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ABSTRACT 

 This paper addresses an NP-hard problem called NTD-CR 

that using dynamic programming (DP) scheme. This problem 

referred to as Network Topology Design with minimum Cost 

subject to a Reliability constraint. It designs a minimal-cost 

communication network topology that satisfies a pre-defined 

(s, t) terminal reliability constraint. Our DP approach, called 

DPCR-L, mainly select the set of possible links to be deleted 

from the original network to generate an optimal Network 

Topology. The NTD-CR design problem aims to find a 

Network Topology that has minimal cost with the required 

reliability for the network. Five link-ordering criteria are 

proposed to improve the performance of DPCR-L. Each 

greedy heuristic order allows DPCR-L to enumerate the 

selected deleted links, which improves the time complexity 

while producing near optimal topology. Extensive Simulations 

based on different benchmark networks of various sizes are 

used to compare DPCR-L with existing state-of-the-art 

techniques and show the merits of using the ordering methods, 

and the effectiveness of our algorithm. Our simulations show 

that DPCR-L produces 93% optimal results. Interestingly, of 

the non-optimal results, DPCR-L produces a network with 

reliability no worse than 5.38% off optimal, and most of the 

non-optimal results have a lower cost than that for optimal up 

to 0.17%. Typically, for the most of the network topologies, 

DPCR-L generates NT with the same or better 2-terminal 

reliability measure and speeds up its running time up to 

31.71%. Furthermore, simulation results on large size 

networks show that DPCR-L speeds up the process with up to 

(47.28%) compared to the recent existing approach. Finally, 

the results present the applicability of DPCR-L on networks 

containing a large number of links and demonstrated better 

performance and computationally more efficient than other 

existing algorithms. 
       

Key words: Dynamic programming; Network optimization; 

Network reliability; Communication Network; Network 

topology design. 

 

 

1. INTRODUCTION 

 

Many applications require some network Quality of Service 

(QoS) constraints such as reliability, delay, and/or bandwidth 

to be operational  For example, critical applications (e.g., 

emergency services, critical time system, rescue, and military 

operations) must run on a network topology with guaranteed 

minimum reliability so that they can operate without 

interruption, even in the presence of component failures [1]. 

The design of network topology is an important part of a 

network design [1, 2]. Therefore, it is crucial to design 

network topology that can meet its applications’ QoS 

requirement, since in general, optimal design of network 

topology directly affects network QoS [2]. In this work, a 

single-objective optimization problem for network topology 

design problem is considered , this mean that we consider only 

one objective and one condition for the design process [3]. 

However, constructing a network with higher QoS such as 

reliability incurs higher installation cost, since for example 

link reliability is directly proportional to its installation cost. 

Therefore, the most suitable set of links such that the resulting 

best layout meets its cost objective and required reliability 

must carefully select by a network designer. We called this 

situation a network topology design with cost objective and 

reliability constraint (NTD-CR) problem. Specifically, given 

(a) locations of the various computer centers (nodes), (b) their 

connecting links, (c) each link’s reliability and cost, and (d) 

the required operational reliability of the network, the final 

solution will have the best set of links such that the resulting 

layout meets its required (s, t) terminal reliability while 

minimizing its installation cost.  

 

In this paper, we consider the (s, t) terminal reliability [4], , as 

the measure of reliability (R), which is the probability that at 

least one simple (s, t) path in the network is functional 

between source node s and the terminal node t, it is  also 

called 2-terminal reliability. Further, some applications must 

run on a topology with a guaranteed minimum reliability, to 

properly operate. However, constructing a reliable topology 

incurs higher installation cost as we said above. Therefore, for 

such applications, the topology design emphasizes on 

minimizing the network installation cost subject to the 

required reliability level. In practice, however, when the 

network service provider or decision maker has a limited 
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budget to build the network, the aim will be to produce a 

network topology from the selected links with the maximum 

reliability subject to the cost constraint; we call this as NTD-

RC problem. Both these problems (NTD-CR an NTD-RC) are 

NP-hard [5]. Obviously, heuristic and/or approximation 

solutions must be use to design large sized topologies that 

contain many nodes, links and (s, t) paths.  

2. RELATED WORK 

There are some proposed techniques that find optimal or 

approximately optimal solutions for the NTD-CR problem [6, 

7]. Jan, et al. [8] considered a network G whose links have the 

same reliability values and developed an algorithm that 

combines decomposition, B&B techniques to find an optimal 

solution. Later, Koide et al. [10] generalized the problem in 

[8] for graph G with non-homogeneous link reliabilities, and 

developed another B&B algorithm to solve the problem. The 

B&B approaches are computationally expensive, and thus are 

suitable only for small sized networks with up to nine nodes 

[8, 9].  

 

Kumar, et al. [10] have developed a GA-based approach to 

solve NTD-CR that includes two additional constraints, i.e., 

diameter and average distance, and applied it to four test 

networks with up to nine nodes. Although the problem in [10] 

is a superset of NTD-CR, its solution cannot be used to solve 

the NTD-CR problem because the problem considers only 

links with identical reliability and cost. Deeter and Smith [11] 

presented a GA approach to solving the NTD-CR problem. 

