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 
ABSTRACT 
 
The increasing usage of photovoltaic (PV) sources for 
electricity power generation as well as the recent 
advancement in PV technology offers a promising solution to 
conventional energy issues. However, high penetration of PV 
may give negative impacts on the operation of distribution 
feeders due to intermittent nature of its generation ability. 
Therefore, optimal design of PV sources is essential to 
support the grid voltage regulation and improve the 
performance of the distribution network. In this study, 
Moth-Flame Optimization (MFO) algorithm with different 
spiral course technique was applied for optimizing the 
location and size of different PV generation units to improve 
the voltage profile and minimize the total active power loss, 
subjected to the system operational constraints. The initial 
system power loss was determined by using distribution load 
flow analysis based on the backward-forward technique. The 
MFO algorithm with different spiral course was then 
implemented to determine the optimal placement and sizing 
of the PV in the IEEE 12 and 33-bus radial distribution 
networks. The performance of the MFO algorithm with 
different spiral course was then analyzed based on the 
convergence characteristics. The results prove that installing 
PVs at optimal location with appropriate sizing could 
minimize the total real power loss and improve the voltage 
profile of the tested distribution network.  
 
Key words: Active power loss, grid-connected photovoltaic 
system, Moth-Flame Optimization, spiral course.  
 
1. INTRODUCTION 
 
Distribution systems are commonly connected in radial due to 
simplicity of network arrangement and low initial cost of 
equipment. Radial distribution networks are fed to substation 
 

 

and receives power from the centralized generating stations 
through the interconnected transmission network. However, 
the radial distribution networks normally have high R/X 
ratio, which can result in high power losses and voltage 
instability. Therefore, distributed generations (DGs) have 
been employed to overcome the drawbacks of the radial 
distribution network in order to improve the system reliability 
and voltage regulation [1], [2]. With the increasing demand 
for efficient and reliable electricity supply, the issues 
involving DG applications in the distribution system network 
has drawn remarkable attention worldwide. 
 
Distributed generation is a small-scale electricity power 
generator typically generate electricity at between 1 kW and 
50 MW. DG produces electricity power at a site close to the 
load center or that are tied to an electrical distribution system. 
DG units can be energized by both renewable and 
non-renewable sources. DG provides many advantages 
towards the operation and technical aspect of distribution 
system in terms of the system reliability, voltage profile and 
power quality improvement [3]-[5]. Recent advancement 
such as photovoltaic (PV) based distributed generations offers 
a promising solution to conventional energy issues such as 
price fluctuations of diesel fuel and high emission of carbon 
dioxide [6], [7]. Furthermore, the implementation of grid 
connected PV sources in distribution network also contribute 
in strengthening the overall system efficiency and enhances 
the peak load capacity. 
 
However, improper placement and sizing of the grid 
connected PV will significantly affect the technical aspects of 
the distribution network in term of power quality degradation, 
system voltage instability and power losses [8]-[10]. 
Therefore, optimum placement and sizing of the PV based 
distributed generation in the distribution network is very 
crucial to achieve the power losses reduction and voltage 
profile improvement [11], [12]. 
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The selection of optimal location and size of PV system in a 
radial distribution network involves complex optimization 
problems. Various meta-heuristic optimization techniques 
have been proposed to determine the optimal inclusion and 
size of the PV in the distribution network such as Differential 
Evolution (DE), Evolutionary Programming (EP), Particle 
Swarm Optimization (PSO) and Genetic Algorithm (GA) 
[13]-[16]. Additionally, hybrid techniques have also been 
widely used to find the optimal PV application, which include 
Genetic Algorithm and Improved Particle Swarm 
Optimization (GA-IPSO), Ant Colony Optimization and 
Artificial Bee Colony (ACO-ABC) and Modified Shuffled 
Frog Leaping Algorithm and Differential Algorithm 
(MSFLA-DE) [17]-[19]. 
 
