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ABSTRACT 
There are a number of scientific issues whose solutions 
require advanced database construction and retrieval 
techniques. One of such is in dealing with hierarchical 
database projects. Researchers have attempted to use a 
number of technological tools and techniques in this regard. 
This work utilizes Recursive Common Table Expressions 
(RCTE) to tackle this problem. The three objectives of this 
work are to demonstrate the construction of a small scale 
enterprise hierarchical database from the scratch, and to 
demystify hierarchical database retrieval using recursive 
query techniques. The practical case used in this work is a 
Hypothetical Small Scale Financial Institution, termed the 
HSSFI Bank. The actual implementation of this research was 
done using PosgreSQL in a Windows Environment, with the 
conceptualization, hierarchical construction procedures and 
the system outputs clearly demystified.   
 
Key words: Hierarchical Database, Recursive CTE, 
PostgreSQL, ORDBMS, Data Retrieval, SQL.  
 
1. INTRODUCTION 
Hierarchical database is one in which the data is stored using 
a tree-like approach [1]. In other words, the contents are 
arranged in hierarchies, where apart from the root, every 
other node has a parent node [2]. Again, apart from the 
terminals, every other node has at least a child [3].  Based on 
these attributes, it can be deduced that hierarchical databases 
support one-to-many relationship [4], but not many-to-many 
relationship, unlike networks [5]. Moreover, because they 
support one to many relationships, the possibility of data 
redundancy is very high, and thus the necessity for developing 
data retrieval strategies that could prevent unnecessary 
redundancies [6]. The construction of hierarchical databases 
is achieved through creating pointer-like relationships 
between the parent nodes and children nodes. While research 
has shown that navigation of hierarchical databases could be 
fast [7], other researches have also shown that deletion of a 
node could lead to a cascaded deletion [8] of all other lower 
level linked nodes. This is another reason why hierarchical 
database access should be carefully designed and 
implemented.    
 

2. RESEARCH TOOLS UTILISED  
The database tool used for this research is PostgreSQL, an 
open source object-relational database management system  
(ORDBMS) [9]. PostgreSQL offers diverse features of 
modern databases such as complex queries, triggers [10], 
procedural languages, function aggregation, well established 
data types, among others. PostgreSQL also supports standard 
SQL, including a very seamless interface [11] with modern 
programing languages such as Python, Java, and so on. The 
major prerequisite for a successful implementation or 
replication of this work is the installation of PostgreSQL 
version 12.    
 
3. PRACTICAL CASE  
The major deliverable of this research is to demystify the 
construction of hierarchical database for a small scale 
organization, and to ensure seamless retrieval of the contents. 
The practical case study used is a Hypothetical Small Scale 
Financial Institution (HSSFI) which will henceforth be 
termed HSSFI Bank.  In order to successfully construct a 
hierarchical database of the company organogram, code 
design was done for all the existing positions as will be further 
explained.  
The HSSFI Bank is has a total of 36 employees. A graphical 
summary of the human resource distribution based on the 
positional codes is shown in Fig.1. The Bank has a Head 
Office, and four subsidiary branches called the North, South, 
East and West Branches respectively.   

 
Figure 1: Graphical Distribution of HSSFI Bank Human Resources 
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At the top echelon of HSSFI Bank leadership is the Managing 
Director (MD), Executive Director for Finance(ED-F), 
Executive Director for Research (ED-R) and a Principal 
Manager for Administration (PM-A). The MD and the two 
EDs also have personal secretaries attached to them, 
designated as Sec-MD, Sec-ED1 and Sec-ED2 respectively. 
All these principal officers and their secretaries work in the 
Head Office as part of the Central Group. The four non-head 
office branches of HSSFI Bank are led by General Managers - 
GM-N for North, GM –S for South, GM-E for East and 
GM-W for the West respectively. At the lower cadres, there 
are three Senior Managers (SM-IT, SM-OP, and SM-AC) for 
Information Technology, Operations and Accounts 
respectively. Others are three Manager (MGR), four Deputy 
Managers (DM), five Senior Officers (SOF), five Officers 
(OFF), two Junior Officers (JOF) and three Operators (OPR). 
 
4. HIERACHICAL DATABASE CONSTRUCTION 
 
The construction of a typical hierarchical database requires a 
number of steps. Before delving into its, a researcher should 
carefully study the problem on ground, and confirm if indeed, 
it is most appropriate to use hierarchical database model to 
solve a particular problem, over other alternatives. This is 
because, at the moment, relational databases appear to be the 
most widely used of all the database models. However, the 
necessity to retain other database models alongside relational 
cannot be overemphasized. This is due to the fact that there 
are a number of scientific and technological problems that 
naturally fit into a hierarchical database model. Instances are 
in the areas of graph modeling [12], telecommunications, 
organizational organograms, automated strategic planning 
[13], geo-mapping, design of communities and collaborations 
[14], among others. A company organogram will be used in 
this work. It is also possible to maintain both relational and 
hierarchical database formats in a hybrid setting [15]. The 
system workflow is presented next.  
4.1 System Workflow 
 