However, their solution considers alternative link reliabilities, 

and thus cannot be used to solve our NTD-CR problem in 

which each link may have different reliability values. Dengiz, 

et al. [12] proposed a heuristic GA approach, called NGA, to 

solve the NTD-CR problem. In [13], the same authors have 

developed another GA-based solution, called Local search GA 

(LS-NGA), using a special encoding structure, crossover, and 

mutation operators. These GA methods yield poor quality 

solutions for networks with more than 10 nodes [14]. Later, 

Lin and Gen [15] proposed a self-controlled GA to solve the 

NTD-CR problem. However, these GA methods require the 

development, coding, and testing of a problem-specific GA, 

complicating the solution process [12, 15]. Mutawa, et al. [16] 

proposed a steady-state GA, and Shao, et al. [17] proposed an 

algorithm, called a shrinking and searching algorithm, to solve 

NTD-RC problem that maximizes network reliability under a 

cost constraint, which is a related NTD-CR problem, 

discussed before in this Section. Ramirez-Marquez and Rocco 

[14] have presented a population-based heuristic approach 

called the probabilistic solution discovery algorithm. 

However, their approach is shown less effective compared to 

the more recent approach in [5], who developed a NN 

heuristic algorithm, and the authors in [12] used an artificial 

NN for the NTD-CR problem. As stated in [14], while the NN 

and artificial NN algorithms produce good results, they use a 

long procedure that needs extensive time and significant 

parameter tuning. A deterministic version of simulated 

annealing (SA) was used by Atiqullah and Rao [18] to find the 

optimal design of small networks, i.e., five nodes or less. 

Pierre, et al. [19] also used SA to find optimal designs for 

packet switch networks where delay and capacity were 

considered, but reliability was not. Recently, a new 

metaheuristic called Cross-Entropy method was developed for 

the NTD-CR problem [20]. In addition, Papagianni, et al. [21] 

proposed a Multiple TS algorithm was used to solve the NTD-

CR problem with 19 nodes; however, the algorithm may not 

reach the global optimum solution in reasonable computation 

time when the initial solution is far away from the region 

where the optimal solution exists. In [22], a Binary Decision 

Diagram (BDD) is used to solve the same design problem for 

networks containing up to 81 nodes. This approach is based on 

a decomposition of Boolean functions called Shannon 

decomposition. BDD structure is a compact, implicit 

representation of the entire set of the functioning and failing 

network states. Dengiz, et al. [23] proposed a hybrid approach 

based on Ant Colony Optimization and Simulated Annealing, 

called ACO-SA, for the NTD-CR problem for networks with 

up to 50 nodes. Note that the results in [7] for the related 

Dynamic programming approach show that the DP techniques 

produced better results as compared to the BDD approach in 

[22] and ACO-SA approach in [23].  

 

As a summary, the existing algorithms that generate 

approximation solutions are mainly based on meta-heuristic 

techniques, such as Genetic Algorithm [10, 11, 14, 22], Neural 

Network [5, 21], Swarm Particle [24] [21], Simulated 

Annealing (SA) [17, 18] and Ant Colony Optimization (ACO) 

[23]. While the meta heuristic-based algorithms may 

significantly reduce time complexity, they still require 

numerous iterations to converge and thus use a considerable 

computational effort to produce near optimal solutions [23]. 

Therefore, a more time efficient heuristic approach that can 

produce better results is still needed, especially for use in large 

scale networks. At this end, most of the existing approaches 

either lack the necessary precision to generate an acceptable 

solution or have expensive computational effort and time  [7]. 

Here, we developed a heuristic based approach that has better 

performance and computationally more efficient than other 

existing algorithms to solve NTD-CR problem, discussed in 

Simulation Section.  

 

Note that, for the NTD-CR problem, each iteration includes a 

reliability computation of the approximated topology to be 

tested against the required constraint. Because reliability 

evaluation, using both exact or approximation methods, is 

computationally expensive (a typical Monte Carlo (MC) 

simulation iterates 10
6
 times), which generally uses a 

considerable computational effort [6]. For example, Deeter 

and Smith [11] proposed a GA based approach that uses MC 

simulation to calculate the reliability of each candidate 

solution, and thus, for a typical GA solution with a population 

size of 6000 and 40 generations, it needs to run MC 240000 

times. Therefore, the approaches are computationally 

expensive for use in large networks.  
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Elshqeirat, et al. [6] proposed a dynamic programming (DP) 

formulation and implementation, called DPCR-P, to solve the 

NTD-CR problem from all (s, t) simple paths in the network. 

They also presented two different path-orders to improve the 

effectiveness of DPCR-P. These two different path-orders 

dynamically allow DPCR-P to generate only k≥1 paths from 

the network and it is stop if there is insignificant improvement 

when adding path k+1 to the resulting topology’s cost. Third, 

we describe how DPA can use only k (s, t) paths to reduce its 

computation time while producing similar results as compared 

using all (s, t)simple paths of the network. Furthermore, 

[7]solved NTD-CR problem by used DPCR-ST approach to 

generating the NT using a sequence of spanning trees to 

maximize  all-terminal reliability. The approach proves that if 

we generate an optimal sequence of spanning trees an inputs, 

then DPCR-ST is able to generate optimal NT Note that the 

first version of the approach requires all spanning trees of the 

network to minimize the cost. Further, they proposed a second 

version of the approach that uses only k spanning trees sorted 

to improve DPCR-ST’s time efficiency while producing 

similar results. Moreover, authors in [7] described three 

spanning tree order criteria to heuristically generate the best 

sequence of spanning trees that allow DPCR-ST to produce 

near optimal results and also showed that producing optimal 

order of spanning  trees is consider as NP-complete. 

