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 
ABSTRACT 
 
The paper deals with development of a mathematical model of 
the process of oil and gas filtering in porous medium with 
piston extrusion. In order to solve the problem, there was 
developed a numerical algorithm based on the phase-front 
straightening and integro-interpolation methods using a 
conservative finite-difference scheme. The model adequacy 
was verified by series of computational experiments. The 
mathematical software allows to analyze parameters of the 
filtration process in the reservoir system, as well as to forecast 
and make appropriate decisions in designing and developing 
of oil and gas fields.  
 
Key words: Computer simulation, numerical method, 
computational experiment, porous medium, fluid, software, 
piston extrusion, oil, gas, water.  
 
1. INTRODUCTION 
 

Despite significant progress in the alternative energy 
sphere, the oil and gas will remain the major energy sources 
in foreseeable future. Hydrocarbon deposits are gradually 
decreasing. Moreover, this decreasing is inversely 
proportional to the increase in the costs of new deposits 
exploration and development, as well as in extracting 
hydrocarbons from already explored deposits. Meanwhile, the 
world output is constantly growing. In order to meet the needs 
of world economy, there is a requirement of continuous 
improvement in designing and developing of new oil and gas 
fields, as well as in the processes of production in existing 
fields. 

Achieving this goal is impossible without developing 
appropriate mathematical models, effective conservative 
finite-difference methods and software for a comprehensive 
study of the processes occurring under a variety of natural and 
artificial conditions of influence on productive strata. 

It should be noted that many researchers are engaged in 
the problems of modeling in order to study the process of mass 
transfer in porous media. To date, a number of significant 
theoretical and applied results have been obtained: 

Cueto-Felgueroso L., Fu X. and Juanes R. in their work 

 
 

[1] considered simulation of flows involving multicomponent 
mixtures with complex phase behavior. Authors presented a 
diffuse-interface model of single-component two-phase flow 
in a porous medium under different wetting conditions. 
Authors proposed a simplified Darcy-Korteweg model that is 
appropriate to describe flow in a Hele-Shaw cell or a 
micromodel, with a gap-averaged velocity. There was studied 
the ability of the diffuse-interface model to capture capillary 
pressure and the dynamics of vaporization-condensation 
fronts and showed that the model reproduces pressure 
fluctuations that emerge from abrupt interface displacements 
and from the breakup of wetting films. 

Pires A., Bedrikovetsky P. and Shapiro [2] discussed 
one-dimensional models for two-phase Enhanced Oil 
Recovery floods. The main result presented by authors is the 
splitting of the EOR mathematical model into 
thermodynamical and hydrodynamical parts. The (n) × (n) 
conservation law model for two-phase n-component EOR 
flows in new coordinates is transformed into a reduced (n − 1) 
× (n − 1) auxiliary system containing just thermodynamical 
variables and one lifting equation containing just 
hydrodynamical parameters. The algorithm to solve 
analytically the problem includes solution of the reduced 
auxiliary problem, solution of one lifting hyperbolic equation 
and inversion of the coordinate transformation. The splitting 
allows proving the independence of phase transitions 
occurring during displacement of phase relative 
permeabilities and viscosities. Reduction of the number of 
equations allows the generation of new analytical models for 
EOR. Authors presented the analytical model for 
displacement of oil by a polymer slug with water drive. 

Wenchao L., Jun Y. and Zhangxin C. developed 
dimensionless mathematical models of one-dimensional flow 
in the semi-infinite long porous media with threshold 
pressure gradient which are built for the two cases of constant 
flow rate and constant production pressure on the inner 
boundaries [3]. Authors found that the velocity of the moving 
boundary is proportional to the second derivative of the 
unknown pressure function with respect to the distance 
parameter on the moving boundary, which is very different 
from the classical heat-conduction Stefan problems. The 
exact analytical solutions of the dimensionless mathematical 
models were obtained, which can be used for strict validation 
of approximate analytical solutions, numerical solutions and 
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pore-scale network modeling for the flow in porous media 
with threshold pressure gradient. 

