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 
ABSTRACT 
 
Damage caused by floods in some parts of the world, 
especially in Asia and the Pacific, accounted for the highest 
rate among the damage resulting from other natural disasters 
such as landslides, earthquake and tsunamis. Due to this 
factor, has motivated us to study further on flood forecasting. 
In previous studies, researchers focus on separate three 
criteria which are reliability groups, time complexity and 
error rate to forecast flood. In this paper, we study and analyze 
the three mentioned criteria in order to identify the highest 
criteria utilized in flood forecasting. The number of 
references studied and analyzed is in the year 2010 until 2019. 
From our findings, the highest criteria identified are under 
the reliability group, with highest accuracy index of 90%.  
 
Key words: analysis, criteria, flood forecasting, reliability, 
accuracy.  
 
1. INTRODUCTION 
 
Natural disasters such as flood, landslides, earthquake and 
tsunamis bring irrecoverable losses to human beings. 
According to [1] around 200 million people were affected by 
floods in the years 2011 and 2012 throughout the world, with 
a total loss reaching $95 billion. Southeast Asia is the region 
considered to be most frequently affected by flood due to 
monsoonal rainfalls [2]. Malaysia is among the most 
vulnerable countries in the world to be hit by flood, for 
instance, the Kelantan River has been hit by flood in 
December 2014 [3].  
 
In Malaysia, there have been few attempts to evaluate the 
overall adequacy of institutional arrangements for forecast 
flood, the exceptions being Leigh and Low. Too much criteria 
which is not necessary is focused on flood forecasting. To find 
the most popular criteria is important which review flood 
forecasting research. Therefore, three indicators including 
reliability, time complexity and error rate were investigated in 

 
 

this paper, and it was shown that accuracy index for 
evaluating and detecting criteria in real time was one of the 
most important indicators to forecast flood.  
 
The rest of this paper is structured based on the following 
sections: Section 2 presents the related research. In this 
section, some previous work on flood forecasting has been 
reviewed. Analysis and discussion for criteria evaluation are 
presented in section 3. Finally, conclusions and future works 
in section 4.  
 
2. RELATED RESEARCH 
 
A unique method of hybrid artificial intelligence to determine 
flood susceptibility has been proposed [4]. The assessment of 
the model was done through precision, sensitivity, specificity, 
accuracy, root-mean-square error, mean absolute error, kappa 
curve, and area under the Receiver Operating Characteristic 
(ROC) curve criteria. Meanwhile, a comprehensive 
description on the data availability was introduced via 
geological observatories (e.g., seismological, hydrological), 
satellites, remote sensing and more recent sources, such as the 
social networking platform, Twitter [5]. Apart from that, the 
depth estimation of snow coming from the terrain parameters 
in Sakhvid Basin, Iran through the use of Artificial Neural 
Networks (ANNs) and M5 decision tree algorithm has been 
implemented [6]. In [7] has been developed hydrological 
models that can represent a different geo-climatic system, 
namely: humid, semi-humid and semi-arid systems, in China. 
In  [8] forecasted the flow stream of River Nile at the Dongola 
station in Sudan via an ANN model, thus confirming the 
efficiency of the model with respect to the actual flow. River, 
South Korea [9]. Considering the effects of backwater of this 
river, the improved method of tributary water level 
forecasting is suggested. This is done by adding various water 
level data on the central river as input variables in the typical 
ANN structure, where rainfall and upstream water level data 
are often utilised. 
 