 

The aforementioned DP approaches in [6, 7] have been shown 

good results in addressing our NP-hard problem, NTD-CR, 

but both approaches will generating all possible (s, t) paths or 

spanning trees to produce each feasible topology solution in 

the worst case,. Thus, in general, for large networks contains 

an exponential number of (s, t) paths and spanning trees , i.e., 

                   simple paths and O(|V|
|v|

) spanning trees 

such an approach is infeasible [25]. Our main goal in this 

paper is proposing a new version of DP approach that called 

DPCR-L, which generating each optimized topology  result by 

deleting unusefull links from the original network (graph 

model) without any needs of generating all possible (s, t) paths 

or spanning trees. Thus, our proposed approach DPCR-L will 

consider only O(|E|) links of the network in the worst case. As 

a consequence, this is generally will need less computational 

time and effort, so it is computationally more efficient than 

other existing DP algorithms such as DPCR-P and DPCR-ST 

for NTD-CR problem. Furthermore, five link-orders criteria 

are proposed and utilized by DPCR-L to further improve 

results. 

 

Furthermore, the authors of [1, 26] have proposed a dynamic 

programming algorithm to solve a related NTD problem, 

called NTD-RC, to construct a topology that maximized 2-

terminal or all-terminal reliability subject to a cost budget 

constraint. However, these DP approaches  cannot be used 

directly to solve the NTD-CR problem because the two related 

problems require two different dynamic programming 

formulations, and thus need different solutions [25]. Further, 

to maximize the reliability, for each entry of a dynamic 

programming table, the NTD-RC problem needs to compute 

an exact reliability value, which is a very time consuming step 

because computing the reliability, in general, is known to be 

NP-hard [27]. On the other hand, to minimize network cost, 

the NTD-CR problem needs to generate only an approximated 

reliability, which can be solved using a significantly faster 

heuristic technique such as Monte Carlo Simulation [28]. 

Please note that DP approach proposed in ELSHQEIRAT et 

al. 2013b (ELSHQEIRAT et al. 2014a), called DPA,(DPA-1) 

needs generating all possible (s, t) paths (spanning trees) to 

produce each feasible topology solution to solve NTD-RC 

problem with consider 2-terminal reliability (all terminal 

reliability), respectively. Furthermore, another recent DP 

approach proposed, called Algo-DP, to solve the related 

problem NTD-RC in Elshqeirat et al. 2018. Algo-DP 

generating each optimized topology  result by deleting set of 

links from the original network (graph model) without any 

needs of generating all possible (s, t) paths or spanning trees. 

As we  said above, we can’t directly use these DP approaches 

that solve NTD-RC problem to Solve NTD-CR problem 

because the two related problems require two different 

dynamic programming formulations, and thus need different 

solutions [25].  

  

The contribution of this paper is threefold:  

 

1- It presents DPCR-L approach that utilizes dynamic 

programming (DP) formulation, solution and its 

implementation, to solve the NTD-CR problem by deleting 

selected set of links from the original network. As we said 

before, Authors in [6] also have used DP technique called 

DPCR-P to solve the NTD-CR problem, but, their algorithm 

potentially requires generating all (s, t) simple paths. Note 

that, an arbitrary network that contains a set of V nodes and a 

set of E links has                   simple paths [6]. In 

contrast, our DP approach significantly reduces the time 

complexity because it deletes sequentially only up to |E| links 

to solve the NTD-CR problem.  

 

2- DPCR-L approach in this paper presents five link-ordering 

criteria, i.e., LO1- LO5, discussed later in Section 4.4; DPCR-

L utilizes each link-ordering criterion to optimize the 

generated NT by determining the order of link deletions from 

the original topology. 

 

3- Our simulations on 25 networks with various sizes with up 

to 200 nodes, 298 links and 2
99

 (s, t) paths, reported in Section 

5, show the benefits of our method as compared to an existing 

approach in [6]. Specifically, DPCR-L generates NT with the 

same or better 2-terminal reliability on all but only two (with 

about 1.8% worse cost) of the 20 network topologies, but it 

speeds up the running time up to 31.71% compared to the 

existing approach in [6], simulations show that DPCR-L 

produces 93% optimal results. Interestingly, of the non-

optimal results, DPCR-L produces a network with reliability 

no worse than 5.38% off optimal, and most of the non-optimal 

results have a lower cost than that for optimal up to 0.17%.  In 

large size networks, results show that DPCR-L speeds up the 
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process up to (47.28%) compared to the recent existing 

approach in [6], and prove that DPCR-L is computationally 

more efficient than existing algorithms. These results present 

the applicability of DPCR-L on networks containing a large 

number of links and indicate that DPCR-L demonstrated better 

performance than other existing algorithms. Please note that 

we didn’t compare our results with DPCR-ST approach in 

Elshqeirat et al. 2014b, because their DP approach measure 

all-terminal reliability while in our problem we measure (s, t) 

reliability similar to the problem presented by DPCR-P 

approach in Elshqeirat et al. 2013a. 

