

4012

On Minimizing Cost of Reliable Network Topological

Design using a Practical DP Approach

Basima Elshqeirat

Department of Computer Science, the University of Jordan,

P.O. Box 11942, Amman, Jordan.

 B.shoqurat@ju.edu.jo

ABSTRACT

 This paper addresses an NP-hard problem called NTD-CR

that using dynamic programming (DP) scheme. This problem

referred to as Network Topology Design with minimum Cost

subject to a Reliability constraint. It designs a minimal-cost

communication network topology that satisfies a pre-defined

(s, t) terminal reliability constraint. Our DP approach, called

DPCR-L, mainly select the set of possible links to be deleted

from the original network to generate an optimal Network

Topology. The NTD-CR design problem aims to find a

Network Topology that has minimal cost with the required

reliability for the network. Five link-ordering criteria are

proposed to improve the performance of DPCR-L. Each

greedy heuristic order allows DPCR-L to enumerate the

selected deleted links, which improves the time complexity

while producing near optimal topology. Extensive Simulations

based on different benchmark networks of various sizes are

used to compare DPCR-L with existing state-of-the-art

techniques and show the merits of using the ordering methods,

and the effectiveness of our algorithm. Our simulations show

that DPCR-L produces 93% optimal results. Interestingly, of

the non-optimal results, DPCR-L produces a network with

reliability no worse than 5.38% off optimal, and most of the

non-optimal results have a lower cost than that for optimal up

to 0.17%. Typically, for the most of the network topologies,

DPCR-L generates NT with the same or better 2-terminal

reliability measure and speeds up its running time up to

31.71%. Furthermore, simulation results on large size

networks show that DPCR-L speeds up the process with up to

(47.28%) compared to the recent existing approach. Finally,

the results present the applicability of DPCR-L on networks

containing a large number of links and demonstrated better

performance and computationally more efficient than other

existing algorithms.

Key words: Dynamic programming; Network optimization;

Network reliability; Communication Network; Network

topology design.

1. INTRODUCTION

Many applications require some network Quality of Service

(QoS) constraints such as reliability, delay, and/or bandwidth

to be operational For example, critical applications (e.g.,

emergency services, critical time system, rescue, and military

operations) must run on a network topology with guaranteed

minimum reliability so that they can operate without

interruption, even in the presence of component failures [1].

The design of network topology is an important part of a

network design [1, 2]. Therefore, it is crucial to design

network topology that can meet its applications’ QoS

requirement, since in general, optimal design of network

topology directly affects network QoS [2]. In this work, a

single-objective optimization problem for network topology

design problem is considered , this mean that we consider only

one objective and one condition for the design process [3].

However, constructing a network with higher QoS such as

reliability incurs higher installation cost, since for example

link reliability is directly proportional to its installation cost.

Therefore, the most suitable set of links such that the resulting

best layout meets its cost objective and required reliability

must carefully select by a network designer. We called this

situation a network topology design with cost objective and

reliability constraint (NTD-CR) problem. Specifically, given

(a) locations of the various computer centers (nodes), (b) their

connecting links, (c) each link’s reliability and cost, and (d)

the required operational reliability of the network, the final

solution will have the best set of links such that the resulting

layout meets its required (s, t) terminal reliability while

minimizing its installation cost.

In this paper, we consider the (s, t) terminal reliability [4], , as

the measure of reliability (R), which is the probability that at

least one simple (s, t) path in the network is functional

between source node s and the terminal node t, it is also

called 2-terminal reliability. Further, some applications must

run on a topology with a guaranteed minimum reliability, to

properly operate. However, constructing a reliable topology

incurs higher installation cost as we said above. Therefore, for

such applications, the topology design emphasizes on

minimizing the network installation cost subject to the

required reliability level. In practice, however, when the

network service provider or decision maker has a limited

ISSN 2278-3091

Volume 9, No.3, May - June 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcs226932020.pdf

https://doi.org/10.30534/ijatcse/2020/226932020

mailto:B.shoqurat@ju.edu.jo
http://www.warse.org/IJATCSE/static/pdf/file/ijatcs226932020.pdf
https://doi.org/10.30534/ijatcse/2020/226932020

Basima Elshqeirat, International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 4012 – 4021

4013

budget to build the network, the aim will be to produce a

network topology from the selected links with the maximum

reliability subject to the cost constraint; we call this as NTD-

RC problem. Both these problems (NTD-CR an NTD-RC) are

NP-hard [5]. Obviously, heuristic and/or approximation

solutions must be use to design large sized topologies that

contain many nodes, links and (s, t) paths.

2. RELATED WORK

There are some proposed techniques that find optimal or

approximately optimal solutions for the NTD-CR problem [6,

7]. Jan, et al. [8] considered a network G whose links have the

same reliability values and developed an algorithm that

combines decomposition, B&B techniques to find an optimal

solution. Later, Koide et al. [10] generalized the problem in

[8] for graph G with non-homogeneous link reliabilities, and

developed another B&B algorithm to solve the problem. The

B&B approaches are computationally expensive, and thus are

suitable only for small sized networks with up to nine nodes

[8, 9].

Kumar, et al. [10] have developed a GA-based approach to

solve NTD-CR that includes two additional constraints, i.e.,

diameter and average distance, and applied it to four test

networks with up to nine nodes. Although the problem in [10]

is a superset of NTD-CR, its solution cannot be used to solve

the NTD-CR problem because the problem considers only

links with identical reliability and cost. Deeter and Smith [11]

presented a GA approach to solving the NTD-CR problem.

