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ABSTRACT 
 
The Central Jebilet Massif is one of the main Palaeozoic 
outcrops in Morocco. This massif is characterized by its arid 
climate, its significant mining potential and the absence of 
plant cover, which favors the use of spatial remote sensing 
for geological mapping and mineral prospecting in this site. 
The objective of this study is the comparison of 
hyperspectral data from the Hyperion sensor of the Earth 
Observing-1 (EO-1) satellite and multispectral data from the 
Operational Land Imager (OLI) sensor of Landsat 8 in the 
discrimination of geological units and detection of iron caps 
in the study area. The classification by the Support Vector 
Machine (SVM) method allowed for a good mapping of the 
lithological units in the study area. The accuracy of the SVM 
classification of hyperspectral data is higher than that of 
multispectral data, which was demonstrated by the confusion 
matrix, notably an overall accuracy of 93.05% and 89.24%, 
respectively, and a kappa coefficient of 91.25% and 84.36%, 
respectively. Concerning the iron detection, the band 
rationing using both sensors have demonstrated a 
performance of detecting areas that contain more iron ores, 
especially, the iron caps of Kettara mine, with a small 
advantage of hyperspectral data. In overall, our results 
highlight the efficiency of machine learning classifier and 
hyperspectral data for the detection of iron ores and the 
discrimination of lithological units in arid regions. The use of 
hyperspectral and multispectral images has been shown to be 
a good technique for the characterization of iron deposits and 
lithological units, which may help in in mineral exploration 
engineering with reduced fieldwork and geochemistry.  
 
Key words: Central Jebilet, Geological mapping, Hyperion, 
OLI, SVM.  
 
1. INTRODUCTION 
 
The Central Jebilet, Marrakech, Morocco, provides an 
excellent example of a complex mineral system rich in 
geological mapping studies already carried out in the area 
using conventional in-situ mapping [1, 2] and multispectral 

remote sensing and hyperspectral spectroradiometry between 
350 and 2500 nm [3-6]. In fact, the spectral signatures of 
schist, acidic, basic and ultrabasic rocks and iron cap rocks 
were analyzed in the laboratory by [6] using an ASD 
spectroradiometer with a view to employing hyperspectral 
remote sensing for geological and mineralogical mapping of 
the region. This study site was chosen because of its 
lithological diversity, mineralogical richness and lack of 
vegetation cover, which is very favorable for remote sensing 
studies applied to geology and mineralogical mapping [7-9]. 
It presents a schist series dating from the Upper Viseen 
(Sarhlef schist), basic and acid magmatic intrusions and 
sulphide cluster mineralization that materialize by iron caps, 
these elements appear at the surface and are difficult to 
identify visually [5]. Satellite data has become a practical 
and cost-effective information in geological engineering, 
especially in areas where conventional geological mapping 
methods require a large investment of resource (time and 
staff) and in high-risk or difficult-to-access terrain [10-14]. 
Each material in particular minerals in rocks and soils can be 
characterized by spectral windows of absorption in the 
electromagnetic spectrum [15-17]. They have significant 
absorption spectral characteristics in visible, Near Infrared 
(VNIR) and Short Wave Infrared (SWIR) [18-23] and 
sometimes in the thermal infrared region [24]. These 
characteristics, which have been studied since the 1970s, are 
diagnostic indicators for accurately measuring the 
mineralogy and lithology of continental surfaces [25-29]. It 
is thus possible to locate potential deposits that cannot be 
detected by conventional prospecting methods (such as 
aeromagnetism) by mapping marker minerals that are easy to 
identify by their spectral signatures, but difficult to map 
directly in the field [30]. Several studies have demonstrated 
the usefulness of using multispectral and hyperspectral 
images for lithological and mineralogical mapping using 
ratio calculation techniques and geological interpretation of 
images [27, 30-36]. The low spectral resolution of 
multispectral satellite imagery limits the ability to extract 
information on surface mineralogy. The high spectral 
resolution of hyperspectral imagery can improve the 
discrimination of different rock types [37-41]. In fact, many 
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classification methods have been developed to classify a 
remote sensing image. The research of [42] presents an 
explanatory review of the major classification methods. The 
objective of this study is firstly, the evaluation of the 
performance of the data from the two sensors OLI and 
Hyperion, and secondly, the evaluation of the contribution of 
the machine learning classification Support Vector Machines 
(SVM) in the discrimination of the lithological units in our 
study area and finally, the development of a spectral index 
that allows for the detection of iron ores based on the 
absorption window in the near and Short Wave Infrared 
spectrum in the Hyperion and Landsat OLI image. This 
index will undoubtedly allow further exploration of new 
mines.  
 