The layout of the paper is as follows. Section 3 presents brief 

description to the network model and Notations. Section 4 

formulates the NTD-CR problem, provides assumptions, and 

describes the proposed solution with the time complexity and 

different order criteria. Section 5 shows the simulation results. 

Finally, conclusion of the paper presented in Section 6.

  

3. NETWORK MODEL AND NOTATIONS 

A communication network (CN) can be modelled by a 

probabilistic bidirectional simple graph G = (V, E), in which 

each node viV represents a network component (e.g., router, 

computer site) and each edge ejE represents the connecting 

media (e.g., communication link) between the network 

components.  We assume that (a) all locations of the various 

computer centers (nodes), (b) their connecting links, (c) each 

link’s reliability and cost, and (d) the required operational 

reliability of the network are given. Each ej has cj and rj , cj>0 

is the cost to install ej, and rj , 0≤rj≤1, is  probability that ej is 

functioning (UP) [10]; Let m be the total number of edges in 

G, i.e., m=|E|. We assume that all nodes are always UP, use no 

setup costs, and edge failures are independent and without 

repair. Fig. 1 shows a graph model of a CN that has six nodes 

and eight links.Error! Reference source not found. provides 

the cj and rj values for each edge ej. 

 

 
Figure 1:  Network Example 

 

 

 

 

 

 

Table1:  Link Weight for Network  

Link   ej 

 

Link Weight 

                                                                                                                                      

(cj , rj ) 

a (2,0.9) 

b (5,0.7) 

c (3,0.8) 

d (6,0.6) 

e (4,0.9) 

f (3,0.8) 

g (4,0.7) 

h (3,0.8) 

          

The cost function of a network topology or graph G, Cost(G), 

is the  summation of all cj for each ej in G. R(G) is the function 

that calculate the probability if there is at least one operational 

path between source node (s) and terminal node (t). In general

computing Rel(G) is an NP-hard problem [28]. As described                   

in Section 4.3, the Monte Carlo Simulation in [28] is used to 

approximately compute Rel(G).  
 

1.1  Design Problem 

 Let Xj be a decision variable with two values {0, 1} 

that indicates if link ej in G=(V, E) is selected (Xj=1), or link ej  

not selected (Xj=0). The following two equations describe the 

NTD-CR problem.    

 inimi e         (1) 

Subject to Rel (Gi=(V, Ei))≥Rmin (2) 

 

Let us define a network topology G feasible when Rel(G) ≤ 

Rmin. Equation (1) calculates the minimum cost of a network 

topology Gi=(V, Ei) that contains links Ei=E–{ej | Xj=0}; i.e., 

Ei is a set of selected links from Equation  (2) that form Gi that 

has a reliability of at least Rmin. One may solve the NTD-CR 

problem by generating each possible set of links in (2) that 

form Gi. Then, calculate Cost(Gi) for each Gi that has 

reliability Rel(Gi)≥Rmin, and use Eq. (1) to select a Gi with the 

minimum cost as Gmin. Unfortunately, this brute force 

solution, called BF-1 requires generating O(2
|E|

) possible link 

selections, i.e., the Gi. Further, the reliability calculation in (2) 

for each Gi requires exponential time; thus BF-1 is feasible 

only for designing small topologies. Our work in this paper 

proposes a heuristic algorithm, described in Section 4.1, which 

generates Ef, and thus Gf, by selectively removing links in E 

while satisfying Eq. (1) and (2).  

 

For Example, consider the CN in Figure 1, for NTD-CR 

problem. If we have Rmin=0.65, then      Figure 2 shows the 

optimal network topology, Gopt, with Rel(Gopt) =0.659 and 

Cost(Gopt)=17; after delete links d, f and g from network G to 

obtain Gopt. 
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     Figure 2: Optimal Solution for Network  

4. DYNAMIC PROGRAMMING APPROACH FOR 

NTD PROBLEM 

 

4.1 Dynamic Programming Formulation for NTD-RC 

Let Gi=(V, EiE) be its induced graph and LXi, for i=1, 2, …, 

m, be a set of links sequence selected from i links in (e1, e2, 

…, ei), recall that m=|E|, In other words, LXi is a set of deleted 

links in (e1, e2, …, ei) from G, i.e., Ei = E – LXi; . which mean 

that our Gi will not contain any link in LXi. Note there are 

O(2
|Ei|

) different possible LXi and  0≤|LXi|≤i. NTD-CR aims to 

delete set of links in (e1, e2, …, em) such that Rel(Gm)≥Rmin and 

Cost(Gm) is the minimum. We said that a solution or NT, Gi, is 

feasible if its (s, t) reliability, Rel(Gi)≥Rmin. Otherwise, it is a 

non-feasible solution. For example, NT in Figure 1 with Rmin 

=0.65, LX8=(d, f, g) can be consider a feasible solution 

because Rel(G8)=0.659≥ Rmin.  

Let DP[1 .. m, ŘG .. Řmin] be a 2-dimensional dynamic 

programming (DP) table, where ŘG= round(Rel(G)), i.e., 

the Reliability of the original network with no link deletion 

and Řmin=round(Rmin), for a positive integer multiplier  and 

a function round() that returns the closest integer value of (). 

For example, the function returns Řmin=92 (Řmin=93) when we 

set =100 and Rmin=0.9216 (Rmin = 0.9261).  