However, their solution considers alternative link reliabilities,

and thus cannot be used to solve our NTD-CR problem in

which each link may have different reliability values. Dengiz,

et al. [12] proposed a heuristic GA approach, called NGA, to

solve the NTD-CR problem. In [13], the same authors have

developed another GA-based solution, called Local search GA

(LS-NGA), using a special encoding structure, crossover, and

mutation operators. These GA methods yield poor quality

solutions for networks with more than 10 nodes [14]. Later,

Lin and Gen [15] proposed a self-controlled GA to solve the

NTD-CR problem. However, these GA methods require the

development, coding, and testing of a problem-specific GA,

complicating the solution process [12, 15]. Mutawa, et al. [16]

proposed a steady-state GA, and Shao, et al. [17] proposed an

algorithm, called a shrinking and searching algorithm, to solve

NTD-RC problem that maximizes network reliability under a

cost constraint, which is a related NTD-CR problem,

discussed before in this Section. Ramirez-Marquez and Rocco

[14] have presented a population-based heuristic approach

called the probabilistic solution discovery algorithm.

However, their approach is shown less effective compared to

the more recent approach in [5], who developed a NN

heuristic algorithm, and the authors in [12] used an artificial

NN for the NTD-CR problem. As stated in [14], while the NN

and artificial NN algorithms produce good results, they use a

long procedure that needs extensive time and significant

parameter tuning. A deterministic version of simulated

annealing (SA) was used by Atiqullah and Rao [18] to find the

optimal design of small networks, i.e., five nodes or less.

Pierre, et al. [19] also used SA to find optimal designs for

packet switch networks where delay and capacity were

considered, but reliability was not. Recently, a new

metaheuristic called Cross-Entropy method was developed for

the NTD-CR problem [20]. In addition, Papagianni, et al. [21]

proposed a Multiple TS algorithm was used to solve the NTD-

CR problem with 19 nodes; however, the algorithm may not

reach the global optimum solution in reasonable computation

time when the initial solution is far away from the region

where the optimal solution exists. In [22], a Binary Decision

Diagram (BDD) is used to solve the same design problem for

networks containing up to 81 nodes. This approach is based on

a decomposition of Boolean functions called Shannon

decomposition. BDD structure is a compact, implicit

representation of the entire set of the functioning and failing

network states. Dengiz, et al. [23] proposed a hybrid approach

based on Ant Colony Optimization and Simulated Annealing,

called ACO-SA, for the NTD-CR problem for networks with

up to 50 nodes. Note that the results in [7] for the related

Dynamic programming approach show that the DP techniques

produced better results as compared to the BDD approach in

[22] and ACO-SA approach in [23].

As a summary, the existing algorithms that generate

approximation solutions are mainly based on meta-heuristic

techniques, such as Genetic Algorithm [10, 11, 14, 22], Neural

Network [5, 21], Swarm Particle [24] [21], Simulated

Annealing (SA) [17, 18] and Ant Colony Optimization (ACO)

[23]. While the meta heuristic-based algorithms may

significantly reduce time complexity, they still require

numerous iterations to converge and thus use a considerable

computational effort to produce near optimal solutions [23].

Therefore, a more time efficient heuristic approach that can

produce better results is still needed, especially for use in large

scale networks. At this end, most of the existing approaches

either lack the necessary precision to generate an acceptable

solution or have expensive computational effort and time [7].

Here, we developed a heuristic based approach that has better

performance and computationally more efficient than other

existing algorithms to solve NTD-CR problem, discussed in

Simulation Section.

Note that, for the NTD-CR problem, each iteration includes a

reliability computation of the approximated topology to be

tested against the required constraint. Because reliability

evaluation, using both exact or approximation methods, is

computationally expensive (a typical Monte Carlo (MC)

simulation iterates 10
6
 times), which generally uses a

considerable computational effort [6]. For example, Deeter

and Smith [11] proposed a GA based approach that uses MC

simulation to calculate the reliability of each candidate

solution, and thus, for a typical GA solution with a population

size of 6000 and 40 generations, it needs to run MC 240000

times. Therefore, the approaches are computationally

expensive for use in large networks.

Basima Elshqeirat, International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 4012 – 4021

4014

Elshqeirat, et al. [6] proposed a dynamic programming (DP)

formulation and implementation, called DPCR-P, to solve the

NTD-CR problem from all (s, t) simple paths in the network.

They also presented two different path-orders to improve the

effectiveness of DPCR-P. These two different path-orders

dynamically allow DPCR-P to generate only k≥1 paths from

the network and it is stop if there is insignificant improvement

when adding path k+1 to the resulting topology’s cost. Third,

we describe how DPA can use only k (s, t) paths to reduce its

computation time while producing similar results as compared

using all (s, t)simple paths of the network. Furthermore,

[7]solved NTD-CR problem by used DPCR-ST approach to

generating the NT using a sequence of spanning trees to

maximize all-terminal reliability. The approach proves that if

we generate an optimal sequence of spanning trees an inputs,

then DPCR-ST is able to generate optimal NT Note that the

first version of the approach requires all spanning trees of the

network to minimize the cost. Further, they proposed a second

version of the approach that uses only k spanning trees sorted

to improve DPCR-ST’s time efficiency while producing

similar results. Moreover, authors in [7] described three

spanning tree order criteria to heuristically generate the best

sequence of spanning trees that allow DPCR-ST to produce

near optimal results and also showed that producing optimal

order of spanning trees is consider as NP-complete.

The aforementioned DP approaches in [6, 7] have been shown

good results in addressing our NP-hard problem, NTD-CR,

but both approaches will generating all possible (s, t) paths or

spanning trees to produce each feasible topology solution in

the worst case,. Thus, in general, for large networks contains

an exponential number of (s, t) paths and spanning trees , i.e.,

 simple paths and O(|V|
|v|

) spanning trees

such an approach is infeasible [25]. Our main goal in this

paper is proposing a new version of DP approach that called

DPCR-L, which generating each optimized topology result by

deleting unusefull links from the original network (graph

model) without any needs of generating all possible (s, t) paths

or spanning trees. Thus, our proposed approach DPCR-L will

consider only O(|E|) links of the network in the worst case. As

a consequence, this is generally will need less computational

time and effort, so it is computationally more efficient than

other existing DP algorithms such as DPCR-P and DPCR-ST

for NTD-CR problem. Furthermore, five link-orders criteria

are proposed and utilized by DPCR-L to further improve

results.