2. MATERIAL AND METHODS 

2.1 Study area 

The Jebilet massif is located between latitudes (31° 40" N, 
32° N) and longitudes (8° 20" W, 7° 40" W) about 8 km 
north of Marrakech. It extends in an east-west direction, over 
a length of 170 km and a width of 7 to 40 km. It is bordered 
to the north by the Bahira plain, to the south by the Haouz 
plain, to the east by the Atlas of Beni Mellal and to the west 
by the Jurassic-Cretaceous Mouissat hills (Error! Reference 
source not found.). The Central Jebilet are composed of 
schists, limestones and conglomerates that range in age from 

Cambrian to Carboniferous. They are also formed from a 
schist series dated to the Upper Viséan (Sarhlef schist), 
which is the dominant geological unit in this region. 
Volcanic activities have left traces in the form of small basic 
and acid magmatic intrusions to considerable extent. Noting 
well the presence of sulphide cluster mineralization that 
materializes at the surface by iron caps.  

2.2.  Data Used 

The image data used in this study are: a multispectral image 
acquired by the OLI sensor dated 08 May 2014 and a 
hyperspectral image from the Hyperion sensor dated 23 May 
2005. The OLI image is used only with 6 out of 9 bands from 
the visible to the mid-infrared by eliminating the aerosol 
band, the cirrus band and the panchromatic band. In the 
Hyperion image, the eliminated bands are in the VNIR from 
1 to 7, 58 to 70 and in the SWIR from 71 to 76, from 225 to 
242 which correspond to weak or failing detectors [43], 
Bands 77 and 78 have also been deleted as they are areas of 
overlap between VNIR and SWIR [44]. In addition, the 
central Jebilet geological and mineralization map at 
1/100,000 were used to validate the results, Table 1 describes 
the satellite data used in this study 
 
 
 

 

 
Figure 1: (A): Location of our study area, and the Hyperion subset covering the studied area of central Jebilet with false color composite 

composed of R, 146; B, 50; G, 30.
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Table 1: The spectral bands resulting from the different stages 
of pre-processing (Landsat OLI, Hyperion): 

Band Wavelength (nm) Resolution (m) 
Hyperion    

11-55 457.34–905.05 30 
80-96 942.72–1104.18 30 

101-134 1154.57–1487.53 30 
136-199 1507.72–2143.33 30 
204-215 2193.72–2304.71 30 
221-224 2365.20–2395.50 30 

Landsat OLI   
2 450-515 30 
3 525-600 30 
4 630-680 30 
5 845-885 30 
6 1560-1660 30 
7 2100-2300 30 

 
 
 
 

2.3.  Methodology 

Hyperspectral data make image interpretation more difficult 
due to redundant information, and given the need for 
radiometric calibration and atmospheric correction of both 
sensors and the problem of dimensionality in Hyperion data  
[45], it is necessary to go through pre-processing before any 
image analysis. Figure 2 illustrates the methodology 
followed in this study. 

2.4.  Image Data Pre-Processing 

Atmospheric and radiometric corrections are necessary steps 
in the satellite image processing process [23]. They aim to 
subtract the signal induced by atmospheric effects 
(absorption and scattering) from the signal measured at the 
sensor in order to obtain a "true" signal. First, the radiometric 
correction was performed by transforming the digital number 
into apparent reflectance. Second, the atmospheric correction 
consists of transforming the apparent reflectance into ground 
reflectance. The atmospheric correction of the Landsat OLI 
and Hyperion images was done by the FLAASH (Fast Line-
of-Sight Atmospheric Analysis of Spectral Hypercubes) 
method implemented in the Envi software (Version 5.3).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.  1 : Methodology flowchart 
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FLAASH is based on the MODTRAN (MODerate resolution 
atmospheric TRANsmission) radiative transfer model [23, 
46-48] and widely used for hyperspectral images [49, 50].  
Figure 3 shows the difference between the spectra before and 
after the atmospheric correction of OLI data, while Figure 4 
shows the effect of the correction on the hyperspectral 
image. 
The Hyperion image contains high-frequency errors (vertical 
stripes or vertical striations) on the image bands. In the L1R 
product, these bands are left unmodified, allowing users to 
manage or replace bad pixels. In the present study, an 
attempt was made to visually identify these bad columns, and 
then develop a patch in the form of a filter and then apply a 
Flag Mask function to remove large striations [43, 51]. The 
correction filter used is a low-pass filter that preserves low 