Yuedong Y., Yu-Shu W. and Ronglei Z. [4] reserved the 
quadratic term to fully describe the transient fluid flow and 
developed mathematical models to analyze the transient flow 
behavior in a double porosity, fractal reservoir with spherical 
and cylindrical matrix. Authors employed Laplace 
transformation method to solve these mathematical models 
and provided the type curves to analyze the pressure transient 
characteristics. This study indicated that the relative errors in 
calculated pressure caused by ignoring the quadratic term 
may amount to 10 % in a fractal reservoir with double 
porosity, which can’t be neglected in general for fractal 
reservoirs with double porosity at large time scale.   

Voskov and Entov proposed a system of equations of 
one-dimensional flow of a multicomponent mixture with 
phase transitions through a porous medium [5]. The system 
describes the processes of enhanced oil recovery by injection 
of gases. For this system self-similar solutions of the Riemann 
problem of discontinuity breakdown are constructed by 
splitting the problem into “physicochemical” and 
“hydrodynamic” problems. Main elements of the procedure 
for constructing the solution are illustrated with reference to a 
four-component system with constant distribution coefficients 
and the solutions obtained by different methods are compared. 
It is shown that the approach proposed is also effective for a 
system with a greater number of components. 

In their earlier work [6], they developed a two-step 
procedure for solving one-dimensional problems of 
multicomponent two-phase flow generic for EOR processes 
based on gas injection. First, general mathematical 
framework underlying this approach is presented briefly. 
Then its realization is illustrated by examples for 4- and 
5-component systems with constant partition coefficienis and 
for oil displacement by CO2. Directions of future research are 
also discussed. 

Drozdov A.N. et al. carried out researches on physical 
modelling of processes of water-gas influence on a layer by 
mixtures for determination of efficiency of high viscosity oils 
dis-placement [7]. Authors presented dynamics of an oil 
displacement by water, gas,water-gas mixture. Observed 
various viscosity oils final dis-placement efficiency - 
displacement water-gas mixtures gas content rela-tionships 
are offered. It is shown, that use of water-gas mixtures 
promotesimprovement of process of an oil displacement and 
reduction of a residualoil saturation of rocks. 

Korotenko V.A. discussed the process of displacement of 
oil visco-plastic cold water at reservoir temperature [8]. 
Authors found that the parameters that influence the advance 
of the front displacement are liquid water permeability 
coefficient, the initial pressure gradient and the reduced 
radius of the well. It was also found that in the displacement 
of oil by water displacement front hydrodynamic depends not 
only on the physical properties of the reservoir, but also on the 

initial pressure gradient of oil displaced. 
In the next paper [9] Korotenko offered the method for 

determination of the oil displacement coefficient on the basis 
of studying the structure of the pore. It should be noted that 
the oil displacement coefficient by water is one of the most 
important parameters that determine the production 
potential. Inaccurate assessment of this parameter leads to a 
distortion of the oil recovery factor and recoverable 
hydrocarbon reserves, as well as the distortion of technical 
and economic parameters of the development of both the 
individual development objects and the whole fields. 
Satisfactory convergence of results obtained by Korotenko 
and the results of special stream experiments are shown on 
the example of West Siberia development objects, that are 
located in sedimentations of various age. These examples 
demonstrate the possibility of applying the method to control 
the results of stream studies in case of sufficient variety of 
permeability in studied sample collection, if there are absence 
of direct special laboratory tests on development object. 

The literature review shows that most authors are not 
considering the process of two-way displacement of oil by gas 
and water from two sides. Thus, this work have been made to 
fill this gap. As mentioned above, the mathematical model of 
the considering process must be formulated on the basis of the 
provisions of the mechanics of multiphase media in the form 
of a problem like Stefan with unknown phase boundaries.  
 
2. STATEMENT OF THE PROBLEM 
 

In this paper, we study the complex dynamic processes 
occurring in reservoir conditions when oil is forced out by gas 
or water in a one-dimensional formulation. 

