
Monday Eze et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5),September-October 2020, 8562 - 8568

8562

ABSTRACT
There are a number of scientific issues whose solutions
require advanced database construction and retrieval
techniques. One of such is in dealing with hierarchical
database projects. Researchers have attempted to use a
number of technological tools and techniques in this regard.
This work utilizes Recursive Common Table Expressions
(RCTE) to tackle this problem. The three objectives of this
work are to demonstrate the construction of a small scale
enterprise hierarchical database from the scratch, and to
demystify hierarchical database retrieval using recursive
query techniques. The practical case used in this work is a
Hypothetical Small Scale Financial Institution, termed the
HSSFI Bank. The actual implementation of this research was
done using PosgreSQL in a Windows Environment, with the
conceptualization, hierarchical construction procedures and
the system outputs clearly demystified.

Key words: Hierarchical Database, Recursive CTE,
PostgreSQL, ORDBMS, Data Retrieval, SQL.

1. INTRODUCTION
Hierarchical database is one in which the data is stored using
a tree-like approach [1]. In other words, the contents are
arranged in hierarchies, where apart from the root, every
other node has a parent node [2]. Again, apart from the
terminals, every other node has at least a child [3]. Based on
these attributes, it can be deduced that hierarchical databases
support one-to-many relationship [4], but not many-to-many
relationship, unlike networks [5]. Moreover, because they
support one to many relationships, the possibility of data
redundancy is very high, and thus the necessity for developing
data retrieval strategies that could prevent unnecessary
redundancies [6]. The construction of hierarchical databases
is achieved through creating pointer-like relationships
between the parent nodes and children nodes. While research
has shown that navigation of hierarchical databases could be
fast [7], other researches have also shown that deletion of a
node could lead to a cascaded deletion [8] of all other lower
level linked nodes. This is another reason why hierarchical
database access should be carefully designed and
implemented.

2. RESEARCH TOOLS UTILISED
The database tool used for this research is PostgreSQL, an
open source object-relational database management system
(ORDBMS) [9]. PostgreSQL offers diverse features of
modern databases such as complex queries, triggers [10],
procedural languages, function aggregation, well established
data types, among others. PostgreSQL also supports standard
SQL, including a very seamless interface [11] with modern
programing languages such as Python, Java, and so on. The
major prerequisite for a successful implementation or
replication of this work is the installation of PostgreSQL
version 12.

3. PRACTICAL CASE
The major deliverable of this research is to demystify the
construction of hierarchical database for a small scale
organization, and to ensure seamless retrieval of the contents.
The practical case study used is a Hypothetical Small Scale
Financial Institution (HSSFI) which will henceforth be
termed HSSFI Bank. In order to successfully construct a
hierarchical database of the company organogram, code
design was done for all the existing positions as will be further
explained.
The HSSFI Bank is has a total of 36 employees. A graphical
summary of the human resource distribution based on the
positional codes is shown in Fig.1. The Bank has a Head
Office, and four subsidiary branches called the North, South,
East and West Branches respectively.

Figure 1: Graphical Distribution of HSSFI Bank Human Resources

Monday Eze1, Doris Nnakwuzie2, Chinyere Akobundu3, Nneka Richard-Nnabu4
1Department of Computer Science, Babcock University, Nigeria. ezem@babcock.edu.ng

2Dept. of Computer Science, Alex Ekwueme Federal University, Nigeria. okafordoris49@yahoo.com
3Dept. of Comp. Sc. Evangel University, Akaeze, Ebonyi State.

chinyerekingsleyfavour@evangeluniversity.edu.ng
4Dept. of Computer Science, Alex Ekwueme Federal University, Nigeria. nneka4him@gmail.com

Hierarchical Database Construction and Retrieval

ISSN 2278-3091
Volume 9, No.5, September - October 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse237952020.pdf

https://doi.org/10.30534/ijatcse/2020/237952020

Monday Eze et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5),September-October 2020, 8562 - 8568