Furthermore, the authors of [1, 26] have proposed a dynamic

programming algorithm to solve a related NTD problem,

called NTD-RC, to construct a topology that maximized 2-

terminal or all-terminal reliability subject to a cost budget

constraint. However, these DP approaches cannot be used

directly to solve the NTD-CR problem because the two related

problems require two different dynamic programming

formulations, and thus need different solutions [25]. Further,

to maximize the reliability, for each entry of a dynamic

programming table, the NTD-RC problem needs to compute

an exact reliability value, which is a very time consuming step

because computing the reliability, in general, is known to be

NP-hard [27]. On the other hand, to minimize network cost,

the NTD-CR problem needs to generate only an approximated

reliability, which can be solved using a significantly faster

heuristic technique such as Monte Carlo Simulation [28].

Please note that DP approach proposed in ELSHQEIRAT et

al. 2013b (ELSHQEIRAT et al. 2014a), called DPA,(DPA-1)

needs generating all possible (s, t) paths (spanning trees) to

produce each feasible topology solution to solve NTD-RC

problem with consider 2-terminal reliability (all terminal

reliability), respectively. Furthermore, another recent DP

approach proposed, called Algo-DP, to solve the related

problem NTD-RC in Elshqeirat et al. 2018. Algo-DP

generating each optimized topology result by deleting set of

links from the original network (graph model) without any

needs of generating all possible (s, t) paths or spanning trees.

As we said above, we can’t directly use these DP approaches

that solve NTD-RC problem to Solve NTD-CR problem

because the two related problems require two different

dynamic programming formulations, and thus need different

solutions [25].

The contribution of this paper is threefold:

1- It presents DPCR-L approach that utilizes dynamic

programming (DP) formulation, solution and its

implementation, to solve the NTD-CR problem by deleting

selected set of links from the original network. As we said

before, Authors in [6] also have used DP technique called

DPCR-P to solve the NTD-CR problem, but, their algorithm

potentially requires generating all (s, t) simple paths. Note

that, an arbitrary network that contains a set of V nodes and a

set of E links has simple paths [6]. In

contrast, our DP approach significantly reduces the time

complexity because it deletes sequentially only up to |E| links

to solve the NTD-CR problem.

2- DPCR-L approach in this paper presents five link-ordering

criteria, i.e., LO1- LO5, discussed later in Section 4.4; DPCR-

L utilizes each link-ordering criterion to optimize the

generated NT by determining the order of link deletions from

the original topology.

3- Our simulations on 25 networks with various sizes with up

to 200 nodes, 298 links and 2
99

 (s, t) paths, reported in Section

5, show the benefits of our method as compared to an existing

approach in [6]. Specifically, DPCR-L generates NT with the

same or better 2-terminal reliability on all but only two (with

about 1.8% worse cost) of the 20 network topologies, but it

speeds up the running time up to 31.71% compared to the

existing approach in [6], simulations show that DPCR-L

produces 93% optimal results. Interestingly, of the non-

optimal results, DPCR-L produces a network with reliability

no worse than 5.38% off optimal, and most of the non-optimal

results have a lower cost than that for optimal up to 0.17%. In

large size networks, results show that DPCR-L speeds up the

Basima Elshqeirat, International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 4012 – 4021

4015

process up to (47.28%) compared to the recent existing

approach in [6], and prove that DPCR-L is computationally

more efficient than existing algorithms. These results present

the applicability of DPCR-L on networks containing a large

number of links and indicate that DPCR-L demonstrated better

performance than other existing algorithms. Please note that

we didn’t compare our results with DPCR-ST approach in

Elshqeirat et al. 2014b, because their DP approach measure

all-terminal reliability while in our problem we measure (s, t)

reliability similar to the problem presented by DPCR-P

approach in Elshqeirat et al. 2013a.

The layout of the paper is as follows. Section 3 presents brief

description to the network model and Notations. Section 4

formulates the NTD-CR problem, provides assumptions, and

describes the proposed solution with the time complexity and

different order criteria. Section 5 shows the simulation results.

Finally, conclusion of the paper presented in Section 6.

3. NETWORK MODEL AND NOTATIONS

A communication network (CN) can be modelled by a

probabilistic bidirectional simple graph G = (V, E), in which

each node viV represents a network component (e.g., router,

computer site) and each edge ejE represents the connecting

media (e.g., communication link) between the network

components. We assume that (a) all locations of the various

computer centers (nodes), (b) their connecting links, (c) each

link’s reliability and cost, and (d) the required operational

reliability of the network are given. Each ej has cj and rj , cj>0

is the cost to install ej, and rj , 0≤rj≤1, is probability that ej is

functioning (UP) [10]; Let m be the total number of edges in

G, i.e., m=|E|. We assume that all nodes are always UP, use no

setup costs, and edge failures are independent and without

repair. Fig. 1 shows a graph model of a CN that has six nodes

and eight links.Error! Reference source not found. provides

the cj and rj values for each edge ej.

Figure 1: Network Example

Table1: Link Weight for Network

Link ej

Link Weight

(cj , rj)

a (2,0.9)

b (5,0.7)

c (3,0.8)

d (6,0.6)

e (4,0.9)

f (3,0.8)

g (4,0.7)

h (3,0.8)

The cost function of a network topology or graph G, Cost(G),

is the summation of all cj for each ej in G. R(G) is the function

that calculate the probability if there is at least one operational

path between source node (s) and terminal node (t). In general,

computing Rel(G) is an NP-hard problem [28]. As described

in Section 4.3, the Monte Carlo Simulation in [28] is used to

approximately compute Rel(G).