The general system workflow for this research is shown in 
Fig. 2, and consists of five compartments. The first involves 
three major manual activities. Data Gathering entails 
collecting together the necessary human resources related 
information which will be used for further processing. Some 
of the information gathered at this stage are Staff 
Identification Number, Name of Staff, HSSFI Branch 
Location from where the staff operates, Position or grade of 
the personnel within the HSSFI Bank employment, 
information on whom a particular staff reports to, and so on. 
Code Design involves the manual generation of relevant 
codes, which are utilized at the hierarchy design stage, for the 
manual construction of the requisite organogram shown in 
Fig. 3.  The use of node coloration is one way of increasing the 
clarity of the resulting node hierarchy. For instance, the five 
colours (White, Brown, Green, Blue and Yellow) were used in 
this work to clearly delineate the human resources reporting 
lines. 

 
Figure 2: General System Workflow 

 

 
Figure 3: HSSFI Bank Organogram 

The second step in the system workflow is to come up with the 
database frame work. The major deliverable at this stage is 
Table 1. The contents of this table is what is ported into the 
digitized format of the hierarchical database. Without any 
form of ambiguity, it can be deduced from the table that the 
Managing Director (MD) of NSSFI Bank Pius Nwada has 
Staff ID of value 1, works in the Central Branch of the 
organization. The columns of the table were designed to be as 
meaningful as possible. The column PCode stands for 
Position Code, signifying the grade of the personnel. Again, 
RepoCode (Reporting Code) represents the superior officer of 
a particular staff in question. The RepoCode for the MD is 
NULL because he does not report directly to any singular 
person, though he may report to the board of directors.   
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Table 1: Hierarchical Database Framework 

 
 
The remaining three compartments of the system workflow 
will be discussed under the section for actual system 
implementation.   
 
 

4.2 System Implementation 
 
The construction of Hierarchical database as a key objective of 
this research involves the preliminary manual activities as 
itemized in the system workflow, plus the remaining 
digitization and implementation steps as will be discussed at 
this stage. These are creation of the database, creation of 
requisite tables, and populating the database tables 
accordingly.  Thereafter, the next concern will be the process 
and technical details needed for data retrieval and 
interpretation of outputs from the resulting system. The 
Structured Query Language (SQL) [16] is an important tool 
used at this stage. In line with a standard nomenclature 
adopted for the database objects, the database and tables were 
named hssfi_organo_database and hssfi_organo_table 
respectively. The SQL CREATE command [17] was used in 
creating these two objects. An important precaution is the 
issuance of a windows command \c in between database and 
table creation sessions. This is to ensure that the incoming 
tables are domiciled within the right schema. This is shown in 
Fig. 4.   
 

 
Figure 4: Database Object Creation Screen 

 
It is also important to state that Foreign Key statement [18] 
was used to link the RepoCode to StaffID, with a Delete 
Cascade option [19]. This is to maintain referential integrity 
[20] in the resulting database table. Referential integrity is a 
very important issue in database security and accuracy [21], 
and especially in ensuring a smooth implementation of data 
retrieval through recursive common table expression (RCTE) 
[22] to be discussed at a later section of this paper.  
The next stage in the construction of hierarchical database is 
to populate the hssfi_organo_table, which was achieved 
through the SQL Insert Command. To ensure that this 
operation was error free, the safe + multiple tuple insertion 
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strategy was used [23] as will be briefly explained. As shown 
in Fig.5, there are four common paths for insertion into 
database tables. These are blind +single tuple, blind + 
multiple tuple, safe + single tuple, and safe + multiple tuple. 
 

 
Figure 5: Safe and Multiple SQL Insertion Path 

 
The safe + multiple strategy enforces the deliberate listing of 
the database fields in the insertion statement, and as well, 
ensures that the tuples to be inserted are listed in a multiple 
format, rather than listing them one by one. Two major 
advantages of taking this path are accuracy and speed, unlike 
the three other methods. The screen shots of this operation is 
shown in Fig. 6. 
 

 
Figure 6: Database Data Population Screen 

 
Thus, the organogram data of all the 36 staff of NSSFI Bank 
were inserted in the database in a one safe + multiple tuple 
insertion statement.   