8563

At the top echelon of HSSFI Bank leadership is the Managing
Director (MD), Executive Director for Finance(ED-F),
Executive Director for Research (ED-R) and a Principal
Manager for Administration (PM-A). The MD and the two
EDs also have personal secretaries attached to them,
designated as Sec-MD, Sec-ED1 and Sec-ED2 respectively.
All these principal officers and their secretaries work in the
Head Office as part of the Central Group. The four non-head
office branches of HSSFI Bank are led by General Managers -
GM-N for North, GM –S for South, GM-E for East and
GM-W for the West respectively. At the lower cadres, there
are three Senior Managers (SM-IT, SM-OP, and SM-AC) for
Information Technology, Operations and Accounts
respectively. Others are three Manager (MGR), four Deputy
Managers (DM), five Senior Officers (SOF), five Officers
(OFF), two Junior Officers (JOF) and three Operators (OPR).

4. HIERACHICAL DATABASE CONSTRUCTION

The construction of a typical hierarchical database requires a
number of steps. Before delving into its, a researcher should
carefully study the problem on ground, and confirm if indeed,
it is most appropriate to use hierarchical database model to
solve a particular problem, over other alternatives. This is
because, at the moment, relational databases appear to be the
most widely used of all the database models. However, the
necessity to retain other database models alongside relational
cannot be overemphasized. This is due to the fact that there
are a number of scientific and technological problems that
naturally fit into a hierarchical database model. Instances are
in the areas of graph modeling [12], telecommunications,
organizational organograms, automated strategic planning
[13], geo-mapping, design of communities and collaborations
[14], among others. A company organogram will be used in
this work. It is also possible to maintain both relational and
hierarchical database formats in a hybrid setting [15]. The
system workflow is presented next.
4.1 System Workflow

The general system workflow for this research is shown in
Fig. 2, and consists of five compartments. The first involves
three major manual activities. Data Gathering entails
collecting together the necessary human resources related
information which will be used for further processing. Some
of the information gathered at this stage are Staff
Identification Number, Name of Staff, HSSFI Branch
Location from where the staff operates, Position or grade of
the personnel within the HSSFI Bank employment,
information on whom a particular staff reports to, and so on.
Code Design involves the manual generation of relevant
codes, which are utilized at the hierarchy design stage, for the
manual construction of the requisite organogram shown in
Fig. 3. The use of node coloration is one way of increasing the
clarity of the resulting node hierarchy. For instance, the five
colours (White, Brown, Green, Blue and Yellow) were used in
this work to clearly delineate the human resources reporting
lines.

Figure 2: General System Workflow

Figure 3: HSSFI Bank Organogram

The second step in the system workflow is to come up with the
database frame work. The major deliverable at this stage is
Table 1. The contents of this table is what is ported into the
digitized format of the hierarchical database. Without any
form of ambiguity, it can be deduced from the table that the
Managing Director (MD) of NSSFI Bank Pius Nwada has
Staff ID of value 1, works in the Central Branch of the
organization. The columns of the table were designed to be as
meaningful as possible. The column PCode stands for
Position Code, signifying the grade of the personnel. Again,
RepoCode (Reporting Code) represents the superior officer of
a particular staff in question. The RepoCode for the MD is
NULL because he does not report directly to any singular
person, though he may report to the board of directors.

Monday Eze et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5),September-October 2020, 8562 - 8568

8564

Table 1: Hierarchical Database Framework

The remaining three compartments of the system workflow
will be discussed under the section for actual system
implementation.