 

Each element DP[i, ř], for i=1, 2, …, m, ř= ŘG, …, Řmin, stores 

four pieces of information: a cost 0c[i, ř]Cost(G), a 

sequence of links L[i, ř]E, a reliability Řmin<R[i, ř]≤ŘG , and 

an integer index ŘminJ[i, ř]ŘG. Let C[i, ř ]be Cost(Gi), for ř= 

ŘG, …, Řmin be the minimum cost of Gi subject to Rel(Gi)≥ ř. 

In essence, the columns of DP table partition the reliability 

constraint Rmin into  consecutive reliability constraints, i.e., 

Rmin/, (2Rmin)/, …, Rmin/= Rmin. In other words, each 

column index ř=0, 1, …, Řmin, corresponds to a reliability 

constraint r=0, 1/, …, (Řmin/)Rmin, i.e., r=ř/ and 

ř=round(r).  Each DP[i, ř] is used to store four pieces of 

information of each selected topology Gi that has Rel(Gi)≥r. 

C[i, ř] is the cost of Gi=(V, E – LXi) with total reliability at 

least ř, and minimum cost, easily we set C[i, ř]=Cost(Gi), R[i, 

ř]=Rel(Gi).. Note that we store the minimum cost of Gm 

subject to Rel(Gm) Rmin  in C[m, Řmin]. We try to find the 

most optimal LXm whose deletion from E will produces the 

optimal NT, i.e., Gopt. Let L[i, ř]=LXi such that Rel(Gi)≥r, 

where r=ř/, and C[i, ř]=Cost(E-L[i, ř]). W set each J[i, 

ř]=ř1, for columns ř1řř2 in row i that have the same 

reliability value. For example, we store J[i, ř]=38 at columns 

ř=0 to ř=38 if R[i, 0]=R[i, 1]=…=R[i, 38]. Note that we set 

J[i, ř]=ř when ř1=ř2, i.e., when the length of the range is one. 

DPCR-L using the following three equations to calculate C[i, 

ř]: 

C[i, ř]=0;  if i=1 and Rel(G-e1) < r (3) 

C[i, ř]=Cost(G-e1);  if i=1 and  Rel(G-e1)≥r (4) 

C[i, ř]=Min(C[i-1, ř], Cost(G-L[i-1, řj] - 

{ei}));    

   if i>1,1≤řj≤ ř and Rel(G-L[i-1, řj]-{ei})≥r                                                                 

(5) 

 

Note that Rel(G-e1) present network reliability of G after 

deleting link e1 and Cost(G-e1), refer to the cost of network G 

after deleting link e1 and r=ř/. The link selection starts from 

the first link e1. In Eq. (3), when Rel(G-e1)≥r, link e1 cannot 

be deleted since the resulting NT is non9c-feasible, i.e., does 

not meet the constraint r, and thus we set C[1, ř]=0. In 

contrast, if the Reliability of G without e1 satisfies the 

reliability requirement r, i.e., it is a feasible solution, in Eq. 

(4), e1 is deleted, giving C[1, ř ] =Cost(G-e1).  

 

In case of delete each link ei, together with some previously 

deleted links in LXi-1, Equation (5) will be used, i.e., Rel(G-

L[i-1, řj]-{ei})≥r, for each possible j=J[i, ř]= Řg .. Řmin, and Gi 

has the minimum cost. In case of ei is not deleted, the potential 

minimum cost would come from deleting links in (ei+1, ei+2,…, 

em) with unchanged reliability ř; i.e., C[i, ř]= C[i-1, ř]. 

However, if ei is deleted, the resulting cost would be Cost(G-

(L[i-1, řj]-{ei}). Thus, Eq. (5) sets C[i, ř] to the minimum 

between the two potential cost values. When the two options 

produce the same cost, our implementation selects the one 

with higher reliability.  
 

4.2 Dynamic Programming Proposed Solution 

Shows the pseudo code of our proposed DP algorithm, 
called DPCR-L, that directly applies the DP Eq. (3) to (5). 
DPCR-L implicitly constructs a DP table of size m× Řmin for a 
G=(V, E) that contains m=|E| links with reliability constraint 
Rmin. However, as shown in, DPCR-L keeps only two 
consecutive rows, called row1 and row2, and therefore we 
require only a table of si e 2×Řmin. Typically, by using the 
information in C[2, ř] and L[2, ř] in row2, DPCR-L computes 
C[1,  j] and L[1,  j]  in row1 for all columns ř. After copying 
the contents of row1 to row2, DPCR-L repeats the steps until 
all links are considered. Line 1,  Line 2 to 5,  Line 6 to 15, are 
used to implements Eq. (3), Eq. (4), Eq. (5), respectively. Lines 
16 to 18 copy row1 to row2. Function Cost(X) in computes the 
total cost of the union of links in network X=(X-L[i-1, rj]-{ei}), 
and function Rel(X) calculates the reliability of the network X 
using the Monte Carlo Simulation [28]. 
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4.3 DP time complexity 

The time complexity of DPCR-L can be computed as follows.  

 

The Rel(X) function is calculated using any heuristic 

technique [12], exact (s, t) reliability method [27], or 

approximation (bounding) method [13]. In this paper, In this 

paper, we use Monte Carlo simulation with time complexity 

O(b×|V|
4
) [11] to estimate Rel(X) of each candidate network; 

b is the number of replication and |V| are the numbers of 

replications and nodes respectively [27]. Notice that Rel(X) is 

used only for each different j in each row i and if Rel(X)≥Řmin 

then Rel(X) is calculated only. 