1.1 Design Problem

 Let Xj be a decision variable with two values {0, 1}

that indicates if link ej in G=(V, E) is selected (Xj=1), or link ej

not selected (Xj=0). The following two equations describe the

NTD-CR problem.

 inimi e (1)

Subject to Rel (Gi=(V, Ei))≥Rmin (2)

Let us define a network topology G feasible when Rel(G) ≤

Rmin. Equation (1) calculates the minimum cost of a network

topology Gi=(V, Ei) that contains links Ei=E–{ej | Xj=0}; i.e.,

Ei is a set of selected links from Equation (2) that form Gi that

has a reliability of at least Rmin. One may solve the NTD-CR

problem by generating each possible set of links in (2) that

form Gi. Then, calculate Cost(Gi) for each Gi that has

reliability Rel(Gi)≥Rmin, and use Eq. (1) to select a Gi with the

minimum cost as Gmin. Unfortunately, this brute force

solution, called BF-1 requires generating O(2
|E|

) possible link

selections, i.e., the Gi. Further, the reliability calculation in (2)

for each Gi requires exponential time; thus BF-1 is feasible

only for designing small topologies. Our work in this paper

proposes a heuristic algorithm, described in Section 4.1, which

generates Ef, and thus Gf, by selectively removing links in E

while satisfying Eq. (1) and (2).

For Example, consider the CN in Figure 1, for NTD-CR

problem. If we have Rmin=0.65, then Figure 2 shows the

optimal network topology, Gopt, with Rel(Gopt) =0.659 and

Cost(Gopt)=17; after delete links d, f and g from network G to

obtain Gopt.

Basima Elshqeirat, International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 4012 – 4021

4016

 Figure 2: Optimal Solution for Network

4. DYNAMIC PROGRAMMING APPROACH FOR

NTD PROBLEM

4.1 Dynamic Programming Formulation for NTD-RC

Let Gi=(V, EiE) be its induced graph and LXi, for i=1, 2, …,

m, be a set of links sequence selected from i links in (e1, e2,

…, ei), recall that m=|E|, In other words, LXi is a set of deleted

links in (e1, e2, …, ei) from G, i.e., Ei = E – LXi; . which mean

that our Gi will not contain any link in LXi. Note there are

O(2
|Ei|

) different possible LXi and 0≤|LXi|≤i. NTD-CR aims to

delete set of links in (e1, e2, …, em) such that Rel(Gm)≥Rmin and

Cost(Gm) is the minimum. We said that a solution or NT, Gi, is

feasible if its (s, t) reliability, Rel(Gi)≥Rmin. Otherwise, it is a

non-feasible solution. For example, NT in Figure 1 with Rmin

=0.65, LX8=(d, f, g) can be consider a feasible solution

because Rel(G8)=0.659≥ Rmin.

Let DP[1 .. m, ŘG .. Řmin] be a 2-dimensional dynamic

programming (DP) table, where ŘG= round(Rel(G)), i.e.,

the Reliability of the original network with no link deletion

and Řmin=round(Rmin), for a positive integer multiplier  and

a function round() that returns the closest integer value of ().

For example, the function returns Řmin=92 (Řmin=93) when we

set =100 and Rmin=0.9216 (Rmin = 0.9261).

Each element DP[i, ř], for i=1, 2, …, m, ř= ŘG, …, Řmin, stores

four pieces of information: a cost 0c[i, ř]Cost(G), a

sequence of links L[i, ř]E, a reliability Řmin<R[i, ř]≤ŘG , and

an integer index ŘminJ[i, ř]ŘG. Let C[i, ř]be Cost(Gi), for ř=

ŘG, …, Řmin be the minimum cost of Gi subject to Rel(Gi)≥ ř.

In essence, the columns of DP table partition the reliability

constraint Rmin into  consecutive reliability constraints, i.e.,

Rmin/, (2Rmin)/, …, Rmin/= Rmin. In other words, each

column index ř=0, 1, …, Řmin, corresponds to a reliability

constraint r=0, 1/, …, (Řmin/)Rmin, i.e., r=ř/ and

ř=round(r). Each DP[i, ř] is used to store four pieces of

information of each selected topology Gi that has Rel(Gi)≥r.

C[i, ř] is the cost of Gi=(V, E – LXi) with total reliability at

least ř, and minimum cost, easily we set C[i, ř]=Cost(Gi), R[i,

ř]=Rel(Gi).. Note that we store the minimum cost of Gm

subject to Rel(Gm) Rmin in C[m, Řmin]. We try to find the

most optimal LXm whose deletion from E will produces the

optimal NT, i.e., Gopt. Let L[i, ř]=LXi such that Rel(Gi)≥r,

where r=ř/, and C[i, ř]=Cost(E-L[i, ř]). W set each J[i,

ř]=ř1, for columns ř1řř2 in row i that have the same

reliability value. For example, we store J[i, ř]=38 at columns

ř=0 to ř=38 if R[i, 0]=R[i, 1]=…=R[i, 38]. Note that we set

J[i, ř]=ř when ř1=ř2, i.e., when the length of the range is one.

DPCR-L using the following three equations to calculate C[i,

ř]:

C[i, ř]=0; if i=1 and Rel(G-e1) < r (3)

C[i, ř]=Cost(G-e1); if i=1 and Rel(G-e1)≥r (4)

C[i, ř]=Min(C[i-1, ř], Cost(G-L[i-1, řj] -

{ei}));

 if i>1,1≤řj≤ ř and Rel(G-L[i-1, řj]-{ei})≥r

(5)

Note that Rel(G-e1) present network reliability of G after

deleting link e1 and Cost(G-e1), refer to the cost of network G

after deleting link e1 and r=ř/. The link selection starts from

the first link e1. In Eq. (3), when Rel(G-e1)≥r, link e1 cannot

be deleted since the resulting NT is non9c-feasible, i.e., does

not meet the constraint r, and thus we set C[1, ř]=0. In

contrast, if the Reliability of G without e1 satisfies the

reliability requirement r, i.e., it is a feasible solution, in Eq.

(4), e1 is deleted, giving C[1, ř] =Cost(G-e1).