frequencies, while targeting the wrong columns in each band, 
and replacing them with the average of the 3x3 
neighbourhood [52]. 

2.5. Minimum Noise Fractions (MNF) 

The MNF transformation is used to determine the inherent 
dimensionality of the image (the pertinent information), to 
separate the noise in the data and to reduce the spectral 
dimensions that will be analyzed later [53, 54]. It is modified 
by [55] and implemented in ENVI software.  It consists 
essentially of two main transformations as follows; the first 
based on an estimated noise covariance matrix by applying 
decorrelation and scaling in the data, and the second consists 
of a standard principal component transformation [14, 23]. 
 

Figure 3: Spectral signatures before and after atmospheric correction of the Landsat-8 OLI image: (A) OLI image in false color (R = 6, G = 5, B 
= 4); (B) Spectral profiles before atmospheric correction (C) Spectral profiles after DOS (reflectance). 
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Figure 4:  The spectral signatures before and after atmospheric correction of the hyperspectral image: (A) Hyperion in false color image (R = 
146, G = 50, B = 30); (B) spectral profiles before atmospheric correction (C) spectral profiles after FLAASH (reflectance). 

2.6. Pixel Purity Index (PPI) 

Next comes the extraction of the pure pixels (Endmember) 
which will then present the regions of interest to be 
integrated in the SVM classification. This step is 
fundamental for the supervised classification of the image. 
The Pixel Purity Index (PPI) indicates the location of the 
purest pixels in the image [56-59]. By definition, a pure pixel 
is one that contains a single spectral material and therefore a 
single spectral signature. However, due to the spatial 
resolution of the Hyperion and OLI sensors (30m), most 
pixels contain mixtures of materials resulting in a spectral 
mixture. 

2.7. SVM Classifier 

The Support Vector Machine classification is a supervised 
machine learning classification based on the choice of 
regions of interest previously extracted for the OLI and 
Hyperion image.  It is a supervised non-parametric statistical 
technique [60-65]. SVM is based essentially on the 

adaptation of the hyperplane separator, which offers the best 
separation between the two classes in a multidimensional 
space. This hyperplane is the decision surface on which the 
optimal separation of the classes will take place[66]. The 
distance between the two classes separated by the hyperplane 
is named Margin [67].  Thus, in general, the larger the 
margin, the lower the misclassification error [68, 69], in our 
study we used a non-linear SVM classification with the 
kernel of the radial base function (RBF), which is widely 
used and gives better results compared to other grains (linear, 
polynomial or Gaussian) in agriculture [70] and in other 
applications [71]. The SVM equation for the classification of 
two classes of information is given as follows [72] :  

 
  (1)

  
Where xi is a support vector for formation case i, yi is the 
label of the information class, K (x, xi) is the function of the 
kernel, b is the intercept constant, N is the number of support 
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vectors and αi are constants determined by maximization. 
The kernel used is therefore as follows: 

  (2) 

Where g is the gamma term in the RBF kernel, which must 
be predefined by the user as input. In addition, the penalty 
parameter C for the SVM algorithm must also be predefined. 
Increasing the value of C increases the cost of misclassifying 
points and leads to the creation of a more accurate SVM 
model. Thus, the selected value is high and equal to 100. 
Concerning the g value, the inverse of the number of bands is 
a reasonable but not perfect choice, since the gamma value 
controls the transformation of input data in a high-
dimensional space [73]. 

