
 Hieu V. Dang et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5762 – 5767

5762

ABSTRACT

Nowadays, intelligent devices can be found anywhere around
us, and which help our living more comfortable.
Communication systems are their main modules, and which
have been attracting many scientists around the world.
However, communication systems are performed under many
errors from environments and obstacles around us. To
overcome obstacles and make trustable and stable
transmission, error control codes are invented and to be a
great research fields to improve the performance such as
detecting and correcting capability. In this paper, various
types of error control code such as three popular error
detecting and correcting codes: parity-check, CRC, and
Hamming codes are introduced detailly on those structures
and applications. In addition, their system on chip design are
implemented on VERILOG HDL. Finally, the test benches
with many test cases are mentioned to verify the function of
those codes.

Key words: Error control code, Parity check code, Cyclic
redundancy code, Hamming code, Verilog, FPGA, System on
Chip design.

1. INTRODUCTION

Communication systems play an important role on many
modern systems which can be found anywhere around us [1].
A communication system consists of some basic modules
such as source encoder, source decoder, channel encoder,
channel decoder, modulator, demodulator as be shown in
Figure 1 [2]. Here, we will cover hardware design and
implementation of some major error control codes (ECC).
Based on each types of storage medium, we will use different
type of ECC. Basically, the idea of ECC is to insert more
parity part into data message to construct a codeword which
has ability to against errors. The most basic ECCs are
parity-check [3], cyclic redundancy code [4], and Hamming
code [5], and they are popularly used in many systems around
us [6].
In this paper, we will introduce the construction and the
applications of three above ECCs. In addition, the designs of
those ECC in hardware system are proposed. We use

VERILOG HDL (Hardware description language) for
simulation and verification. The VERILOGcodes are
conducted by Model Simulation 10.4a tool student version.
 The paper is organized as follows. In Section 2, we review
parity-check method and its VERILOGimplementation.
Design of CRC code is given in Section 3. And in Section 4,
Hamming code is explained. Finally, conclusion is discussed
at Section 5.

Figure 1: Basic modules of a communication system.

2. DESIGN AND VERIFICATION OF PARITY CHECK
CODE

A. Parity-check code
In communication protocol, the simplest method for

detecting error in binary string is parity-code. Theoretically,
parity-code is to insert parity-bit to check the number of bits
'1' or '0' in binary string is even or odd. In this section, we are
going to design the parity-encoder and parity-checker.

Figure 2:Verilog code for parity-check encoder.

B. Design of Parity-check encoder module
The purpose of parity-encoder module is to output the

codeword from an input binary string, the input of
parity-encoder has a fixed-length, and the output of
parity-encoder will be the concatenation of the input and its
corresponding parity-check bit. Since the parity-check bit is 0
if the number of bits '1' in binary string is even and is 1 if the

Design and Verification of novel classical error control codes

using VERILOG Hardware Description Language
Hieu V. Dang 1, Tung V. Nguyen2, Manh Hoang2, Viet Q. Tran2, Nhan D. Nguyen3, and Duc M. Nguyen4

1Dept. of Information Technology Specialization, FPT University, Hanoi, Vietnam, hieudv2@fe.edu.vn
2ICT Department, FPT University, Hanoi, Vietnam, tungnvhe130151@fpt.edu.vn,

manhhhe130294@fpt.edu.vn,viettqse06178@fpt.edu.vn
3Dept. of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea, nhannd@skku.edu

4Design and Development Center, G2Touch Company, PankyoSilicon Valley, Seongnam, Korea,
nguyenmanhduc18@gmail.com

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse232942020.pdf

https://doi.org/10.30534/ijatcse/2020/232942020

 Hieu V. Dang et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5762 – 5767

5763

number of bits '1' in binary string is odd, we can use XOR
operation of all bits in binary string to calculate parity-check
bit. The VERILOGimplementation is given in Figure 2 where
‘din’ stands for input message, ‘parity’ stands for the
parity-bit, and ‘dout’ will be output codeword. Figure 3 is the

schematic trace corresponding to parity-encoder. In addition,
we also made a testbench as Figure 4 with some testcases and
the timing diagram which help us to verify our
implementation.

Figure 3:Schematic tracer of parity-check encoder.

Figure 4:Simulation results for parity-check encoder with a testbench.

Figure 5:Schematic tracer of parity-check decoder.

Figure 6:Simulation results for parity-check decoder with a testbench.