According to [10] the main concern in many practical 
applications of monthly streamflow forecasting models is the 
accuracy and reliability of the forecasts; therefore, in such 
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situations, statistical forecasting maybe more suitable. 
Authors applied an extreme learning machine to produce 
rapid forecasts of tsunami waveforms in coastal areas [11]. As 
discussed in [12], in monthly stream-flow forecasting, two 
sources of predictability are typically exploited: catchment 
conditions (wetness) at the time of the forecast and the effect 
of climate over the forecast period. Research work by [13] 
utilizes fuzzy logic approach to model the Kelantan River 
basin in Malaysia in real-time flood forecasting using the 
minimum implication function type which is the Mamdani 
fuzzy inference system. Three basic criteria are listed for a 
reliable forecast: accuracy, reliability, and timeliness [14], 
[8]. Evaluation and real-time detection criteria are divided 
into two categories, where the research on each of these 
indices is time consuming [15]. Our findings from these 
research works identified three important indicators for 
evaluating and detecting criteria in real time to forecast flood 
which are reliability, time complexity and error rate which are 
analyzed in this paper.  
 
2.1 Benchmarking 
Evaluation and real-time detection criteria are divided into 
two categories, shown in Figure 1 [15]. This study has been 
focus on the first craiteria (i).   

i. Criteria of evaluation - consist of reliability, time 
complexity and error rate. 

ii.  Benchmarking techniques – e.g. ANN, fuzzy, Genetic 
Algorithm (GA), etc.  
 

2.2 Criteria 
Real-time detection needs a strong and reliable assessment 
instruments in a variety of conditions. Several criteria are 
presented for evaluating detectors in real-time. A real-time 
skin detector consist of reliability have been proposed which 
discussed their parameters and their relationship tested on 
skin dataset [16].  
 
Reliability and real-time detection of data and the relationship 
between them are discussed [16], [17]. Calculation of 
reliability based on a large dataset with a specific area on the 
land is manually tested using a specific operator receiver of 
the dependent Receiver Operator Characteristic (ROC) curve.  
 
2.3 Reliability Group 
The correlation between the reliability groups and the 
importance of analyzing the criteria and the standard point of 

reference are reviewed in this section. The reliability group 
consists of three main parts, namely: relationship parameters 
(e.g., precision, recall, accuracy, and specificity), matrix 
parameters (e.g., confusion matrix), and behavioural 
parameters (e.g.,  G-measure and F-measure), as in Table 1. 
Numerous methods and employment have been assessed for 
real-time evaluation using reliability groups, which include 
three stages as follows: 

A. Relationship Parameters 
The steps of the parameter matrix (e.g., probabilistic models) 
and its relationship were emphasised. 
 
The relationship parameters are comprised of four: precision, 
accuracy, recall, and specificity. The precision of the limiting 
factor is shown as TP when the prediction of the sample is true 
or positive, while TNI indicates true negative estimation if the 
sample is negative.  Precision is intended as a vital 
benchmark in the assessment analysis. The measurements 
show the proximity of compliance between the estimated 
value and the established value. Apart from that, precision is a 
measure of weighted calculation among precision and recall. 
 
In [20] explained that precision is referred as the precision of 
analytical modelling or the proximity of compliance between 
the estimated value and the established value, or similarly, as 
a positive predictive value or an acknowledged reference 
value. Hence, the structures of this measurement must be 
determined depending on the process of different inputs 
assessment. 
 
The precision calculates the numerical accuracy of a binary 
classification test in recognising or removing a particular 
setting. In [21] measured the correct proportion of outcomes 
(TN and TP) across the number of samples studied. Moreover, 
precision could be referred to the closeness to the intended 
target and the accuracy of its closeness to the specified target. 
Therefore, this assessment represents an average accurate 
calculation for precision and reverse precision (priority based 
on prejudice) and an average weighted calculation for recall 
and reverse recall (priority based on popularity). 
Nevertheless, these characteristics do not convert this 
measurement to an evaluation parameter that can be 
generalised for each sample. 
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Figure 1: Evaluation and benchmarking framework [15]. 

B. Matrix of Parameters 
The matrix of parameters reveals that the confusion matrix 
includes False Negative (FN) and True Negative (TN) 
models, which are completed with False Positive (FP) and 
True Positive (TP), respectively. The confusion matrix is a 
crucial criterion for all cases in the taxonomy model which 
are intended as a strong spine in numerical and mathematical 
estimations for all parameters in an evaluation matrix. 
 