4.2 System Implementation

The construction of Hierarchical database as a key objective of
this research involves the preliminary manual activities as
itemized in the system workflow, plus the remaining
digitization and implementation steps as will be discussed at
this stage. These are creation of the database, creation of
requisite tables, and populating the database tables
accordingly. Thereafter, the next concern will be the process
and technical details needed for data retrieval and
interpretation of outputs from the resulting system. The
Structured Query Language (SQL) [16] is an important tool
used at this stage. In line with a standard nomenclature
adopted for the database objects, the database and tables were
named hssfi_organo_database and hssfi_organo_table
respectively. The SQL CREATE command [17] was used in
creating these two objects. An important precaution is the
issuance of a windows command \c in between database and
table creation sessions. This is to ensure that the incoming
tables are domiciled within the right schema. This is shown in
Fig. 4.

Figure 4: Database Object Creation Screen

It is also important to state that Foreign Key statement [18]
was used to link the RepoCode to StaffID, with a Delete
Cascade option [19]. This is to maintain referential integrity
[20] in the resulting database table. Referential integrity is a
very important issue in database security and accuracy [21],
and especially in ensuring a smooth implementation of data
retrieval through recursive common table expression (RCTE)
[22] to be discussed at a later section of this paper.
The next stage in the construction of hierarchical database is
to populate the hssfi_organo_table, which was achieved
through the SQL Insert Command. To ensure that this
operation was error free, the safe + multiple tuple insertion

Monday Eze et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5),September-October 2020, 8562 - 8568

8565

strategy was used [23] as will be briefly explained. As shown
in Fig.5, there are four common paths for insertion into
database tables. These are blind +single tuple, blind +
multiple tuple, safe + single tuple, and safe + multiple tuple.

Figure 5: Safe and Multiple SQL Insertion Path

The safe + multiple strategy enforces the deliberate listing of
the database fields in the insertion statement, and as well,
ensures that the tuples to be inserted are listed in a multiple
format, rather than listing them one by one. Two major
advantages of taking this path are accuracy and speed, unlike
the three other methods. The screen shots of this operation is
shown in Fig. 6.

Figure 6: Database Data Population Screen

Thus, the organogram data of all the 36 staff of NSSFI Bank
were inserted in the database in a one safe + multiple tuple
insertion statement.

5. HIERACHICAL DATABASE RETRIEVAL

Beyond database design, creation and population of the
resulting structure with requisite data, the next very important
issue is the seamless retrieval of hierarchical data.
Hierarchical Database retrieval is achieved using a technique
known as Recursive Common Table Expression (RCTE) as
will be demonstrated in this work. RCTE is an advancement
in Common Table Expression (CTE). CTE are a special
database query mechanism used to build temporary named
result sets, which can be re-used over and over again. A
typical CTE is constructed by embedding other queries within
a WITH.. AS statement [24]. Research has shown that the use
of CTE can improve data retrieval speed appreciably over a
normal sequential SELECT statement, especially with
appropriate indexing [25]. Research has also shown that apart
from data retrieval through SELECT, other statements such
as INSERT, UPDATE, DELETE, among others can be
conveniently used within a CTE [26]. A number of modern
databases support CTE syntax, some of which are
PostgreSQL, Microsoft SQL Server, Teradata, DB2, Firebird,
Oracle, SQLite, among others [27]. However, in Oracle
Installations, the term recursive subquery factoring is used for
CTE [28], and in higher versions of Oracle such as 10g and
above, the CONNECT BY [29] hierarchical data retrieval
feature is also supported as an alternative retrieval strategy.

5.1 Recursive CTE Structure

The general syntax of a RCTE in PostgreSQL is

WITH RECURSIVE CTE-Name AS (
NR-Section
UNION | UNION ALL
RC-Section
)

Main Query Invoking CTE_Name

It is clear from the syntax that every RCTE begins with the
keyword WITH RECURSIVE followed by the name of the
CTE, the keyword AS and then a bracket that encloses the
body of the CTE. The body of an RCTE consists of two
sections. These are the Non-Recursive (NR) Section and the
Recursive (RC) Sections respectively [30]. Another name for
the former is the anchor part. One major differences between
an RCTE and an ordinary CTE is that the former has two
sections, while the later has only one section. The two sections
in an RCTE are joined using a UNION or UNION ALL
statement [31]. The difference between these two options is
that UNION ALL allows repetition of outputs, unlike UNION
keyword that ensures that all records in the final result occur
only once [32]. The power of RCTE is hinged on the fact that
it has the ability to invoke itself [33], and thus the recursively
concept of CTE. The final part of the RCTE is the main query