C. Design of Parity-check decoder module
The purpose of parity-checker is to verify a codeword is

correct or not and output the correct binary string. The input of
parity-checker is a codeword and the output is status bit to
determine codeword is valid or not and a decoded binary
string, which will be set to all zeros if codeword is not correct.
Since as definition, the codeword is combination of binary
string and its parity-check bit, a codeword is a valid if the
output of parity-checker is zero, and the decoded message is

just subpart by removed a parity part from codeword. The
VERILOG implementation of parity-decoder is as Figure 7.

Figure 5 is the schematic trace corresponding to
parity-decoder. In addition, we also made a testbench as
Figure 6 with some testcases and the timing diagram which
help us to verify the VERILOG implementation.

As the implementation result and analysis, the error in
codeword can be in the bits from data or bit from parity-check
and it only can detect error in case of the number of error bits

 Hieu V. Dang et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5762 – 5767

5764

is odd (1,3, or 5... error bits). Hence, parity-check is very
simple method but not much efficient. Hence, parity-method
is suitable for some applications where its protocol has slow
transfer speed and the number of bits are not much such as
UART protocol, used in many hardware applications where an
operation can be repeated in case of difficulty for example
SCSI, PCI buses, or in many microprocessor instruction
caches such as I-cache.

Figure 7: Verilog code for parity-check decoder.

3. DESIGN AND VERIFICATION OF CRC CODE

A. Cyclic Redundancy code
To general the parity-check method as explanation in

Section 2, Cyclic redundant code (CRC) will be explained in
this section. In CRC, the redundancy is attached to message to
make the codeword, redundancy is calculated based on the
reminder of polynomial division.

CRC is more efficient method than parity-check and it is
popular since simply to implement in hardware, easy to
analysis mathematically, and very good at detecting common
errors caused by noise in transmission channel. Consequently,
we can find CRC in many communication protocols with high
transfer data or high speed of transfer such as CAN, Ethernet,
or RF15693, ... The CRC-16 is used in USB device, CRC32 is
used in Ethernet.

Figure 8: Verilog code for CRC encoder.

B. Design of CRC encoder module
In this section, we implement CRC-16 encoder where

generator polynomial is x16+x15+x2+1 as Figure 8. Since the
degree of generator polynomial is 16, the output has length of
16 and is denoted as ‘r’. The pipeline method will be used for
inputs with one bit coming each timing clock, input bit is
denoted as ‘data’. In this implementation, we use Finite State
Machine method with two states ‘IDLE’ and ‘CRC_CALC’.
In ‘IDLE’ state, we initialize ‘r’ as 16’hFFFF (length 16 of all
‘1’-bit binary string). In ‘CRC-CAL’ state, the state is updated
for each coming time of data and the counter will be used to
determine the full length of message we want to encode.
When all the bits of message coming, the ‘done’ will be set to
1 and the value of ‘r’ at that time will be the final redundancy
to be attached into message to construct the codeword.

Figure 10 is the schematic trace corresponding to
CRC-encoder. In addition, we also made a testbench as Figure
11 with message is 32’h03_01_02_03 (32 bits length), the
redundancy result ‘r’ will be 16’h303A when done = 1.

C. Design of CRC decoder module
Since the CRC-checker and CRC-encoder are based on the

polynomial division with pre-defined generator polynomial,
the implementation of CRC-checker is almost same as
CRC-encoder as Figure 9. The full length of input message
and the expected output values are the different. In this
implementation, we use ‘48’ as the full length of input
message, and the expected value ‘r’ is all zeros. Whenever
‘done’ is set to 1, if ‘r’ is not all zeros, the codeword is invalid.

Figure 12 is the schematic trace corresponding to
CRC-checker. In addition, we also made a testbench as Figure
13 with codeword input is 48’h03_01_02_03_30_3a, the
redundancy result ‘r’ will be 16’h0000 when done = 1.

Figure 9: Verilog code for CRCchecker.

 Hieu V. Dang et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5762 – 5767

5765

Figure 10:Schematic tracer of CRC encoder.

Figure 11:Simulation results for CRC encoder with a testbench.

Figure 12:Schematic tracer of CRC checker.

Figure 13:Simulation results for CRC checker with a testbench.