In this study, a new technique based on the optimal sizing and 
placement of photovoltaic system in a radial distribution 
network is proposed. With the aim of minimizing the active 
power losses and voltage instability, Moth-Flame 
Optimization (MFO) will be utilized to solve the optimization 
problem by considering the equality, inequality and security 
constraints. The algorithm has demonstrated its capability in 
providing consistent and robust solution for various power 
system optimization problems. In the application of optimal 
sizing and placement of the PV system for loss minimization, 
the proposed MFO technique is capable of solving the 
nonlinear optimization problem with higher accuracy and 
reduced computational time. 
 
2. METHODOLOGY 
 
Moth-Flame Optimization (MFO) algorithm with different 
spiral course technique was implemented to determine the 
optimal placement and sizing of grid-connected PV system 
for active power loss reduction and voltage profile 
improvement in radial distribution networks. Two case 
studies were analyzed based on the IEEE 12 and 33-bus radial 
distribution network to validate the performance of the 
proposed method using MATLAB software. 
  
2.1 Objective Function and Constraint 
 
An efficient distribution network operation requires 
minimization of the total active power losses. Single-objective 
optimization problem considering the system operational 
constraints has been formulated to find the optimal location 
and size of the PV system by minimizing the total active 
power losses for all lines in the radial distribution networks. 
The losses in the system can be calculated by (1). 
 

   jijiij

N

i

N

j
jijiijLoss QPPQYQQPPXP  

 1 1

       (1) 

 

 
ji

jiij
ij VV

RL
X

 


cos                (2) 

 
 

ji

jiij
ij VV

RL
Y

 


sin                 (3) 

 
where Pi is the net active power injection at bus i, Qi is the net 
reactive power injection at bus i, RLij is the line resistance 
between bus i and j, Vi is the voltage at bus i and δi is the angle 
at bus i. 
 
The objective function to minimize the total real power loss in 
the radial distribution networks can be expressed as in (4): 
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Subjected to the following system constraints: 
 
Power balance constraint, 
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Voltage constraint, 
 

maxmin iii VVV                  (6) 

 
Current limit, 
 

maxijij II                       (7) 

 
where, OFMin is the objective function, PLoss is the active 
power loss in the system, Lossk is the distribution loss at 
section k, Ns is the number of sections, PDGi is the active power 
generation of DG at bus i, PRi is the power request at bus i. 
 
2.1 Moth-Flame Optimization Algorithm for Optimal PV 
Location and Sizing 
 
Moth-Flame Optimization (MFO) is a nature-inspired 
optimization based on transverse orientation of moths’ 
navigation method [20]. The moths commonly fly at night by 
maintaining a fixed angle with respect to the moon. This 
navigation method provides a very effective way for the moths 
to travel in a straight line for long distances. However, the 
moths can be easily trapped in a deadly spiral course during 
the presence of artificial lights. This behavior is depicted in 
Figure 1 and can be mathematically formulated to solve for 
complex optimization problem. 
 
In MFO algorithm, the moths are considered as the candidate 
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solutions while the position of the moths in the space is 
considered as the problem’s variables.  The moths are the 
actual search agents moving around the search space, which 
result in the actual solutions. Meanwhile, the flames are the 
best solutions obtained so far based on the position of the 
moths. Calculation and update of solution are then performed 
based on the number of moths. Different types of spiral 
functions can be utilized for the MFO formulations, which 
satisfy the following criteria [21]-[25]: 
 

1. The initial point of the spiral should start from the moth. 
2. The final point of the spiral should be the flame position. 
3. Fluctuation of the range of spiral must be within the 

search space. 
 

 
Figure 1: Moth-Flame Optimization Concept [21] 

 
The MFO based approach for solving the optimal placement 
and sizing of the grid connected PV system in the radial 
distribution networks involves the following steps: 
 
Step 1: The initial conditions for the optimization process 
were defined, which include line data, bus data, total 
generation limit, bus number limit, PV dimension, and 
maximum number of iterations. The set of moths representing 
the bus number for PV location and sizing can be initially 
described as the following matrix: 
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where n is the number of moths and d is the number of 
variables (dimension). The corresponding active power loss 
was determined based on the initial position of the PV 
location and size using backward-forward method. The 
fitness values were then calculated for each moth and 
represented as the following matrix: 
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where n is the number of moths. 
 