 

The Cost(X) Function requires all unique links used in 

network X. Cost(X) will returns the sum of links that are in 

network X without the set of the links in L[i-1, ř] + {ei} for 

each c. Using the bit implementation [27], one requires only 

one bit OR and one bit XOR operation to obtain the links in X 

that are not in L[i-1, ř] + {ei}, and thus for any X, Cost(X) can 

be computed in O(|E|). DPCR-L uses the function at most 

once for every table entry, and therefore the worst case time 

complexity for using the function is O(E|
2
×Řmin). Let  be the 

total number of cases where Rel(X)≥Řmin. Hence the time 

complexity of using Rel(X) is O(×b×|V|
4
).Thus, in the worst 

case, DPCR-L requires O(×b×|V|
4
+|E|

2
×Řmin). 

 

4.4 Improving the Efficiency of DPCR-L using Link 

Ordering 

As shown by our simulation results in Section 5, the ordering 

of deleted links will determine the optimality of our heuristic 

DPCR-L for its input. We propose the following five possible 

link-orderings: 1) LO1: Increasing link cost ci; 2) LO2: 

Decreasing link cost ci; 3) LO3: Increasing link reliability ri; 

4) LO4: Increasing ratio ci/ri; LO5: Increasing ratio ri/ci.  

Table  shows an example of the different ordering criteria 

LO1-LO5 for CN in Figure 1. For example, LO1 aims to 

exclude less costly links from the topology first. Link-Order 

Criterion LO1 produces links (a, c, f, h, e, g, b, d) in 

increasing cost order, e.g., link a with cost of 2 then link c 

with cost of 3. You can use any sorting algorithm, e.g., merge 

sort, for any link order with time complexity of O(|E|×log |E|) 

[29],[30],[31].  
 

5. SIMULATION AND DISCUSSION 

We have implemented our DPCR-P in C language. In 

Section 5.1, we consider DPCR-L on the 20 networks 

described in [25] to observe the effects of using the five link-

orders, LO1 to LO5, on the effectiveness of our algorithm. 

Moreover, to compare the performance of DPCR-L against 

DPCR-P [6]. In Section 5.2, the DPCR-L is utilized on 100 

networks with a known optimal network to gauge DPCR-L’s 

effectiveness. Finally, in Section 5.3, the DPCR-L is utilized 

on large grid networks that contain up to 2
99

 paths to evaluate 

its efficiency and effectiveness.  

Table 2: Example of different link orders 
No. Link-1 Link-2 Link-3 Link-4 Link-5     Link-6    Link-7 Link-8 

LO1 a C f h e g b d 

LO2 d B g e h f c a 

LO3 D B g f h c e a 

LO4 A H c f e g b d 

LO5 D B g e f c h g 

5.1 The Effect of link Orderings on DPCR-L 

 
The DPCR-L is utilized on 20 networks in [9] to observe 

the effects of using LO1- LO5 link orderings (described in 
Section 4.3 on the effectiveness of our algorithm. The networks 
contain four to 20 nodes and five to 30 links, with seven to

 
780 

(s, t) paths. We use    
       

 to denote a CN with |V| nodes, |E| 
links, n(s, t) paths, and reliability constraint Rmin. For each of 
the 20 networks in [6],[30],[32], we first randomly assigned the 
ri and ci for each ei, and set Rmin randomly between 40% to 
80% of the reliability of the original network (i.e., the 
reliability of the network with complete links). Then, we sort 
all links of each topology using the link order criteria, LO1- 
LO5 and use DPCR-L to compare the performance of the five 
link-orders and confirm the merit of using these order criteria. 
As shown in 

 

 

Table 3, it is clear that the LO3 order is the best as 
compared to others because it gets 14 out of 20 best results. 
Please see the numbers in bold in columns LO1 to LO5 and the 

DPCR-L 

**  rj is the reliability of selecting jth solution in row 2  and j is 

 the different solutions  

1.   Initialize m= |E|, L[2,ř]={} and C[2, ř]=0 for ř>Rel (G - e1) // Eq. 

(3) 

2.   for (ř Rel(G) down to Rel (G - e1)) do // Eq. (4) 

3.        L[2, ř]  {e1} 

4.        C[2, ř]  Cost(G- e1)   

5.   end for ř  

6.      for   (i from 2 to m)    // Eq. (5) 

7.        for ( ř  from   Řmin to Rel(G) )   

8.             while( 1≤rj≤r j  and  != 0  )  // **  

9.                  if  (Cost(G-L[2, rj ]-{ei}<C[2,  ř ])  

10                      L[1,  ř ] = L[2, rj ]+ {ei}  

11.                     C[1,  ř ] =Cost(G-L[2, rj ] - {ei})     

12.                else 

13.                     L[1,  ř]   L[2,  ř]   

14.                     C[1,  ř]  C[2,  ř]     

15.                j - - 

16.      for (K  Řmin to Rel(G)) //copy content row 1 to row 2 

17.            L[2, k ]  L[1, k ]                     

18.             C[2, k ]  C[1, k ]  

Figure 3: DPCR-L Pseudo code 
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last row in the columns that shows the number of times each 
link order produces the best results among the five orders).; 
Notice that LO1, LO2 and LO5 are the next best orders, 
producing 9,8 and 7 best results, respectively, while LO4 is the 
worst performers with only six best results. It also shows that 
DPCR-L produces only three best results when using the 

random order; note that all other ordering criteria, i.e., LO1-
LO5 are also produce the three best results. The results confirm 
the merits of using the proposed link orders. Further, to 
generate NT with the minimum cost, The DPCR-L using each 
of the five link orders is run, and selects the NT with the lowest 
cost.