In case of delete each link ei, together with some previously

deleted links in LXi-1, Equation (5) will be used, i.e., Rel(G-

L[i-1, řj]-{ei})≥r, for each possible j=J[i, ř]= Řg .. Řmin, and Gi

has the minimum cost. In case of ei is not deleted, the potential

minimum cost would come from deleting links in (ei+1, ei+2,…,

em) with unchanged reliability ř; i.e., C[i, ř]= C[i-1, ř].

However, if ei is deleted, the resulting cost would be Cost(G-

(L[i-1, řj]-{ei}). Thus, Eq. (5) sets C[i, ř] to the minimum

between the two potential cost values. When the two options

produce the same cost, our implementation selects the one

with higher reliability.

4.2 Dynamic Programming Proposed Solution

Shows the pseudo code of our proposed DP algorithm,
called DPCR-L, that directly applies the DP Eq. (3) to (5).
DPCR-L implicitly constructs a DP table of size m× Řmin for a
G=(V, E) that contains m=|E| links with reliability constraint
Rmin. However, as shown in, DPCR-L keeps only two
consecutive rows, called row1 and row2, and therefore we
require only a table of si e 2×Řmin. Typically, by using the
information in C[2, ř] and L[2, ř] in row2, DPCR-L computes
C[1, j] and L[1, j] in row1 for all columns ř. After copying
the contents of row1 to row2, DPCR-L repeats the steps until
all links are considered. Line 1, Line 2 to 5, Line 6 to 15, are
used to implements Eq. (3), Eq. (4), Eq. (5), respectively. Lines
16 to 18 copy row1 to row2. Function Cost(X) in computes the
total cost of the union of links in network X=(X-L[i-1, rj]-{ei}),
and function Rel(X) calculates the reliability of the network X
using the Monte Carlo Simulation [28].

Basima Elshqeirat, International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 4012 – 4021

4017

4.3 DP time complexity

The time complexity of DPCR-L can be computed as follows.

The Rel(X) function is calculated using any heuristic

technique [12], exact (s, t) reliability method [27], or

approximation (bounding) method [13]. In this paper, In this

paper, we use Monte Carlo simulation with time complexity

O(b×|V|
4
) [11] to estimate Rel(X) of each candidate network;

b is the number of replication and |V| are the numbers of

replications and nodes respectively [27]. Notice that Rel(X) is

used only for each different j in each row i and if Rel(X)≥Řmin

then Rel(X) is calculated only.

The Cost(X) Function requires all unique links used in

network X. Cost(X) will returns the sum of links that are in

network X without the set of the links in L[i-1, ř] + {ei} for

each c. Using the bit implementation [27], one requires only

one bit OR and one bit XOR operation to obtain the links in X

that are not in L[i-1, ř] + {ei}, and thus for any X, Cost(X) can

be computed in O(|E|). DPCR-L uses the function at most

once for every table entry, and therefore the worst case time

complexity for using the function is O(E|
2
×Řmin). Let  be the

total number of cases where Rel(X)≥Řmin. Hence the time

complexity of using Rel(X) is O(×b×|V|
4
).Thus, in the worst

case, DPCR-L requires O(×b×|V|
4
+|E|

2
×Řmin).

4.4 Improving the Efficiency of DPCR-L using Link

Ordering

As shown by our simulation results in Section 5, the ordering

of deleted links will determine the optimality of our heuristic

DPCR-L for its input. We propose the following five possible

link-orderings: 1) LO1: Increasing link cost ci; 2) LO2:

Decreasing link cost ci; 3) LO3: Increasing link reliability ri;

4) LO4: Increasing ratio ci/ri; LO5: Increasing ratio ri/ci.

Table shows an example of the different ordering criteria

LO1-LO5 for CN in Figure 1. For example, LO1 aims to

exclude less costly links from the topology first. Link-Order

Criterion LO1 produces links (a, c, f, h, e, g, b, d) in

increasing cost order, e.g., link a with cost of 2 then link c

with cost of 3. You can use any sorting algorithm, e.g., merge

sort, for any link order with time complexity of O(|E|×log |E|)

[29],[30],[31].

5. SIMULATION AND DISCUSSION

We have implemented our DPCR-P in C language. In

Section 5.1, we consider DPCR-L on the 20 networks

described in [25] to observe the effects of using the five link-

orders, LO1 to LO5, on the effectiveness of our algorithm.

Moreover, to compare the performance of DPCR-L against

DPCR-P [6]. In Section 5.2, the DPCR-L is utilized on 100

networks with a known optimal network to gauge DPCR-L’s

effectiveness. Finally, in Section 5.3, the DPCR-L is utilized

on large grid networks that contain up to 2
99

 paths to evaluate

its efficiency and effectiveness.

Table 2: Example of different link orders
No. Link-1 Link-2 Link-3 Link-4 Link-5 Link-6 Link-7 Link-8

LO1 a C f h e g b d

LO2 d B g e h f c a

LO3 D B g f h c e a

LO4 A H c f e g b d

LO5 D B g e f c h g

5.1 The Effect of link Orderings on DPCR-L

The DPCR-L is utilized on 20 networks in [9] to observe

the effects of using LO1- LO5 link orderings (described in
Section 4.3 on the effectiveness of our algorithm. The networks
contain four to 20 nodes and five to 30 links, with seven to

780

(s, t) paths. We use

 to denote a CN with |V| nodes, |E|
links, n(s, t) paths, and reliability constraint Rmin. For each of
the 20 networks in [6],[30],[32], we first randomly assigned the
ri and ci for each ei, and set Rmin randomly between 40% to
80% of the reliability of the original network (i.e., the
reliability of the network with complete links). Then, we sort
all links of each topology using the link order criteria, LO1-
LO5 and use DPCR-L to compare the performance of the five
link-orders and confirm the merit of using these order criteria.
As shown in

Table 3, it is clear that the LO3 order is the best as
compared to others because it gets 14 out of 20 best results.
Please see the numbers in bold in columns LO1 to LO5 and the

DPCR-L

** rj is the reliability of selecting jth solution in row 2 and j is

 the different solutions

1. Initialize m= |E|, L[2,ř]={} and C[2, ř]=0 for ř>Rel (G - e1) // Eq.

(3)