Step 2: The following flames matrix was then obtained by 
sorting out the moths according to their fitness values. 
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where n is the number of moths and d is the number of 
variables (dimension). 

 
The fitness values were then calculated for each flame and 
represented as the following matrix: 
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where n is the number of moths. 

 
Step 3: The moth’s position was then computed based on the 
lower limit and upper limit of the total bus number and 
maximum power generation from both grid and PV 
connection. Equation (12) was then used to update the 
position of each moth with respect to the flame. 
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where Mi is the i-th moth, Fj is the j-th flame and S is the spiral 
function. 
 
Step 4: A logarithmic spiral function was selected as the first 
update mechanism of moths based on the following 
expression: 
 
    j

bt
iji FteDFMS  2cos..,          (13) 

 
where Di is the distance of the i-th moth for the j-th flame, b is 
a constant to define the shape of the logarithmic spiral, and t 
is a random number between [-1, 1]. The t parameter in the 
spiral equation defines the role of t parameter, t = -1 is the 
closest position to the flame, while t = 1 shows the farthest. 
Equation (13) represents the spiral flying path of  the moths, 
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in which the next position of a moth is usually defined with 
respect to a flame. This determine the best position and sizing 
of PV so far. 
 
Several conditions need to be satisfied, where the initial point 
should start from the moth while the final point should be the 
flame position. Furthermore, fluctuation of the range of spiral 
must also be located within the search space. D was then 
calculated as in (14). 
 

iji MFD                   (14) 

 
where Di is the distance of the i-th moth for the j-th flame, Fj 
is the j-th flame and Mi is the i-th moth.  
 
Therefore, a hyper ellipse can be assumed around the flame in 
all directions whilst the next position of the moth would be 
within this space. To ensure successful exploration and 
exploitation of the search space, the spiral equation allows the 
moth to fly around the flame, but not necessarily in the space 
between them. The logarithmic spiral space is illustrated in 
Figure 2. 
 

 
Figure 2: The logarithmic spiral 

 
Step 5: The logarithmic spiral course was then determined 
based on the distance between the flame and the moth.  

 
Step 6: The exploitation of the best PV location and sizing can 
be affected by the position updates of the moths with respect to 
different locations in the search space. To overcome this 
problem, an adaptive mechanism was utilized for each 
number of flames, represented by the following equation: 
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where l is the current number of iteration, N is the maximum 
number of flames, and T is the maximum number of 
iterations. 
 
2.1.1 Hyperbolic Spiral 
 
In order to improve the performance of MFO algorithm, a 
hyperbolic spiral course for the flying moths is considered. 
The hyperbolic spiral, also known as reciprocal spiral, is 
represented by a transcendental plane curve with an inversed 

center at the origin [8]. The initial point of the hyperbolic 
spiral starts at an infinite distance from the pole in the center 
and it winds faster around approaching the pole, as illustrated 
in Figure 3. Equation (16) represents the formulated MFO 
algorithm using the hyperbolic spiral. 
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where Di is the distance of the i-th moth from the j-th flame, t 
is a random number in [-1, 1] and Fj is the j-th flame. 
 

 
Figure 3: The hyperbolic spiral 

 
2.1.2 Archimedes’ Spiral 
 
The Archimedes’ spiral is another course for the flying moths 
to reach the flame. The spiral starts at the origin to form a 
curve with three rounds. As depicted in Figure 4, the 
distances of intersection points along the line through the 
origin are equivalent, which can be represented as a polar 
equation form (17). 
 

nar
1

                     (17) 
 
where n is a constant that determines how tightly the spiral is 
wrapped. Figure 4 represents the Archimedes’ spiral using n 
= 1. Equation (18) represents the formulated MFO algorithm 
using the Archimedes’ spiral. 
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where Di is the distance of the i-th moth from the j-th flame, t 
is a random number in [-1, 1] and Fj is the j-th flame. 
 