For ease of understanding, let us represent a 
one-dimensional reservoir in the form shown in figure 1. 

  

 
Figure 1: Schematic representation of a one-dimensional reservoir  

gas-liquid-water 
 

Gas (water) is introduced into the cross section 0x   with 
intensity .Gq  Oil is withdrawn from the cross section x   
with intensity .Fq forming x L  the boundary of the porous 
reservoir. The boundary between the injected gas (water) and 
oil is variable  .x l t  In the equations 

( , ),gas gasP P x t ( , ),oil oilP P x t  ( , ).P P x t  Using the laws of 
gas-hydrodynamics, we can formulate a mathematical model 
of the process of influencing a reservoir with gas volume and 
fluid advancement in a reservoir, which can be solved to solve 
the following system of nonlinear differential equations:  
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gas gas

gas

G

P PKP m
x x t

  
    

 with  0 ,x l t      (1) 

O

oil oilP PK m F
x x t
  

     
  with   .l t x L     (2) 

Equations (1) and (2) we also write in this form:  
P PKA m F

x x t
         

 ,     (3) 

where 

, , , 0 (t),
, ,

,1, , (t) ,

gas gas

oil

O

K P P x l
K A P

K P l x L







   
  


     (4) 

 2 F iF A q x   .      (5) 
These equations are integrated under the following 

boundary and internal conditions: 

1
0

G

x

P A q
x 


 


,       (6) 

   , ,P x t f x t  with x L , 0t  .    (7) 
The following conditions are set at the moving interface: 

  0
O

x l t

dl PS K
dt x  


 


,     (8) 

   0 0x l t x l t

K P K P
x x 

    

 


 
,    (9) 

   0 0
gas oil

x l t x l t
P P

   
 .     (10) 

At the beginning of development, the distribution of 
pressure and phase saturation are known, as well as the 
position of the interface: 

   0 0,0 ,   0 ,  0 .OP x P l l x L        (11) 
In formulas (1) - (11), the following notation is used:             

OS   - saturation of the rock with oil; K  - absolute 
permeability of the rock; ,G O   - the viscosity of the gas and 
oil, respectively;  ,0 IP x P  - initial pressure distribution; 

,G O   - the density of gas and oil, respectively; T  - absolute 
temperature; ,oil gasP P - the pressure of oil and gas, 

respectively; i - internal special point (injection or 
production well);  l t - movable interface; L - reservoir 
length; F,Gq q - well work intensity; 1 2,A A - some constant 
values. 

To solve the problem, we first go to dimensionless 
variables, taking 

* xx
L

 , 
 * l t

l
L

 , *

O

PP
P

 , *
2

O G

O

K RT
t t

m L



 . 

In the dimensionless form, the boundary-value problem    
(1) - (11), omitting the asterisks, is rewritten as follows:  

gas gas

gas

G

P PKP
x x t

  
    

,  0 x l t  ,     (12) 

O

oil oilP PK F
x x t
  

     
 with   ,l t x L     (13) 

1
0

G

x

P A q
x 


 


,        (14) 

   , t , tP x f x , 1x  , 0t  ,     (15) 

 2 F iF A q x   ,       (16) 

  0
O

x l t

dl PS
dt x  


 


,      (17) 

   0 0
gas oil

x l t x l t
P P

   
 ,      (18) 

   0 0G Ox l t x l t

K P K P
x x    

 


 
,    (19) 

    0,0 ,   0 ,  0 1.IP x P l l x         (20) 
Thus, a closed system of nonlinear differential equations 

was obtained, describing the operation of the “Plast-bore” 
system. The boundary-value problem describing the filtering 
process in question relates to tasks like Stefan. 
 
3.  SOLUTION METHOD 

 
The numerical solution of problems like (12) - (20) was 

considered in [10-15], and they can be divided into two 
essentially different classes. 

The first one contains methods with an explicit selection 
of the boundary and the second one is a joint account. 

One of the widely used methods belonging to the first 
group is the method of straightening phase fronts. Therefore, 
for the numerical solution of the problem under 
consideration, we apply the main ideas of the phase-front 
rectification method. 