2. for (ř Rel(G) down to Rel (G - e1)) do // Eq. (4)

3. L[2, ř]  {e1}

4. C[2, ř]  Cost(G- e1)

5. end for ř

6. for (i from 2 to m) // Eq. (5)

7. for (ř from Řmin to Rel(G))

8. while(1≤rj≤r j and != 0) // **

9. if (Cost(G-L[2, rj]-{ei}<C[2, ř])

10 L[1, ř] = L[2, rj]+ {ei}

11. C[1, ř] =Cost(G-L[2, rj] - {ei})

12. else

13. L[1, ř]  L[2, ř]

14. C[1, ř]  C[2, ř]

15. j - -

16. for (K  Řmin to Rel(G)) //copy content row 1 to row 2

17. L[2, k]  L[1, k]

18. C[2, k]  C[1, k]

Figure 3: DPCR-L Pseudo code

Basima Elshqeirat, International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 4012 – 4021

4018

last row in the columns that shows the number of times each
link order produces the best results among the five orders).;
Notice that LO1, LO2 and LO5 are the next best orders,
producing 9,8 and 7 best results, respectively, while LO4 is the
worst performers with only six best results. It also shows that
DPCR-L produces only three best results when using the

random order; note that all other ordering criteria, i.e., LO1-
LO5 are also produce the three best results. The results confirm
the merits of using the proposed link orders. Further, to
generate NT with the minimum cost, The DPCR-L using each
of the five link orders is run, and selects the NT with the lowest
cost.

Table 3 shows that the LO3 order is the best and LO1, LO2

and LO5 are the next best orders, while LO4 is the worst

performers, because LO3 order gets 14 out of 20 best results;

see numbers in bold in columns LO1 to LO5. Notice that LO1,

LO2 and LO5 producing eleven, eight and seven best results,

respectively, Note that when DPCR-L using the random order

, it produces only three best results; and all these three best

results are also produced from LO1-LO5. Moreover, to

produce network topology with the minimum cost, The

DPCR-L using each of the five link orders is run, and selects

the NT with the lowest cost.

Furthermore, Table 4 shows the best minimum cost for each

network generated by DPCR-P [6] and the CPU time in

second to generate the best topology; see the last two columns.

Note that the authors [6] proposed Two link orders, CR1,

CR2, and Table 4 shows the best outcomes of DPCR-P using

all orders. As shown in Table 4, DPCR-L generates topology

with lower cost for 11 of 20 networks, and speeds up its

running time up to 31.71%, as compared to DPCR-P see

column DPCR-L CPU time result with(%) and DPCR-P CPU

time. Further, DPCR-L is generating the same results as

DPCR-P for the other 7 topologies, while producing only two

inferior results that has a lower cost for network and

. It is clear from the CPU’s time of both approaches

that DPCR-P potentially require generating all (s, t) simple

paths to solve the problem, while our DPCR-L approach

deletes sequentially only up to |E| links to solve the problem,

so this will speed up the process and thus significantly reduces

the time complexity.

5.2 The Performance of DPCR-L on Benchmark Networks.

We generated 100 networks from the 20 topologies in Section

5.1 to benchmark the optimality of DPCR-L. Let >0 be the

number of edges deleted from a network. For =1, an optimal

Gi =(V, E-{ei}), for any eiE, is generated as follows. For

each possible eiE, the Gi was first generated, where there are

different |E| for each Gi. For each Gi, the Rel (Gi), is

calculated, and the selected Gi with the maximum reliability as

Gmin with cost Cost(Gmin). The steps are repeated for =2, 3, 4,

5. For larger , the benchmark networks were not generated

because it would be very time consuming. For example, when

|E|=30 and =6, there are 593775 different Gi and thus finding

Gmin among them require a significant amount of time since

computing the reliability value of each Gi takes exponential

time. For each generated network Gi, we set Rmin=Rel(Gmin),

the tightest possible constraint, and thus each benchmark

evaluates the worst possible performance for our DP

algorithms. The DPCR-L was run using LO3, to generate

topologies from the 100 benchmark networks, and the better

results between them are considered. Our simulations show

that DPCR-L produces 93% optimal results. Interestingly, of

the 7 non-optimal results, DPCR-L produces a network with

reliability no worse than 5.38% off optimal, and most of the

non-optimal results have a lower cost than that for optimal up

to 0.17%.

Table 3: Best Cost(G) for each ordering criteria using DPCR-L

Input DPCR-L

Best Cost(G) for each ordering criteria

 Rmin Random LO1 LO2 LO3 LO4 LO5

0.88 14 14 14 14 14 14

0.85 27 26 22 26 25 24

0.90 21 21 19 21 19 21

0.90 25 25 25 25 25 25

0.80 33 33 31 30 31 33

0.95 21 20 21 18 21 19

0.95 28 24 25 25 25 26

0.90 42 30 38 40 38 31

0.85 33 31 31 31 31 31

0.90 28 26 26 24 26 24

0.90 22 22 21 18 22 21

0.90 31 29 30 30 31 29

0.90 23 21 21 21 26 22

8,5
9CN

13,9
18CN

8,6
7CN

8,5
9CN

9,6
13CN

12,9
13CN

15,7
14CN

21,11
18CN

13,9
18CN

12,8
24CN

12,8
20CN

12,7
25CN

13,8
29CN

30,16
36CN

26,21
44CN

Basima Elshqeirat, International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 4012 – 4021

4019

0.75 29 25 27 25 27 29

0.85 32 33 33 30 33 32

0.90 28 30 30 27 30 27

0.90 42 40 42 42 42 42

0.90 34 29 27 30 29 30

0.90 48 42 45 42 46 45

0.90 40 37 36 31 31 35

Total 3 11 8 14 6 7

Table 4: The minimum cost of feasible topology for each network generated by DPCR-L and DPCR-P.