 
Figure 4: The Archimedes’ spiral 
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3. RESULTS AND DISCUSSION 
 
The single line diagram of the IEEE 12 and 33-bus network 
are illustrated in Figure 5 and Figure 6. The base kVA of the 
tested system is 10 kVA. The simulation parameters for the 
MFO algorithm are shown in Table 1. In this section, the 
performance analyses of different MFO algorithm with 
Logarithmic (MFO-L), Hyperbolic (MFO-H), and 
Archimedes (MFO-A) spirals considering optimal PV 
location and sizing were conducted. 
 
 
 

 
 

Figure 5: A single line diagram of 12-bus radial distribution 
network 

 

 
Figure 6: A single line diagram of 33-bus radial distribution 

network 
 

Table 1: Parameters value for MFO algorithm with different spiral 
course  

Parameters Value 
Number of moths 20 
Number of PV dimension 1 
Number of iterations 100 
Number of run 10 

 
In order to determine the robustness of MFO algorithm with 
different spiral course, consistency test was plotted in Figure 7 
and Figure 8. The convergence characteristics are also 
provided in Figure 9 and Figure 10 to show the ability of 
different spiral techniques in converging towards the minimal 
value of fitness function. Both consistency and convergence 
characteristic tests conducted were based on one PV location 
and sizing for the IEEE 12 and 33-bus network. 
 
As shown in Figure 7, MFO-H gives a consistent result at the 
lowest fitness value for every run compared to MFO-L and 
MFO-A. In Figure 8, MFO-H gives 9 out of 10 consistent 
results at the lowest fitness value as compared to MFO-L and 
MFO-A which gives 7 and 4 out of 10 consistent results 
respectively. Hence, it shows that MFO-H gives a better 
consistency result for the IEEE 12 and 33-bus network 
compared to MFO-L and MFO-A. 

 
Figure 9 shows that MFO-H reaches minimum fitness at 8th 
iteration while MFO-L and MFO-A reaches minimum fitness 
at 13th and 17th respectively for the IEEE 12-bus network. 
Meanwhile in Figure 10, MFO-H reaches minimum fitness at 
9th iteration while MFO-L and MFO-A reaches minimum 
fitness at 22nd and 17th iteration respectively for the IEEE 
33-bus network. Therefore, MFO-H has demonstrated faster 
convergence characteristic as compared to MFO-L and 
MFO-A. 

 
Figure 7: Consistency of MFO algorithms with different types of 

spiral for IEEE 12-bus network 
 

 
Figure 8: Consistency of MFO algorithms with different types of 

spiral for IEEE 33-bus network 
 

 
Figure 9: Convergence characteristic of MFO algorithms with 

different types of spiral for IEEE 12-bus network 
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Figure 10: Convergence characteristic of MFO algorithms with 

different types of spiral for IEEE 33-bus network 
According to the performance tests, it was found that all spiral 
techniques result in equivalent minimum fitness values of 
0.001077 and 0.010415 for the IEEE 12 and 33-bus network 
respectively at 100th iteration. This shows that the optimum 
PV location and sizing obtained by three different spiral 

techniques are consistently similar. The different spiral 
techniques only affect the performance of MFO algorithm in 
terms of consistency and convergence characteristic.  In 
which, MFO-H shows the best performance as compared to 
MFO-L and MFO-A.  
 
The results obtained for optimal PV location and sizing are 
summarized in Table 2 and Table 3 accordingly. Note that, all 
three spiral techniques show similar minimum fitness or 
converge at the same minimum fitness. Hence, all three spiral 
course techniques give similar value of optimal PV location 
and sizing. Different number of location and sizing were 
tested using the MFO algorithm to analyze the network 
system performance based on the power loss reduction and 
system voltage profile. 