Monday Eze et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5),September-October 2020, 8562 - 8568

8566

definition which makes reference to the CTE Name. It is
important to note that no comma or semi-colon is allowed in
between the final definition of CTE and the main query [34],
a rule that many programmers usually forget, which
commonly causes system errors in RCTEs.

5.2 RCTE Implementation

In this research, the system nomenclature [35] was made as
meaningful as possible. The RCTE name is
HierachicalDemo, and the raw code is shown Fig. 7. In the
source code shown, the anchor and recursive sections can be
clearly identified as separated by the UNION keyword.
Another SQL keyword that finds relevance in the
development of RCTE is INNER JOIN.

Figure 7: Code for RTE Definition

In SQL, a JOIN operation [36] is used to retrieve data from
multiple tables in a single SELECT query. Thus, two tables
can be combined by a single join operator, and the result can
as well be joined again with other tables. One important
condition is that the tables being joined must have a same or
similar columns in order for them to be joined. There are
many types of JOINS methods, however, the INNER JOIN
[37] eliminates all rows that failed to match the join condition
exactly. The main query part of the RCTE is the last select
statement. In the code listing shown, the required input is the
StaffID. Based on the hard-coded input, the system will
recursively display all the personnel of HSSFI Bank that
report to the staff having StaffID = 5. This input can be
changed for other cases or inputs.

5.3 System Output

The system outputs after execution of the RCTE for
StaffID =5 is shown in Fig. 8. This result compares
favorably with the HSSFI Bank organogram shown

in Fig. 3, and the Hierarchical Framework shown in
Table 1. In order to ensure a complete evaluation for
system accuracy, the source code [38] was executed
for all the 36 possibilities StaffID = {x: x =1, 2, ….
36}, and the outcome coincided with the contents of
the manually generated organogram as well as the
framework in Table 1.

Figure 8: System Listing of all Subordinates to Staff Number 5

6. CONCLUSION

This research has presented the theory and procedures for
design and construction of hierarchical databases. A practical
case was demonstrated using a Hypothetical Small Scale
Financial Institution (HSSFI) referred to in this work as
HSSFI Bank. The use of RCTE for data retrieval from
Hierarchical Database was also presented. At this stage of this
work, it is clear that a CTE is a kind of temporary result set,
quite similar to a derived or subquery table [39]. Again,
unlike stored tables, a CTE only lasts within the query
duration. Thus, a CTE is much more versatile and powerful
than a derived table because it can be self-referencing, and
could be referenced several times in a single query [40]. The
recursively of RCTE gives it more speed and versatility than
an ordinary CTE, and far above those of ordinary sub-queries.
In conclusion, this work has presented a concise methodology
[41] for construction, data population and retrieval in
hierarchical databases. It is hoped that this work will be useful
to other researchers who may find it a foothold for further
research in hierarchical database construction and retrieval.

REFERENCES
1. S. James, P. Prakash and R. Nandakumar. The Tree List

– Introducing a Data Structure. International Journal
of Recent Technology and Engineering, 2019, Vol 7,
Issue 6, 1093-1096.

Monday Eze et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5),September-October 2020, 8562 - 8568

8567

2. R. Dhankah, S. Kamra and V. Jangra. Tree Concepts in
Data Structure. International Journal of Innovative
Research in Technology. 2014. Vol 1, Issue 7, 183-185.

3. A. Gupta and A. Lata. Dynamic Trees in Data
Structure. International Journal of Engineering
Research and Management Technology. 2014. Vol 1,
Issue 5, 7-12.