Table 5: Comparison between DPCR-L and optimal results

Input DPCR-L

CN α Rmin Rel(G1) Cost(G1)

 3 83.6 83.8(0.23%) 20(-0.17%)

 4 87.1 87.5(0.45%) 23(-0.12%)

 1 72.8 75.9(4.25%) 26(-0.04%)

 3 89.1 90.3(1.34%) 37(-0.09%)

 2 83.5 88.0(5.38%) 32(-0.11%)

 5 75.6 75.9(0.39%) 27(-0.13%)

 3 92.8 92.8(0.00%) 36(-0.05%)

14,9
44CN

21,10
64CN

25,17
136CN

21,18
205CN

22,13
281CN

27,18
282CN

30,20
780CN

13,9
18CN

25,17
136CN

14,9
44CN

21,10
64CN

25,17
136CN

27,18
282CN

22,13
281CN

 DPCR-L DPCR-P

 Rmin Link Ordering DPCR-L

Cost(G)

Best Result

CPU

CPU time

(seconds)

DPCR-P

Cost(G)

Best Result

CPU time

(seconds)

0.88 Random,

LO1-LO5

14 0.01(0.0%) 14 0.01

0.85 LO2 22 0.08(12.5%) 21 0.09

0.90 LO2,LO4 19 0.63 (30.15%) 1 9 0.82

0.90 Random,

LO1-LO5

25 1.07(7.47%) 27 1.15

0.80 LO3 30 2.74(9.85%) 31 3.01

0.95 LO3 18 3.53(16.71%) 18 4.12

0.95 LO1,LO3 24 4.40(2.50%) 22 4.51

0.90 LO1 30 5.18(2.51%) 31 5.31

0.85 LO1-LO5 31 7.19(7.37%) 31 7.72

0.90 LO3,LO5 24 6.26(3.67%) 26 6.49

0.90 LO3 18 6.44(4.96%) 20 6.76

0.90 LO1,LO5 29 8.15(17.91%) 30 9.61

0.90 LO1,LO2,LO3 21 8.84(13.57%) 21 10.04

0.75 LO1,LO3 25 5.16(16.66%) 27 6.02

0.85 LO3 30 5.37(21.78%) 33 6.54

0.90 LO3,LO5 27 16.48(11.10%) 27 18.31

0.90 LO1 40 18.94(25.97%) 42 23.86

0.90 LO2 27 17.27(23.91%) 29 21.40

0.90 LO1,LO3 42 19.54(31.78%) 44 25.75

0.90 LO3,LO4 31 21.49(10.42%) 31 23.73

8,6
7CN

8,5
9CN

9,6
13CN

12,9
13CN

15,7
14CN

21,11
18CN

13,9
18CN

12,8
24CN

12,8
20CN

12,7
25CN

13,8
29CN

30,16
36CN

26,21
44CN

14,9
44CN

21,10
64CN

25,17
136CN

21,18
205CN

22,13
281CN

27,18
282CN

30,20
780CN

Basima Elshqeirat, International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 4012 – 4021

4020

5.3 DPCR-L for large networks

To evaluate the time efficiency of the proposed DPCR-L, The

DPCR-L is utilized to solve the NTD-CR for grid networks in

[25] with the number of nodes, links and (s, t) paths range

from 36 to 200, 57 to 298, and 538020 to 2
99

, respectively. We

set cj=1 and rj=0.9 for each of the five grid networks.

Note that it is the same result produced by DPCR-P in [6], but

DPCR-L needs only 32.81 seconds to generate the result,

DPCR-L speeds up the process up to (47.28%) compared to

DPCR-P. These results show the applicability of DPCR-L on

networks containing a large number of links. However, for

these large networks, we are unable to gauge the optimality of

its generated topologies. Note that DPCR-L needs only |E|

links to produce its DP table, DPCR-P potentially needs O

(2
|E|-|V|+2

) (s, t) paths to produce its DP table. For large sized

CN, there is significant difference, e.g.,

 that has 298

links with 2
99

 paths. Therefore, DPCR-L generates more NT

that has lower cost, further; using the five link-orders also

significantly outperforms DPCR-P in terms of computational

time complexity.

6. CONCLUSION

In this research, an NP-hard network topology design

problem, called NTD-CR, have been define to generate a

network topology design with minimized cost subject to (s, t)

terminal reliability. We have proposed a heuristic dynamic

programming method, called DPCR-L, and five different link

ordering criteria to to solve NTD-CR problem. Extensive

Simulation based on different benchmark networks of various

sizes are used to compare DPCR-L with existing state-of-the-

art techniques and shows the merits of using the ordering

methods, and the effectiveness of our algorithm. Comparing to

the most recently proposed approach, DPA [6] simulations

show that DPCR-L finds better results. Since DPCR-L is

computationally more efficient as compared to the existing

approaches, it becomes an obvious choice to be used in large

network topology design. Furthermore, simulation results on

large size networks show that DPCR-L speeds up the process

with up to (47.28%) compared to the recent existing approach

and show the practicality of our techniques. Finally, our

simulations show that DPCR-L produces 93% optimal results.

REFERENCES

1. B. ELSHQEIRAT,S. Soh, S. RAI, and M. Lazarescu. A

Practical Algorithm for Reliable Network Topology

Design, International Journal of Performability

Engineering, vol. 9, 2013.

2. B. K. Lad, M. S. Kulkarni, and K. B. Misra. Optimal

reliability design of a system, in Handbook of

Performability Engineering, ed:Springer, 2008,pp. 499-

519.

3. A. Saad, S. A. Khan, and A. Mahmood. A multi-

objective evolutionary artificial bee colony algorithm

for optimizing network topology design, Swarm and

Evolutionary Computation, vol. 38, pp. 187-201, 2018.

4. J.-M. Won and F. Karray. Cumulative update of all-

terminal reliability for faster feasibility decision, IEEE

Transactions on reliability, vol. 59, pp. 551-562, 2010.