5. HIERACHICAL DATABASE RETRIEVAL  
 
Beyond database design, creation and population of the 
resulting structure with requisite data, the next very important 
issue is the seamless retrieval of hierarchical data. 
Hierarchical Database retrieval is achieved using a technique 
known as Recursive Common Table Expression (RCTE) as 
will be demonstrated in this work. RCTE is an advancement 
in Common Table Expression (CTE).  CTE are a special 
database query mechanism used to build temporary named 
result sets, which can be re-used over and over again. A 
typical CTE is constructed by embedding other queries within 
a WITH.. AS statement [24].  Research has shown that the use 
of CTE can improve data retrieval speed appreciably over a 
normal sequential SELECT statement, especially with 
appropriate indexing [25]. Research has also shown that apart 
from data retrieval through SELECT, other statements such 
as INSERT, UPDATE, DELETE, among others can be 
conveniently used within a CTE [26]. A number of modern 
databases support CTE syntax, some of which are 
PostgreSQL, Microsoft SQL Server, Teradata, DB2, Firebird, 
Oracle, SQLite, among others [27]. However, in Oracle 
Installations, the term recursive subquery factoring is used for 
CTE [28], and in higher versions of Oracle such as 10g and 
above, the CONNECT BY [29] hierarchical data retrieval 
feature is also supported as an alternative retrieval strategy.   
 
5.1 Recursive CTE Structure 
 

The general syntax of a RCTE in PostgreSQL is  
 
WITH RECURSIVE CTE-Name AS ( 
NR-Section 
UNION | UNION ALL 
RC-Section  
)  

Main Query Invoking CTE_Name 
 
It is clear from the syntax that every RCTE begins with the 
keyword WITH RECURSIVE followed by the name of the 
CTE, the keyword AS and then a bracket that encloses the 
body of the CTE. The body of an RCTE consists of two 
sections. These are the Non-Recursive (NR) Section and the 
Recursive (RC) Sections respectively [30]. Another name for 
the former is the anchor part. One major differences between 
an RCTE and an ordinary CTE is that the former has two 
sections, while the later has only one section. The two sections 
in an RCTE are joined using a UNION or UNION ALL 
statement [31]. The difference between these two options is 
that UNION ALL allows repetition of outputs, unlike UNION 
keyword that ensures that all records in the final result occur 
only once [32]. The power of RCTE is hinged on the fact that 
it has the ability to invoke itself [33], and thus the recursively 
concept of CTE.  The final part of the RCTE is the main query 
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definition which makes reference to the CTE Name. It is 
important to note that no comma or semi-colon is allowed in 
between the final definition of CTE and the main query [34], 
a rule that many programmers usually forget, which 
commonly causes system errors in RCTEs.  
 
5.2 RCTE Implementation 
 
In this research, the system nomenclature [35] was made as 
meaningful as possible. The RCTE name is 
HierachicalDemo, and the raw code is shown Fig. 7. In the 
source code shown, the anchor and recursive sections can be 
clearly identified as separated by the UNION keyword. 
Another SQL keyword that finds relevance in the 
development of RCTE is INNER JOIN. 
 

 
Figure 7: Code for RTE Definition 

 
In SQL, a JOIN operation [36] is used to retrieve data from 
multiple tables in a single SELECT query.  Thus, two tables 
can be combined by a single join operator, and the result can 
as well be joined again with other tables. One important 
condition is that the tables being joined must have a same or 
similar columns in order for them to be joined. There are 
many types of JOINS methods, however, the INNER JOIN 
[37] eliminates all rows that failed to match the join condition 
exactly. The main query part of the RCTE is the last select 
statement. In the code listing shown, the required input is the 
StaffID. Based on the hard-coded input, the system will 
recursively display all the personnel of HSSFI Bank that 
report to the staff having StaffID = 5. This input can be 
changed for other cases or inputs.  
 
5.3 System Output 
 
The system outputs after execution of the RCTE for 
StaffID =5 is shown in Fig. 8. This result compares 
favorably with the HSSFI Bank organogram shown 

in Fig. 3, and the Hierarchical Framework shown in 
Table 1. In order to ensure a complete evaluation for 
system accuracy, the source code [38] was executed 
for all the 36 possibilities StaffID = {x: x =1, 2, …. 
36}, and the outcome coincided with the contents of 
the manually generated organogram as well as the 
framework in Table 1. 
 

 
Figure 8: System Listing of all Subordinates to Staff Number 5 

 
6. CONCLUSION  
 
This research has presented the theory and procedures for 
design and construction of hierarchical databases. A practical 
case was demonstrated using a Hypothetical Small Scale 
Financial Institution (HSSFI) referred to in this work as 
HSSFI Bank. The use of RCTE for data retrieval from 
Hierarchical Database was also presented. At this stage of this 
work, it is clear that a CTE is a kind of temporary result set, 
quite similar to a derived or subquery table [39]. Again, 
unlike stored tables, a CTE only lasts within the query 
duration. Thus, a CTE is much more versatile and powerful 
than a derived table because it can be self-referencing, and 
could be referenced several times in a single query [40]. The 
recursively of RCTE gives it more speed and versatility than 
an ordinary CTE, and far above those of ordinary sub-queries. 
In conclusion, this work has presented a concise methodology 
[41] for construction, data population and retrieval in 
hierarchical databases. It is hoped that this work will be useful 
to other researchers who may find it a foothold for further 
research in hierarchical database construction and retrieval. 
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