Let it be required to find functions  ,P x t  and  l t , 
satisfying conditions (12) - (20). To solve this problem, we 
introduce new independent variables: 

 
x

l t
   and 

 
 

1
1
x l t

l t



 


,    (21) 

which changes from 0 to 1. 
Taking derivatives with respect to variables   and   

equations (12)-(20) can be described as following way : 

     

        

O

O O

G O

2 2 2 2

2

,

21 ,
1

1.

l tP P Pl t l t
P t

PK

S SB l t l t
t l t

S S




 

 




       
     


        


           

  

  (22) 
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GO

2

1
0

P A q
 


 


,      (23) 

  0l

dl P
dt l t   


 


,      (24) 

   
O O

O0 0

1 ,
1l l

KP PD K
l t l t 


     

   
       

  (25) 

where  
O G

G O O

;K RZT
K P P
 





O

;O RZTB
P


  

 
O

O

1 1 ;
l t L

A A
P

  G

G2
OK PD

RZT
 ; 

OP  - initial distribution of state function. 
The system of equations describing the formulated 

problem, non-linear with respect to the desired functions. 
Therefore, to obtain an exact analytical solution of the 
problem is impossible. To solve it, we use the finite difference 
method. 

The discrete algorithm for solving problem (22) - (25) of 
analyzing the dynamic states of reservoir filtration systems is 
based on the use of an integro-interpolation method, which 
allows us to construct a conservative difference scheme that 
satisfies the law of conservation of a space-time grid at each 
node. 

Applying the integro-interpolation method for the first 
equation of the system (22), we get 

1 2 1 2 1 2

1 2 1 2 1 2

2 2 2 2
2

2
1 .

i i i

i i i

x x x

x x x

P P Pd l d ll d
P t P


    



  

  

   
     

As a result, we obtain the following system of finite 
difference equations: 

 

2 2 2 2 22
1 1

2 0

2 2
k k 1 1
0

2

,  2, .
2

i i i i i

i

i i

i

P P P P Pl
th P

l l l P P
i N

hP t






 

 

  
 



 
 



 

After some transformations, we get 

 

 

2 2k 2 2
10 0

2 2
2 2

10 0

1 2
2

1 .
2

k
i i

i i

k k
i i

i i

lh l l h lP P
P t tP

lh l l h lP P
P t tP

  

  





   
          
 
    
   

 

As a result, relative to the squares of pressure, we obtain a 
system of three-point equations 

2 2 2
1 1 ,  2,i i i i i i ia P b P c P d i N      . 

Here, the coefficients of three-point equations are 
determined from the following expressions 

 k k
01 ,

2
i

i

lh l l
a

P t

  
 


 

2 2

0
2 ,i

i

h lb
tP


 


 

 k
01 ,

2
k

i
i

lh l l
c

P t

  
 


 

2 2
2

0
.i i

i

h ld P
tP




 

Using the integro-interpolation method, for the second 
equation of system (22), we get 

 

   

1 2

O

1 2

1 2 1 2

O

1 2 1 2

21 2
1

i

i

i i

O

i i

PK d

S SlB l d d
t l





 

 


 

  






 

 

  
   

 
   

  



 

. 

For the second integral of the right-hand sides, we apply 
the average theorem and obtain 

 

   

   

      
   

 

1 2

O

1 2

1 20

O O

1 2 0

1 20

O O

1 2 0

O O O O-0 1 2 1 2 0

O O O O1 1

O

1 2

1 2

1 2

1

2

2 2

2 2

2 2

2 2
2 2

2

i

i

ii

i i

ii

i i

i i i i

i i i i

i

S d

S Sd d

S S
d d

S S S S

S S S S

S







 



 

 


   
 

   
 

 

 









 



 

  

 


 



 
    

 

 
    

 

      

    
          

   

 



 

 

 O O O1 1

22 .
2 2

i i i
S S S

 
 

 

 

Taking into account the computed integral, we obtain the 
following system of finite difference equations: 

 