Table 1 indicates changes in the use of this benchmark in 
various investigations. The characteristics and methods of the 
confusion matrix are crucial to differentiate between negative 
and positive areas. Consequently, this benchmark must be 
measured in the initial criteria of the evaluation process and 
the benchmark. 
 

C. Behavior Parameters 
Behaviour parameters consist of F-measure and G-measure. 
F-measure signifies the weighted average precision and 
obtains precision and recall if the ideal value is close to 1. The 
poorest rating of the F-measure is the value of 0. 
 
It should be noted that F-measure is the prevalent criterion, as 
it is created concerning caution and precision. On the other 
hand, Powers (2011) announced that the G-measure signifies 
an accurate normalised form of precision. As such, it is 
considered as a TP for geometric dimensions of true positive 
predictions along with facts. 
 
The amount of information conveyed from the G-measure is 
related to the average computing information with precision 
and recall. Commonly, the G-measure signifies the geometric 
mean of recall and precision for evaluating the algorithm 
efficiency. Computational intelligence algorithms utilised for 
forecasting are Artificial Neural Network (ANN), Support 
Vector Machine (SVM), Wavelet Artificial Neural Fuzzy 
Inference System (WANFIS), Artificial Neural Fuzzy 
Inference System (ANFIS), Internet of Things (IT), Genetic 
Algorithm (GA), Wavelet Artificial Neural Network 
(WANN), Wireless Sensor Network (WSN), Expert System 
(ES), Neural Network (NN), Discrete Wavelet Transform 
(DWT), and Early Warning System (EWS).  

 
2.4 Time Parameter 
The intricacy of time is a crucial factor or study for many 
findings. The time index for evaluating and detecting criteria 
in real time is one of the most important indicators to forecast 
flood. Various forms of segmentation algorithms are provided 
through the expansion of computer and information 
technology (CIT) [22]. 
 
These algorithms are used in various systems of information. 
The use of segmentation or division method requires the 
establishment of proper complexity algorithm with the 
implemented model conclude if the algorithm is relevant for 
use [23], [24]. Correspondingly, the intricacy of time to 
measure in processing is critical [24]. 
 
2.5 Error Rate 
The frequency of errors denotes the smallest possible error for 
each classification of an irregular result pattern that is similar 
to the unrelated error. 
 
This group or faction is a fundamental measure in the process 
of estimating and benchmarking (as reference point) in 
real-time tracking, constructed using soft computing 
techniques of distinct datasets. The number of references 
studied and analysed in this paper is in the year 2010 until 
2019. Table 1 shows the literature review of the evaluation 
criteria. The table presents various studies on flood 
forecasting. An extensive analysis of the reliability group was 
also explored throughout forecasting and discrete 
sub-criteria. In Table 1, seven criteria have been investigated, 
including the model parameters, precision, specificity, recall, 
accuracy, F-measure, and G-measure. 
 

.100
30
Np   (1) 

 
Where, N is the number of usage in articles, P is the 
percentage of usage and 30 is the total number of articles.  
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3. ANALYSIS AND DISCUSSION 
 
Flood forecasting model design is performed in both 
analytical and geological forms, which often complement 
each other. The factors that are considered for analytical 
forecasting of the flood includes the following:  

• Topographical study of the part of watershed that 
provides water flow to the studied area. 

• Determining the type of land cover (rock, soil, plants) to 
estimate the proportion of running water to permeating 

and evaporated water 
• Determining the largest storm and rainfall given the 

available data. 
• Attention to the season, because conditions such as the 

saturation of the land with water or covering its surface 
with snow have a direct impact on the water surface 
flow. 

• Determining the storage capacity of the main river bed 
and its surrounding floodplain and possible changes in 
the storage capacity of the downstream regions. 

