flowchart of DE algorithm 

 
2.3 Hybrid DE-ACO Algorithm 
 
This section outlines the proposed algorithm which is called 
DE-ACO, this algorithm hybridizes the DE and ACO 
algorithms. The DE-ACO algorithm combines the merits of 
DE into the ACO algorithm. One of the advantages of 
choosing DE is that requires few control parameters and has 

lower time consuming, which makes it very well to 
hybridization. However, the ACO algorithm suffer from its 
main drawback which is take a higher computing time. 
The main objective is to merge with the ACO algorithm, 
independently, the DE algorithm to get the maximum of 
benefit from the robustness of the two algorithms.  
 
The structure of the hybrid DE-ACO algorithm is shown by 
the Figure. 3. During the initial optimization stages, the 
proposed algorithm starts with DE algorithm to find a near 
optimum solution, accelerate the convergence speed of ACO 
algorithm. The search process is then shifted to the ACO 
algorithm. Therefore, the performances of the hybrid 
DE-ACO algorithm are evaluated using test functions in the 
first case and for the optimization of low noise amplifier in the 
second case.   

 
 

Figure  3 : Flowchart of DE-ACO algorithm 

3. APPLICATION OF DE-ACO ALGORITHM TO 
TEST FUNCTIONS 
 
In this section, the DE-ACO algorithm performances 
regarding the robustness and the computing time are 
evaluated using two test functions [21], and compared with 
the standard ACO algorithm. The algorithms were 
programmed using Matlab and a CPU i3-5005U (2.00GHz, 
4.00Go) PC was employed for that purpose. The 
corresponding expressions of these test function are given in 
Table 1. 
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Table 1: Test functions 
Function  Ranges fmin 

   
n 1 2 22

i 1 i i
i 1

F1(x) 100 x x x 1





 
    

  
  

 
[-2.048,2.048

] 

 
0 

n
4
i

i 1
F2(x) ix random[0,1)



   
 

[-1.28,1.28] 
 
0 

Table 2 provides the algorithm parameters. The number of 
variables was n=2, the number of populations was NP=50, 
and the maximum number of iterations was G=500.  

Table 2: Algorithms parameters 
Scale factor (F) 0.9 

Crossover rate (CR) 0.5 
Pheromone factor (α) 1 
Heuristic factor (β) 1 
Evaporation rate (ρ) 0.1 

Quantity of deposit pheromone (Q) 0.4 
 
Due to the aspect stochastic of the used algorithms, these 
latter were executed 30 times for optimizing the test functions 
mentioned above. Table 3 gives the optimal values obtained 
by the ACO and DE-ACO algorithms. 
 

Table 3: Algorithm results  
Test functions ACO DE-ACO 

F1 4e-06 0 
F2 3.37e-05 3.65e-05 

The results from Table 3 show a good agreement with the 
theoretical results. These two algorithms almost reach the 
global minima for the two functions. 
 
The Table 4 highlight the mean execution time for each 
algorithm. A boxplot representation of the achieved results 
for the used algorithms is presented in Figure 4 and 5. 

 
Table 4: Mean execution time in seconds 

Test functions F1 F2 
ACO 8.60 5.27 

DE-ACO 8.50 5.26 
 
 

 
Figure 4: Boxplot of function F1 

 
Figure 5: Boxplot of function F2 

 
The robustness of ACO algorithm is improved by the 
proposed hybridization as indicated in the figures above. 
Regarding the computing time, the hybrid algorithm reduces 
the computing time for ACO algorithm. 

4. APPLICATION OF DE-ACO ALGORITHM TO THE 
OPTIMIZATION OF LOW NOISE AMPLIFIER 
 
Various topologies of LNA have been presented in the 
literature. The common source with degenerate inductive 
topology is extensively used due to it lower noise level in the 
amplification stage. This topology as shown in the figure 6 is 
adopted to our survey [22].  
 

 
Figure 6: Schematic of LNA 

 
The common gate transistor M2 enhances the stability of the 
circuit by reducing the feedback from the output to the input 
[23]. The input matching is achieved by means inductors (Ls) 
and (Lg) and the parasitic gate to source capacitor of 
transistor M1. The output matching is carried out by the RLC 
circuit (Rout, Lout, Cout) and the equivalent output 
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impedance of transistors M1 and M2. The sub-circuit formed 
by transistor M3 and resistors Rb guarantees the biasing of 
LNA. 
 