4. DESIGN AND VERIFICATION OF HAMMING
CODE

A. Hamming code
Since the Parity-check and CRC code are error detecting

codes and unable to correct any error, Hamming code is
invented by Richard Hamming to be the first error correcting
code by based on syndrome calculation of error. Further

analysis shows that Hamming code is a linear code, perfect
1-error correction, and 2-errors detection. Mathematically,
Hamming code is constructed based on a generator matrix and
the syndrome will be calculated based on parity-check matrix
which has strong relation to generator matrix, and they can be
transformed from each other. There is a class of Hamming
code, its applications can be found everywhere in modern
communication system such as Punched card reader,

Hieu V. Dang et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5762 – 5767

5766

Modems, Computer memory, Embedded system, and
processor, ... In this section, we discuss the smallest length
[7,4,3] code.

B. Design of Hamming encoder module
In [7,4,3] Hamming code, ‘7’ stands for codeword length,

‘4’ stands for data length, and 3 is Hamming distance which is
error detecting and correcting capable. Consequently, the
input of module is ‘data’ with length 4, the output ‘codeword’
has length ‘7’ and is calculated based on ‘data’ and parity
equations as given in Figure 14.

Figure 15 is the schematic trace corresponding to Hamming
encoder. In addition, we also made a testbench as Figure 16
with all the possible case for ‘data’ and ‘codeword’.

Figure 14: Verilog code Hamming encoder.

Figure 15:Schematic tracer of Hamming encoder.

Figure 16:Simulation results for Hamming encoder with a testbench.

Figure 17:Schematic tracer of Hamming decoder.

Hieu V. Dang et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5762 – 5767

5767

Figure 18:Simulation results for Hamming decoder with a testbench.

C. Design of Hamming decoder module
In Hamming decoder, the input will be the codeword

message with length ‘7’ and the output will be the correct data
with length ‘4’. Inside the module, syndrome is denoted by ‘s’
and based on value of ‘s’, ‘data’ will be created suitably from
input codeword. The VERILOG implementation is given as
Figure 19.

Figure 17is the schematic trace corresponding to Hamming
decoder. In addition, we also made a testbench as Figure 18
with two test cases. First test case is with correct codewords,
and second test case is with the codewords with 1-bit error.
The results of two test cases are given in Figure 20.

Figure 19: Verilog code for Hamming decoder.

Figure 20: Two testbenches for Hamming decoder.

5. CONCLUSION

The paper has discussed about three basic but important
error detection codes: Parity-check, CRC, and correction

code: Hamming. Their mathematical explanation, application,
implementation, as well as test bench for verification are
given in detail.

Insystem on chip designs, error detection and correction
codes are popularly used in many communication and
processor systems. The implementation based on
VERILOGare given to help students, researcher, and
engineers a lot as a good reference in their works. The
testbench files are too long to be attached, authors are ready to
share under request.

ACKNOWLEDGEMENT
This work is supported by the FPT University, Hanoi,
Vietnam; Sungkyunkwan University, Suwon, Republic of
Korea; and G2Touch Company, Seongnam City, Republic of
Korea.

Conflict of Interest

On behalf of all authors, the corresponding author declares
that there is no conflict of interest.

REFERENCES

1. Nguyen, D.M., Kim, S. “Quantum Key Distribution Protocol

Based on Modified Generalization of Deutsch-Jozsa
Algorithm in d-level Quantum System”, Int. J. Theor. Phys.
vol. 58(1), pp. 71-82, 2019.

2. Kiran, K., et. al. “Design and Implementation of Efficient
Cryptographic Arithmetic based on Reversible logic and
Vedic Mathematics”, Int. J. of Advanced Trendsin Computer
Science and Engineering. vol. 9(2), 2020.
https://doi.org/10.30534/ijatcse/2020/21922020

3. Nguyen, D.M., Kim, S. “A novel construction for quantum
stabilizer codes based on binary formalism”. Int. J. of
Modern Phys. B. vol. 33(8), 2020.

4. Dhijaj, J., et. al. “Design and verification of an automated
CRC engine using VERILOG HDL”. Int. J. of Advanced
Research in Electrical, Electronics and Instrumentation
Engineering. vol. 2(6), 2013.

5. Achmad, F., et. al. “Bit Error Detection and Correction with
Hamming Code Algorithm”. Int. J. of Scientific Research in
Science, Engineering and Technology. vol. 3(1), 2017.

6. Binh, A. N., et. al. “A Novel Framework for Simulation of
Quantum Information System”,Int. J. of Advanced Trends in
Computer Science and Engineering. vol. 9(2), 2020
https://doi.org/10.30534/ijatcse/2020/129922020