 

Table 2:  Optimal PV location and sizing for IEEE 12-bus network 

Number of PV Total Power Loss 
(kW) 

Power Loss 
Reduction 

Optimal Size of 
PV (kW) 

Optimal 
Location of PV 

0 20.7138 - - - 

1 10.7744 47.98% 235.5011 Bus 9 

2 9.4163 54.54% 183.8582 
137.7886 

Bus 7 
Bus 10 

3 9.1561 55.78% 
113.4182 
132.8100 
137.7885 

Bus 4 
Bus 7 
Bus 10 

 
Table 3:  Optimal PV location and sizing for IEEE 33-bus network 

Number of PV Total Power Loss 
(kW) 

Power Loss 
Reduction 

Optimal Size of 
PV (kW) 

Optimal 
Location of PV 

0 203.0812 - - - 

1 104.1595 48.71% 2575.5732 Bus 6 

2 86.0682 57.62% 846.4083 
1158.7255 

Bus 13 
Bus 30 

3 71.6293 64.73% 
788.1792 
1093.3222 
1057.9976 

Bus 13 
Bus 24 
Bus 30 

 
Table 2 shows the implementation of optimal PV location 
and sizing for the IEEE 12-bus network system. Connecting 
one PV at Bus 9 with optimal generation of 235.5011 kW 
reduces the total active power loss from 20.7138 kW to 
10.7744 kW. This PV inclusion strategy also demonstrates a 
significant increase of 47.98% for the power loss reduction. 
The results also show that by adding more PV into the 
distribution network, the power loss reduction increases by 

54.54% and 55.78% for two and three units of connected PV 
respectively. 
 
The optimal PV location and sizing for the IEEE 33-bus 
network is shown in Table 3. A connection of one PV at Bus 
6 with optimal sizing of 2572.5732 kW reduces the power 
loss from 203.0812 kW to 104.1595 kW. This proves that the 
network exhibits significant power loss reduction of 48.71%. 
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The results also show that by adding more PV into the system, 
the power loss reduction increases by 57.62% and 64.73% for 
two and three units of connected PV respectively. 
 
To validate the reliability of the proposed optimal placement 
strategy for both IEEE 12 and 33-bus network, the voltage 

profiles with and without the presence of PV are plotted as in 
Figure 11 and Figure 12. The result shows that the 
installation of PV has significantly improved the voltage 
profiles for both IEEE 12 and 33-bus network, with respect to 
the increased number of the PV location. 

 

 
Figure 11: Voltage profile with and without PV for 12-bus network 

 

 
Figure 12: Voltage profile with and without PV for IEEE 33-bus 

network 
 
For the IEEE 12-bus network with one PV location, the 
average voltage level is 0.98697 p.u. as compared to the 
average voltage level without PV which is 0.96346 p.u. As the 
number of PV was increased, the voltage level increased to 
0.9900 p.u. and 0.9903 p.u. for two and three connected PV 
respectively. For the IEEE 33-bus network with one PV 
location, the average voltage level is 0.9484 p.u. as compared 
to the average voltage without PV which is 0.9484 p.u. The 
increased values of the average voltage level were recorded at 
0.9804 p.u. and 0.9822 p.u. for two and three connected PV 
respectively. Hence, the overall results prove that the optimal 
PV location and sizing are important to enhance the system 
voltage profile. 
 

4. CONCLUSION 
 
This study presents Moth-Flame Optimization technique for 
optimal photovoltaic location and sizing in radial distribution 
network. The proposed method was tested on the IEEE 12 and 
33-bus network. From the simulation results, it is proven that 
the optimized PV location and size in the distribution network 
could minimize the total active power loss and ensure the 
improvement of voltage profile to be within its acceptable 
range. It was found that the optimum PV location and sizing 
obtained using three different spiral techniques are 
comparable. However, the spiral techniques significantly 
affect the performance of the MFO algorithm in terms of 
consistency and convergence characteristics, where MFO-H 
demonstrates the best performance as compared to MFO-L 
and MFO-A.  
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