 
 

 
Table 1: Comparison of previous research 

No References 
Category 
of Natural 
Disaster 

Method 

Criteria 

Reliability 

  Time 
 

Error Rate 
Matrix of 

Parameters 
(Confusion 

Matrix) 

A
ccuracy 

Precision 

R
ecall 

Specificity 

F-m
easure 

G
-m

easure 

T
raining 

V
alidation TP TN FP FN 

1 [4] flood LMT √ √ √ √ √ √ √ √ × × √ × × 

2 [25] Natural 
disasters 

DATA 
MINING × × × × × × × × × × × × × 

3 [6] flood ANN × × × × √ √ × × √ × √ √ × 

4 [26] Daily water WANN / 
WANFIS × × × × √ × × × √ × √ √ √ 

5 [27] flood SVM/ 
ANN × × × × √ × × × × √ √ √ × 

6 [28] flood GA × × × × × × × × × × √ √ √ 
7 [29] flood EWS × × × × √ × × × × × √ √ √ 

8 
[30] 

 
 

SVM/ 
FUZZY 

× × × × √ × × × √ × × √ √ 

9 [31] River stage WPANN 
/ANFIS × × × × √ √ × × × × √ √ √ 

10 [32] flood WGEP × × × × √ × × × √ √ √ × √ 

11 
[33] Sediment 

transport 

       ANN/ 
       SVM/  
        FL 

× × × × √ × × × × × √ √ √ 

12 [8] flood ANN × × × × √ × × × × × √ √ × 

13 [34] flood IOT 
(WSN) × × × × √ × × √ × × × × √ 

14 [35] Earthquake ES × × × × √ √ × × × × √ √ √ 
15 [36] flood SVM × × × × √ × × × × × √ √ √ 
16 [37] flood WNN × × × × √ × × × √ √ × √ √ 

17 [38] flood NN/ANN/ 
WANN × × × × √ × × × × × √ √ √ 

18 [39] flood NN × × × × √ × × × × × × √ √ 
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19 

[13] 

flood 
FUZZY 
LOGIC 

MAMDANI 
× × × × √ × √ × × × × × √ 

20 

[14] 

flood 

FUZZY 
INFERENCE 

SYSTEM 
(T-S) 

× × × × √ × × √ × √ √ × √ 

21 
[40] 

flood 
SANN/ 
FUZZY 

LOGIC/NAM 
× × × × √ × √ × × × × × √ 

22 [41] 
 Stream flow DWT-SVR × × × × √ × × × × × √ × × 

23 [42] Rainfall-ru
noff WANN × × × × √ × × √ × √ × √ × 

24 [43] flood ANN/ANFIS/A
NN/WNF × × × × × √ × × × × √ √ √ 

25 [44] Flood NN/EWS × × × × × × √ × × × × √ × 
26 [45] flood ML × × × × √ √ × × × × √ × √ 
27 [46] Water level ANN × × × × √ × × × × × √ √ √ 
29 [47] River flow SAM-PSO × × × × √ √ × × × × √ × × 
20 [48] Stream flow GA × × × × √ × × × × × √ × √ 

30 [7] flood SVM/ 
ANN × × × × √ × × √ × × √ × × 

 Average   1 1 1 1 27 7 4 5 5 5 21 18 20 

 Percentage   4% 4% 4% 4% 90% 23% 16% 17% 20% 20% 70% 60% 67% 
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Figure 2: Overview of the criteria of evaluation 

                          
Three basic criteria are listed for a reliable forecast: accuracy, 
reliability, and timeliness. Evaluation and real-time detection 
criteria are divided into two categories that the research 
oneach of these indices have been time consuming. The 
highest criteria identified under the reliability groups are the 
accuracy and time with percentage of 90% and 70%, 

respectively. Furthermore, ANN is the most popular method 
used. 

4. CONCLUSION AND FUTURE WORKS 
 
There have been many efforts to forecast natural disasters 
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based on the accuracy and time. Three criteria for evaluation 
consist of reliability, error rate, and time which have been 
reviewed from previous research from 2010 to 2019. The 
result produced 90% for accuracy and 70% for time.  
For future works, ANN will be analysed to identify the 
limitations of ANN in terms of accuracy and time. 
Combination of ANN with other techniques will also be 
investigated. 
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