     

O O O1 2 1 2

O O

O O O O1 1

1 1

2

1 2

1

1 2 2 .
2 2

i i

i i

i i i i

i i i i
j

P P P P
K K q

h h
S S

Bh l
t

S S S S
Bh l l



 

 

 

  
  


  


 

    

 

After some transformations, we have 
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 

     

 

     

O 1

O

O 1

O O O1 2 1 2

2 1

22
2 21 2

2 2

22

1 1

2
1

2

12 21 1
2 2

2
1

2

1
.

i

i

i

i i ii i i i

Bh l l S

h l
Bh l l Bh l l B S

t

Bh l l S

h l
K P P K P P B S

t



 







  

 

         
  


  


    


 

As a result, we obtain three-point equations for oil 
saturation: 

O O O1 1i i ii i i ia S b S c S d
 
    . 

Here the coefficients of the resulting equation are 
determined from the following expressions: 
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where 
1 1 2 0,  i i i       , 

2 0 1 2,  i i i        and defined 

as 
1

2
4i
h

   , 
2

2
4i
h

   . 

The size of the error of the scheme approximation  is 
 .O h t  
Using the conditions under which gas is pumped (23) 
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and at on the border 0i  , we find the initial values of the run 
factors: 
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The boundary is defined by the following formula: 
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From condition (25), we deduce 
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After some transformations, we have 
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From condition (23), we get 1lP P P  , whence relatively 
unknown pressures - quadratic equation: 

2
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Solving the quadratic equation, we find pressure at the 
points 

2
2 2 1 3

1,2
1

4
2

D D D D
P

D
  

 . 

Based on physical considerations, one of them is taken as 
the solution. The obtained nonlinear system of equations is 
solved by the sweep method at each time step using the simple 
iteration method. The convergence conditions for the iterative 
process are as follows: 

   1
1max S S

i ii
P P   . 

where 1 - some constant height. 
 
4.  RESULTS AND DISCUSSION 
 

In this way, on the basis of the model obtained, a 
computational algorithm was created for calculating the 
technological parameters of filtration processes and a 
software tool was compiled to determine the main parameters 
and their ranges of changes for the purpose of designing and 
developing oil and gas fields. 

With the help of the program a number of computational 
experiments were carried out [10,13]. 

The experiments were carried out with the following input 
values: 10 kmL  - the length of the reservoir; 6 mB  - 
power; 700 mH   -  width; o 4 cP  oil viscosity; the 
amount of produced fluid - 1000mq   t / day;   m = 0,2;  
K=0,1 Darsy, 0, 2  cP;G   o 200  at;P   
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3
O 0,85 /sm ; g    8,31 J K ;R mol   273 K;T   

40;Z   50;N   0,0001.   
The results of the performed computational experiments 

are given in the works and are shown in figure 2-4. 
 

 
Figure 2: The dynamics of the redistribution of pressure in the 

reservoir at different values of the filtration coefficient 
 

 
Figure 3: Redistribution of pressure in the reservoir at different 

well flow rates 
 

The numerical calculations showed that the essential 
parameters affecting the technology for developing the 
production of hydrocarbons from reservoir systems are the 
filtration coefficients (figure 2), viscosities and the structure 
of porous rocks.  Computational experiments were performed 
at various well flow rates. According to the curves in figure 3, 
the pressure in the filtration area decreases proportionally 
with the well flow rate growth. 

 

 
Figure 4: Redistribution of pressure in the reservoir at different 

formation lengths 
In general, it can be noted that the dynamics of the 

redistribution of the pressure of the reservoir significantly 
depends on the thickness of the reservoir. With increasing 
reservoir thickness, the pressure in the well and adjacent 
points decreases. And the time of exploitation of the 
productive formation (see figure 4) substantially depends on 
its length, thickness, number of wells and their flow rates. 

5. CONCLUSION 
The developed program and the mathematical apparatus 

implemented in it can be used by specialists of organizations 
engaged in the extraction of hydrocarbons in order to increase 
the efficiency of the fields.  
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