Table 3 shows that the LO3 order is the best and  LO1, LO2 

and LO5 are the next best orders, while LO4 is the worst 

performers, because LO3 order gets 14 out of 20 best results; 

see numbers in bold in columns LO1 to LO5. Notice that LO1, 

LO2 and LO5 producing eleven, eight and seven best results, 

respectively, Note that when DPCR-L using the random order 

, it produces only three best results; and all these three best 

results are also produced from LO1-LO5. Moreover, to 

produce network topology with the minimum cost, The 

DPCR-L using each of the five link orders is run, and selects 

the NT with the lowest cost.  

Furthermore, Table 4 shows the best minimum cost for each 

network generated by DPCR-P [6] and the CPU time in 

second to generate the best topology; see the last two columns. 

Note that the authors [6] proposed Two link orders, CR1, 

CR2, and Table 4 shows the best outcomes of DPCR-P using 

all orders. As shown in Table 4, DPCR-L generates topology 

with lower cost for 11 of 20 networks, and speeds up its 

running time up to 31.71%, as compared to DPCR-P see 

column DPCR-L CPU time result with( %) and DPCR-P CPU 

time. Further, DPCR-L is generating the same results as 

DPCR-P for the other 7 topologies, while producing only two 

inferior results that has a lower cost for network  and 

. It is clear from the CPU’s time of both approaches 

that DPCR-P potentially require generating all (s, t) simple 

paths to solve the problem, while our DPCR-L approach 

deletes sequentially only up to |E| links to solve the problem, 

so this will speed up the process and thus significantly reduces 

the time complexity. 

5.2 The Performance of DPCR-L on Benchmark Networks. 

We generated 100 networks from the 20 topologies in Section 

5.1 to benchmark the optimality of DPCR-L. Let >0 be the 

number of edges deleted from a network. For =1, an optimal 

Gi =(V, E-{ei}), for any eiE, is generated as follows. For 

each possible eiE, the Gi was first generated, where there are 

different |E| for each Gi. For each Gi, the Rel (Gi), is 

calculated, and the selected Gi with the maximum reliability as 

Gmin with cost Cost(Gmin). The steps are repeated for =2, 3, 4, 

5. For larger , the benchmark networks were not generated 

because it would be very time consuming. For example, when 

|E|=30 and =6, there are 593775 different Gi and thus finding 

Gmin among them require a significant amount of time since 

computing the reliability value of each Gi takes exponential 

time. For each generated network Gi, we set Rmin=Rel(Gmin), 

the tightest possible constraint, and thus each benchmark 

evaluates the worst possible performance for our DP 

algorithms. The DPCR-L was run using LO3, to generate 

topologies from the 100 benchmark networks, and the better 

results between them are considered. Our simulations show 

that DPCR-L produces 93% optimal results. Interestingly, of 

the 7 non-optimal results, DPCR-L produces a network with 

reliability no worse than 5.38% off optimal, and most of the 

non-optimal results have a lower cost than that for optimal up 

to 0.17%.  
 

 

 

Table 3: Best Cost(G) for each ordering criteria using DPCR-L 

 

Input DPCR-L  

Best Cost(G) for each ordering criteria 

 Rmin Random LO1 LO2 LO3 LO4 LO5 

 

0.88 14 14 14 14 14 14 

 

0.85 27 26 22 26 25 24 

 

0.90 21 21 19 21 19 21 

 

0.90 25 25 25 25 25 25 

 

0.80 33 33 31 30 31 33 

 

0.95 21 20 21 18 21 19 

 

0.95 28 24 25 25 25 26 

 

0.90 42 30 38 40 38 31 

 

0.85 33 31 31 31 31 31 

 

0.90 28 26 26 24 26 24 

 

0.90 22 22 21 18 22 21 

 

0.90 31 29 30 30 31 29 

 

0.90 23 21 21 21 26 22 

8,5
9CN

13,9
18CN

8,6
7CN

8,5
9CN

9,6
13CN

12,9
13CN

15,7
14CN

21,11
18CN

13,9
18CN

12,8
24CN

12,8
20CN

12,7
25CN

13,8
29CN

30,16
36CN

26,21
44CN
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0.75 29 25 27 25 27 29 

 

0.85 32 33 33 30 33 32 

 

0.90 28 30 30 27 30 27 

 

0.90 42 40 42 42 42 42 

 

0.90 34 29 27 30 29 30 

 

0.90 48 42 45 42 46 45 

 

0.90 40 37 36 31 31 35 

Total  3 11 8 14 6 7 

  

Table 4: The minimum cost of feasible topology for each network generated by DPCR-L and DPCR-P. 