2.8. Iron Spectral Index 

The study carried out for the extraction of the iron caps is 
based firstly on the spectral signature extracted by a 
spectroradiometric study of the elements that exist in the 
study area [6] and secondly on the absorption feature of the 
minerals (Hematite and Geothite) which is in the near 
infrared. So we tried to make an index based on the Fe3+ 
absorption feature in the 850-1300 nm part of the spectrum 
by performing mathematical operations on the different 
bands of this part of the spectrum (Figure5). 
 

 
Figure 5 : Iron absorption window [6] 

3. RESULTS AND DISCUSSIONS 

3.1. Image data enhancements 

After having eliminated the black columns (stripes) by 
applying a 3x3 filter, we used the Flag Mask function [51] to 
completely eliminate scratches. Figure 6 shows the 
enhancement of the affected bands in the Hyperion image. 

 

 
Figure 6: Stripe removal for Hyperion image by Flag Mask, (a) 

band N° 99 with vertical stripes before Flag Mask. (b) Same band 
after Flag Mask 

Then, atmospheric correction of the two images (OLI and 
Hyperion) resulted in a slight decrease in reflectance in the 
visible, particularly blue, and a slight increase in reflectance 
in the infrared bands. These findings reflect corrections to 
the radiometry of the image, the effects of short wavelength 
scattering and absorption in the infrared. 

3.2. Geological Mapping with SVM Classifier 

For the Hyperion image, the prototype spectral signatures 
were extracted using ENVI software using the Image MNF 
Transform, which allows for the separation of noise in the 
spectral bands that will be analyzed in the subsequent pure 
pixel (Endmembers) extraction for each selected class. As 
for the OLI image, the extraction of the ROIs was based on a 
field visit, the geological map and subsequent studies [5, 6, 
74]. This step is fundamental for the SVM classification of 
the image. Figure 7 illustrates the location of the regions of 
interest on the Hyperion image that were used in the SVM 
classification. 
Endmembers of selected rocks are used for classification by 
the SVM method. SVM has been implemented using radial 
basis function (RBF) as classification kernel parameter. We 
chose the RBF kernel because it is known to produce 
generally good results [60, 68]. Based on the generated 
prototype signatures (endmembers), SVM has mapped 7 
classes: iron caps, shale, alluvium, basic volcanic, acid 
volcanic, metamorphic field and a vegetation class. 
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Figure 7: Location of regions of interest 

 

 
The SVM maps in Figure 8 showed a small area of very rich 
iron mineralization and schist dominance in the region. 
Classes related to volcanic activity have been mapped as 
small to very large basic and acid magmatic bodies. Visual 
comparison of the two maps shows that the map from the 
OLI image underestimates the ferruginous surface with a 
small exaggeration of the acid volcanic surfaces. 
Regions of interest in the field and the geological map of the 
area were used to validate the SVM classification results. 
The validation was done by a direct confrontation with the 
ground truth by calculating the confusion matrix between the 
classes of the maps produced and the field data. The 
comparison of the two maps produced by SVM with the 
geological and mineralization map shows a good restitution 
of the different classes. Figs. 9 and 10 summarize the results 
of the evaluation of map accuracy by the confusion matrix. 
We deduce from the statistical results of this matrix that both 
maps performed well in terms of describing the spatial 
distribution of the different types of geological units.

 
Figure 8: Geological and mineral maps produced: (A) SVM classification of the OLI image, (B) SVM classification of the Hyperion image. 
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In addition, the classification of the OLI image showed 
significant confusion between the two classes of volcanic 
and an underestimation of iron caps. On the other hand, the 
classification of the Hyperion image had less confusion and 
more precision, which may be due to the spectral richness of 
this sensor. Thus, the results of the precision evaluation by 
confusion matrix (Figures 9 and 10) showed that the 
classification of the hyperspectral data slightly outperformed 
the classification of the multispectral data. Indeed, the SVM 
classification of the hyperspectral image gave an overall 
accuracy and a Kappa coefficient of 91.25% and 93.05%, 
respectively. For the SVM classification of the multispectral 
image, the overall precision and Kappa coefficient were 
89.24 and 84.36%, respectively. The resulting Kappa 
coefficients indicate good accuracy in the SVM classification 
of both images. The obtained results show that SVM is a 
very efficient classification in geological mapping. 
 