4. E. Gummesson. From One-to-One to Many-to-Many
Marketing. In Proceedings from QUIS 9, Karlstad,
Sweden. 2004. pp1-11.

5. C. Mancas. On Database Relationships Vs
Mathematical Relations. Global journal of computer
science and technology: C Software and data
engineering, 2016. Vol 16, issue 12-16

6. S. Saha. Efficient Methods for Reducing Data
Redundancy in the Internet. A PhD Dissertation
submitted to Aalto University School of Science, October
2015.

7. R. Ngolikar, R. Khandal and R. Mohare. Comparison of
HDBMS, NDBMS, RDBMS and OODBMS.
International Journal of Advanced Research in Computer
Science and Management Studies, 2015. Vol 3, Issue 6,
p119-126

8. K. Raval. A study on Oracle data constraints.
International Journal of Advanced Research in Computer
Science and Management Studies, 2013. Vol 1, Issue 1,
p1-4

9. M. Velicanu and I. Botha. Solutions for the Object –
Relational Databases Design. Database Systems
Journal, 2011, Vol 2, No 4, p51-64

10. H. Paci, E. Kajo and A. Xhuvan. Protecting Oracle
PL/SQL Source Code from a DBA User. International
Journal of Database Management Systems. 2012. Vol 4,
No. 4, 43-52

11. Y. Abass, Z. Zahoor and S. Irfan. Common Database
Interface with NLP. International Journal of Computer
Science and Mobile Computing, 2017. Vol 6, Issue 6,
195-199.

12. N. Tyagi and N. Singh. Graph Database – An
Overview of its Applications and its types.
International Journal of Computer Science Engineering
Techniques, 2017. Vol2, Issue 3, p6-10

13. G. Valentim and C. Henrique. How to develop
Technology Roadmap? The case of a Hospital
Automation Company. Production, 2016. Vol 26, No.
2, 354-358

14. K. Haddad, R. Lindquist-Grantz, H. Vivens, A. Boards,
F. Jacquez and L. Vaughn. Empowering Youths to
build Bridges: Youth Leadership in Suicide
Prevention. Collaborations: A Journal of Community –
based Research and Practice, 2020. Vol 3, No.1, p1-10

15. D. Martinez-Mosquera, R. Navarrete and S. Lujan-Mora.
Modeling and Management Big-Data in databases –
A Systematic Literature Review. Sustainability, 2020.
Vol 12, No 634. 1-41.

16. A. Kumar. Structured Query Language (SQL)
Answering Model for User Queries based on

Intuitionistic Fuzzy Logic. International Journal of
Computer Applications, 2015. Vol 129, No.1, 32-36

17. K. Elshazly, Y. Fouad, M. Saleh and A. Sewisy. A
Survey of SQL Injection Attack Detection and
Prevention. Journal of Computer and Communication.
2014. Vol 2. 1-9

18. L. Jiang and F. Naumann. Holistic Primary Key and
Foreign Key Detection. Journal of Intelligent
Information Systems, 2020. Vol 54, 439-461.

19. K. Raval. A Study on Oracle Data Constraints.
International Journal of Advance Research in Computer
Science and Management Studies, 2013. Vol 1, Issue 1,
1-4

20. C. Ordenez and J. Garcia-Garcia. Referential Integrity
Quality Metrics. Decision Support System Journal,
2008. Vol 44, No. 2, 495-508.

21. H. Pourzargham. Importance of Security in Database.
International Journal of Computer Science and Network
Security, 2015. Vol 15, No.5, 29-31.

22. S. Sowndarya and A. Sridhar. Performance
Comparisons of Common Table Expressions and
Cursors. International Journal of Computer Science and
Engineering, 2012. Vol 4, No. 7. 1362-1365.

23. IBM Corp. Database SQL Programming. International
Business Machine. IBM i, Version 7.3, 2015. Product
Number 5770-SS1.