Table 5: Comparison between DPCR-L and optimal results 

Input DPCR-L 

CN α Rmin Rel(G1) Cost(G1) 

 3 83.6 83.8(0.23%) 20(-0.17%) 

 4 87.1 87.5(0.45%) 23(-0.12%) 

 1 72.8 75.9(4.25%) 26(-0.04%) 

 3 89.1 90.3(1.34%) 37(-0.09%) 

 2 83.5 88.0(5.38%) 32(-0.11%) 

 5 75.6 75.9(0.39%) 27(-0.13%) 

 3 92.8 92.8(0.00%) 36(-0.05%) 

 

14,9
44CN

21,10
64CN

25,17
136CN

21,18
205CN

22,13
281CN

27,18
282CN

30,20
780CN

13,9
18CN

25,17
136CN

14,9
44CN

21,10
64CN

25,17
136CN

27,18
282CN

22,13
281CN

 DPCR-L DPCR-P 

 Rmin Link Ordering DPCR-L 

Cost(G) 

Best Result 

CPU 

CPU time 

(seconds) 

DPCR-P 

Cost(G) 

Best Result 

CPU time 

(seconds) 

 

0.88 Random, 

LO1-LO5 

14 0.01(0.0%) 14 0.01 

 

0.85 LO2 22 0.08(12.5%) 21 0.09 

 

0.90 LO2,LO4 19 0.63 (30.15%) 1 9 0.82 

 

0.90 Random, 

LO1-LO5 

25 1.07(7.47%) 27 1.15 

 

0.80 LO3 30 2.74(9.85%) 31 3.01 

 

0.95 LO3 18 3.53(16.71%) 18 4.12 

 

0.95 LO1,LO3 24 4.40(2.50%) 22 4.51 

 

0.90 LO1 30 5.18(2.51%) 31 5.31 

 

0.85 LO1-LO5 31 7.19(7.37%) 31 7.72 

 

0.90 LO3,LO5 24 6.26(3.67%) 26 6.49 

 

0.90 LO3 18 6.44(4.96%) 20 6.76 

 

0.90 LO1,LO5 29 8.15(17.91%) 30 9.61 

 

0.90 LO1,LO2,LO3 21 8.84(13.57%) 21 10.04 

 

0.75 LO1,LO3 25 5.16(16.66%) 27 6.02 

 

0.85 LO3 30 5.37(21.78%) 33 6.54 

 

0.90 LO3,LO5 27 16.48(11.10%) 27 18.31 

 

0.90 LO1 40 18.94(25.97%) 42 23.86 

 

0.90 LO2 27 17.27(23.91%) 29 21.40 

 

0.90 LO1,LO3 42 19.54(31.78%) 44 25.75 

 

0.90 LO3,LO4 31 21.49(10.42%) 31 23.73 

8,6
7CN

8,5
9CN

9,6
13CN

12,9
13CN

15,7
14CN

21,11
18CN

13,9
18CN

12,8
24CN

12,8
20CN

12,7
25CN

13,8
29CN

30,16
36CN

26,21
44CN

14,9
44CN

21,10
64CN

25,17
136CN

21,18
205CN

22,13
281CN

27,18
282CN

30,20
780CN
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5.3 DPCR-L for large networks 

To evaluate the time efficiency of the proposed DPCR-L, The 

DPCR-L is utilized to solve the NTD-CR for grid networks in 

[25] with the number of nodes, links and (s, t) paths range 

from 36 to 200, 57 to 298, and 538020 to 2
99

, respectively. We 

set cj=1 and rj=0.9 for each of the five grid networks.  

Note that it is the same result produced by DPCR-P in [6], but 

DPCR-L needs only 32.81 seconds to generate the result, 

DPCR-L speeds up the process up to (47.28%) compared to 

DPCR-P. These results show the applicability of DPCR-L on 

networks containing a large number of links. However, for 

these large networks, we are unable to gauge the optimality of 

its generated topologies. Note that DPCR-L needs only |E| 

links to produce its DP table, DPCR-P potentially needs O 

(2
|E|-|V|+2

) (s, t) paths to produce its DP table. For large sized 

CN, there is significant difference, e.g.,   
       
       

 that has 298 

links with 2
99

 paths. Therefore, DPCR-L generates more NT 

that has lower cost, further; using the five link-orders also 

significantly outperforms DPCR-P in terms of computational 

time complexity. 

6. CONCLUSION 

In this research, an NP-hard network topology design 

problem, called NTD-CR, have been define to generate a 

network topology design with minimized cost subject to (s, t) 

terminal reliability. We have proposed a heuristic dynamic 

programming method, called DPCR-L, and five different link 

ordering criteria to to solve NTD-CR problem. Extensive 

Simulation based on different benchmark networks of various 

sizes are used to compare DPCR-L with existing state-of-the-

art techniques and shows the merits of using the ordering 

methods, and the effectiveness of our algorithm. Comparing to 

the most recently proposed approach, DPA [6] simulations 

show that DPCR-L finds better results. Since DPCR-L is 

computationally more efficient as compared to the existing 

approaches, it becomes an obvious choice to be used in large 

network topology design. Furthermore, simulation results on 

large size networks show that DPCR-L speeds up the process 

with up to (47.28%) compared to the recent existing approach 

and show the practicality of our techniques. Finally, our 

simulations show that DPCR-L produces 93% optimal results.  
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