5. H. M. AboElFotoh and L. S. Al-Sumait. A neural

approach to topological optimization of

communication networks, with reliability constraints,
IEEE Transactions on reliability, vol. 50, pp. 397-408,

2001.

6. B. Elshqeirat, S. Soh, M. Lazarescu, and S. Rai. Dynamic

programming for minimal cost topology with two

terminal reliability constraint, in 2013 19th Asia-

Pacific Conference on Communications (APCC), 2013,

pp. 740-745.

7. B. Elshqeirat, S. Soh, S. Rai, and M. Lazarescu.

Topology design with minimal cost subject to network

reliability constraint, IEEE Transactions on Reliability,

vol. 64, pp. 118-131, 2014.

8. R.-H. Jan, F.-J. Hwang, and S.-T. Chen. Topological

optimization of a communication network subject to a

reliability constraint, IEEE Transactions on Reliability,

vol. 42, pp. 63-70, 1993.

9. T. Koide, S. Shinmori, and H. Ishii. Topological

optimization with a network reliability constraint,
Discrete Applied Mathematics, vol. 115, pp. 135-149,

2001.

10. A. Kumar, R. M. Pathak, Y. P. Gupta, and H. R. Parsaei.

A genetic algorithm for distributed system topology

design, Computers & Industrial Engineering, vol. 28, pp.

659-670, 1995.

11. D. L. Deeter and A. E. Smith. Economic design of

reliable networks, IIE transactions, vol. 30, pp. 1161-

1174, 1998.

12. B. Dengiz, F. Altiparmak, and A. E. Smith. Efficient

optimization of all-terminal reliable networks, using

an evolutionary approach, IEEE transactions on

Reliability, vol. 46, pp. 18-26, 1997.

13. B. Dengiz, F. Altiparmak, and A. E. Smith. Local search

genetic algorithm for optimal design of reliable

networks, IEEE Transactions on Evolutionary

Computation, vol. 1, pp. 179-188, 1997.

14. J. E. Ramirez-Marquez and C. M. Rocco. All-terminal

network reliability optimization via probabilistic

solution discovery, Reliability Engineering & System

Safety, vol. 93, pp. 1689-1697, 2008.

15. L. Lin and M. Gen. A self-controlled genetic algorithm

for reliable communication network design, in 2006

IEEE International Conference on Evolutionary

Computation, 2006, pp. 640-647.

16. A. Mutawa,H.Alazemi, and A. Rayes. A novel

steady‐state genetic algorithm approach to the

reliability optimization design problem of computer

networks, International Journal of Network

Management,vol. 19,pp. 39-55, 2009.

17. F.-M. Shao, X. Shen, and P.-H. Ho. Reliability

optimization of distributed access networks with

constrained total cost, IEEE transactions on reliability,

vol. 54, pp. 421-430, 2005.

Basima Elshqeirat, International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 4012 – 4021

4021

18. M. M. Atiqullah and S. S. Rao. Reliability optimization

of communication networks using simulated

annealing, Microelectronics reliability, vol. 33, pp. 1303-

1319,1993.

19. S. Pierre, M. A. Hyppolite, J. M. Bourjolly,and O.

Dioume. Topological design of computer

communication networks using simulated annealing,
Engineering Applications of Artificial Intelligence,vol.

8,pp. 61-69, 1995.

20. F. Altiparmak and B. Dengiz. A cross entropy approach

to design of reliable networks, European Journal of

Operational Research, vol. 199, pp. 542-552, 2009.

21. C. Papagianni, K. Papadopoulos, C. Pampas,N. D.

Tselikas,D.Kaklamani, and I. S. Venieris.

Communication network design using particle swarm

optimization, in 2008 international multiconference on

computer science and information technology, 2008, pp.

915-920.

22. G. Hardy, C. Lucet, and N. Limnios. A BDD-based

heuristic algorithm for design of reliable networks

with minimal cost, in International Conference on

Mobile Ad-Hoc and Sensor Networks, 2006, pp. 244-255.

23. B. Dengiz,F. Altiparmak,and O.Belgin. Design of

reliable communication networks:A hybrid ant colony

optimization algorithm, IIE Transactions,vol. 42, pp.

273-287, 2010.

24. N. Kyriakou, E. Loukis, and S. Arvaniti. Enterprise

Systems and Innovation--An Empirical Investigation,
in 2016 49th Hawaii International Conference on System

Sciences (HICSS), 2016, pp. 4686-4696.

25. B. A. H. Elshqeirat. Optimizing reliable network

topology design using dynamic programming, Doctoral

dissertation, Doctoral dissertation, Curtin University,

2015.

26. B. Elshqeirat, S. Soh, S. Rai, and M. Lazarescu. A

dynamic programming algorithm for reliable network

design, IEEE Transactions on reliability, vol. 63, pp.

443-454, 2014.

27. S. Soh and S. Rai. CAREL:Computer aided reliability

evaluator for distributed computing networks, IEEE

Transactions on Parallel and Distributed Systems,vol. 2,

pp. 199-213, 1991.

28. M.-S. Yeh. A new Monte Carlo method for estimating

network reliability, in Proceedings of the 16th

International Conference on Computers & Industrial

Engineering, 1994, 1994.

29. T. H. Cormen, C. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms Cambridge,

Massachusetts, ed: The MIT Press, 1990.

30. B. Elshqeirat, S. SOH, S. RAI, and M. Lazarescu. Bi-

Objective Topology Design of Communication

Networks Using Dynamic Programming, International

Journal of Performability Engineering, vol. 11, pp. 265-

274, 2015.

31. M. Zemzami, N. Elhami, M. Itmi, N. Hmina. An

evolutionary hybrid algorithm for complex
optimization problems, International Journal of
Advanced Trends in Computer Science and
Engineering, vol. 8, No.2, pp. 126-133, 2019.

32. F. Yakoubi, N. ElKattabi, M. El Marraki. The

Reliability of the Recursive Corona Product
Network, International Journal of Advanced Trends in
Computer Science and Engineering, vol. 8, No.3, pp.
601-604, 2019.