24. P. Garner. Learning SQL in Steps. Systemics,
Cybernetics and Informatics, 2015. Vol 13, No. 4, 19-24.

25. R. Talib. A Comparative Study of Indexing using
Oracle and MS-SQL Server for Relational Database
Management Systems. International Journal of
Computer Science and Mobile Computing, 2018. Vol 7,
Issue 12, 341-350.

26. Daniel Bartholomew. MariaDB and MySQL Common
Table Expressions and Window Functions Revealed.
Apress Publishers, 2017. Berkeley, CA.

27. K. Kolonko. Performance Comparison of the most
popular relational and non-relational database
management systems. An MSc in Software Engineering
Dissertation submitted to the Faculty of Computing,
Blekinge Institute of Technology, Karlskrona, Sweden,
February 2018.

28. K. Morton, K. Osborne, R. Sands, R. Shamsudeen and J.
Still. Sub Query Refactoring. In: Pro Oracle SQL.
Apress Publishers, 2013. Berkeley CA, pp261-298

29. M. Cyran. Oracle Database Concepts, 10g Release
2(10.2). Oracle Corporation, 2005.

30. M.K. Rohil and N. Gupta. Visualization of Recursive
Database Query Output Using a Declarative System:
An Illustration through Parts – Assembly Tree
Visualization. 2019 IEEE 5th International Conference
for convergence in technology, Bombay, 2019. p1-4.

31. N. Kumari. SQL Server Query Optimization
Techniques – Tips for writing Efficient and Faster
Queries. International Journal of Scientific and
Research Publications, 2012. Vol. 2, Issue 6, 1-4.

Monday Eze et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5),September-October 2020, 8562 - 8568

8568

32. C. Gabriel, M. Mihai, V. Luca and O.Teodor. Query
Optimization Techniques in Microsoft SQL Server.
Database Systems Journal, 2014. Vol 5, No. 2, p33-48.

33. T. Green, S. Huang, B. Thau and W. Zhou. Data Log
and Recursive Query Processing. Foundations and
Trends in Databases, 2012. Vol. 5, No.2, 105-195.

34. L. Jachiet, P. Greneves, N. Gesbert, and N. Layaida. On
the Optimization of Recursive Relational Queries:
Application to Graph Queries. SIGMOD 2020 – ACM
International Conference on Management of Data. June
2020, Portland, USA. Pp 1-23.

35. S. Mubeen. Synthesis of Circular Array Antennas
Using Accelerated Particle Swarm Optimization.
International Journal of Advanced Trends in Computer
Science and Engineering (IJATCSE). Vol. 8, No. 5,
Sep-Oct 2019, 2121-2125.

36. R. Batra. SQL Primer - An Accelerated Introduction
to SQL Basics. APress Publishers, Haryana, India,
2018.

37. A. Taylor. SQL For Dummies 9th Edition, Published
by: John Wiley & Sons, Inc., 2019. Hoboken, New Jersey.

38. S. Padda, A. Arora, S. Gupta and P. Sharma. Review of
Software Methodologies used in Software Design.
International Journal of Advanced Trends in Computer
Science and Engineering (IJATCSE). Vol. 3, No. 5, Sep -
Oct. 2014, 88-93.

39. S. Thanh and L. Nguyen. Query – subquery nets for
Horn Knowledge-Bases in First – Order Logic.
Journal of Information and Telecommunication, 2017.
Vol. 1, Issue 1. Pp79-99

40. I. Ben-Gan. Inside Microsoft SQL Server 2008:
T-SQL Querying. Published by Microsoft Press,
Redmond Washington. 2009.

41. V. Nam, P. Chuan, L. Manh and Q. Khanh. A Review on
Security-Aware Routing Protocol for Mobile Adhoc
Network. International Journal of Advanced Trends in
Computer Science and Engineering (IJATCSE). Vol. 9,
No. 3, June 2020, 3655-3661