4.1 Objective function  
 
The objective function and design constraints of LNA circuit 
are highlighted in this section. The main objective is the 
minimization of noise factor F, which it obtained at resonance 
and has an expression as follows [24,22]:  
 

2 2 2
d0 m m

d0 out
2 2
m s

1 1 1g g P Q g cP
4 4 5g 20 RF 1

g R Q

       
                                                                

                                                                                           
(9)  

 
Where, mg is the transductance and d0g the output 
conductance at zero bias condition. The noise parameters 
values for 180nm are [23]: white noise factor γ=1.05, induced 
gate noise factor β=3.8 and correlation coefficient c=0.2.  
Q is the quality factor for the input circuit: 
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                                (10) 

  
P is defined as:  

                                           gs

t

C
P

C
                                     (11) 

 
Where, Cgs is the intrinsic gate capacitance of transistor M1 
and Ct is the sum of Cgs and an additional capacitor Cd. 
There is another practical expression of F as given in (12):  

 
                                     10NF 10log (F)                             (12) 
 
4.2 Constraints 
 
While minimizing noise figure of LNA, some important 
constraint must be satisfying. In order to maximize the power 
transfer, the impedance matching constraints can be 
expressed as: 

                                       0
t t

1
L C

                                     (13) 
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s s

t
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C

                           (14) 

 
Other constraint must verifier is:  
 
                                            P 1                                          (15) 
 
For the capacitance Cgs is assumed to be: 

                                     gs ox
2C C WL
3

                                 (16) 

Where, Cox is oxide capacitance. 
Power dissipation for LNA expression is given in (17):  
 
                                        D dd dsP V I                                    (17) 

 
Where, Vdd is the power supply and Ids the drain to source 
current through M1. The constraint for power dissipation is 
given as:  
 
                                        D maxP P                                     (18) 
 
Where, Pmax is the maximum power dissipation. 
For gm and gd0 their expressions are given as follows [24]: 
 
                 ( )( ) 0.46890.4489 ( 1

m d
1)

s
0.53g (0.0463)L W I                 (19) 

                 ( )( ) 0.48060.5595 (0.5194)
d0 dsg (0.0096)L W I                  

(20) 
 
The DE-ACO algorithm was applied to optimize the MOS 
transistors sizes W, L and Cgs, Ls and the value of the current 
Ids. 

5. RESULTS AND DISCUSSION 
 
The DE-ACO algorithm is used to minimize the noise figure 
(NF) of the LNA and compared to the standard ACO 
algorithm. The used algorithms were executed more than 30 
times to obtain the best set of design parameters, using 100 
populations and 1000 iterations. Table 5 provides the optimal 
results obtained using the ACO and DE-ACO algorithms for 
the parameters and performances of LNA. 
 

Table 5: Optimization results for LNA when Q=4 and Qout = 5. 

Algorithms ACO DE-AC
O 

L(µm) 0.18 0.18 
W(µm) 25.10 25.10 
Ids(mA) 1 1 
Cgs(fF) 24,70 24.70 
Ls(nH) 1.20 1.20 
Cd(pF) 0.14109 0.14109 
Lg(nH) 25.326 25.326 

P 0.1490 0.1490 
gm(A/V) 0.0069 0.0069 
gd0(A/V) 0.0084 0.0084 
NF(dB) 0.5564 0.5564 

 
The values of gm, gd0, Lg and Cd are determined by the 
constraints. The values of the RLC output circuit are obtained 
by the output circuit quality factor Qout. For validation 
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reasons, the optimal design parameters are utilized to design 
the LNA circuit in the Advanced Design System (ADS) 
software using TSMC 180 nm CMOS technology with 1.8 V 
as the supply voltage (Vdd). Table 6 gives the comparison 
between optimization and simulation results. The simulation 
results are shown in Figure 7 and 8.  
 

Table 6: Optimization and simulation results 

Algorithms Optimizatio
n 

Simulation Error(%
) 

ACO 0.5564 0.556 0.07 
DE-ACO 0.5564 0.556 0.07 

 

 
Figure 7: NF Vs. frequency for ACO 
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Figure 8: NF Vs. frequency for DE-ACO 

 

The results displayed in the figures 7 and 8 and table above 
indicate a good agreement between optimization and 
simulation results.  
To accomplish the comparison, the computing time and the 
convergence rate of the ACO and DE-ACO algorithms must 
be verified. Table 6 shows a comparison of the average time 
for 30 executions of each algorithm. 

 
Table 7: Average time in seconds 

Algorithms Time 
ACO 20.93 

DE-ACO 19.90 

From this table the hybrid algorithm has small value of 
computing time comparing with ACO algorithm. Figure 9 
show a boxplot representation of the obtained results for each 
algorithm. 

 
Figure 9: Boxplot of the LNA circuit of each algorithm 

 

As indicated in the figure above, the hybrid algorithm has 
improved the robustness of the ACO algorithm. 

Table 8 show performance comparison in term of noise figure 
with published works. 

Table 8: Performance comparison  

Algorithm Technology Noise Figure (NF) 
This work 180 nm 0.5564 

[15] 180 nm 0.799 
[24] 180 nm 0.8229 

 

From the above Table, the hybrid approach provides the best 
performance in term of noise figure comparing with 
published works.  

6. CONCLUSION 
This paper treats a hybrid algorithm called DE-ACO, which 
is based on the Ant Colony Optimization (ACO) and 
Differential Evolution (DE) algorithms. This hybridization 
approach aims to improve the performance of the ACO 
algorithm for analog circuit optimization applications. Before 
its application for the optimal sizing of low noise amplifier 
circuit, the proposed DE-ACO algorithm was successfully 
applied to the test functions, in order to verify its viability. 
The results show that DE-ACO offers good optimality by 
reducing computation time and significantly improving 
robustness. The simulation results are in good agreement with 
the optimization results with a small error. For future work, 
other hybridization strategists will be proposed.  
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