 
Figure 9: Histogram of the confusion matrix resulting from the 

validation of the SVM classification of the two images 
 

 
 
 
 
 
 
 
 
 
 

Figure 10: Histogram of the overall accuracy and the kappa 
coefficient resulting from the validation of the SVM classification 

of the two images. 

3.3. Band rationing for mapping iron features 

The index developed is based on the iron absorption window 
at about 850 nm [51]. After testing several band ratios based 
on the iron absorption window of existing minerals in the 
study area (Figure 11). 

 

Figure 11: (A) Goethite and Hematite spectra extracted from the 
USGS (US geological Survey) spectral library, the same minerals 

resampled to Hyperion bandwidths (B) and Landsat-OLI 
bandwidths (C). 

 
Based on the iron absorption window of the two minerals 
(Figure 5 and Figure 11), a normalized iron index calculated 
by Equation 3 for the Hyperion sensor and by Equation 4 for 
the OLI sensor was deduced: 

   (3) 

 
    (4) 

 
 
With: Band 109 is a short wave infrared band and band 50 is 
near-infrared band for the Hyperion sensor. Band 5 is near 
infrared) and band 6 is a short wave infrared band for the 
OLI sensor. 
 
Fe Hyperion values are between -1 and 1, the high values 
represent ferruginous surfaces. Values above 0.075 represent 
iron. Concerning Fe OLI, the values also vary between -1 and 
1, where values above 0.15 represent pixels rich in iron. 
The index developed allowed to limit the ferruginous, the 
iron maps obtained are similar to those obtained by SVM. 
The results of the collected samples from the random 
locations were correlated and compared with the 
corresponding locations in the abundance (Figure12). 
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Figure 12: (A, B) Iron oxide (Fe3+) abundance image resulting 

from Hematite and Goethite band ratio of Landsat OLI and 
Hyperion respectively, the base for both images is the true 

composite color of the images. (C) and (D) field photographs 
showing an example of iron caps over kettara iron deposit.  

Indeed, the maps produced by the band ratio or by SVM 
showed a zone very rich in iron oxides and the schistose 
dominance of the facies of our study site. In addition, the 
index of iron FeOLI gave a slightly smaller area of iron 
compared to FeHyperion. However, there are several aspects to 
consider before confirming the most accurate band ratio. The 
results must be confirmed by additional in-situ geochemistry 
measurements. The different methods used (iron index, 
classifications) gave satisfactory results overall and clearly 
show the different geological and mineralogical units in the 
region. The results obtained revealed the following points: 
Hyperspectral remote sensing has shown its performance in 
the geological mapping of imaged surfaces. Unlike low 
spectral resolution sensors.  
The machine learning SVM classification allows the 
identification and mapping of surface geology and 
mineralogy with high accuracy. 
The 850-1300 nm portion of the spectrum has been useful in 
developing an iron index for mapping areas of iron deposits. 
The MNF transformation has allowed the hyperspectral 
image to be exploited by reducing the number of bands and 
the noise. 

4. CONCLUSION  
The purpose of this study is geological and mineralogical 
mapping in the Central Jebilet. Indeed, mapping of different 
facies and abundant mineralogy has been carried out by 
SVM classification and band reporting while using two 

spectrally different systems; First, a hyperspectral system 
using data from the Hyperion sensor.  Second, a 
multispectral system with an image from the Landsat 8 OLI 
sensor. The results obtained were evaluated for each system 
by calculating the overall accuracy. The maps produced 
provided slightly similar and conclusive results with good 
accuracies with a clear advantage of hyperspectral data 
classification. Thanks to multi- and hyperspectral remote 
sensing, it has been possible to develop updated geological 
maps at large scales that can be used as a tool to identify 
potential new sites. In light of the results obtained, it appears 
that the data and techniques used can be expanded to develop 
and improve the results. As a result, we propose the 
following perspectives: (1) Carry out additional ground 
measurements to gain a better understanding of the spectral 
response of different rock types; (2) Merge optical satellite 
and radar images, the latter probably provide more 
information on surface morphology and texture; (3) 
Coupling better spatial resolution than OLI and Hyperion 
sensors with spectral richness is likely to provide more 
satisfactory results. 
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