Volume 9, No.3, May - June 2020

International Journal of Advanced Trends in Computer Science and Engineering

Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse220932020.pdf https://doi.org/10.30534/ijatcse/2020/220932020

A Framework of Heterogeneous Cloud Service and Multi Attributes Negotiation using Double Auction

Muhamad Hariz Muhamad Adnan¹, Mohd Fadzil Hassan², Nurul Akhmal Mohd Zulkefli³

¹Computing Department, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, 35900, Tanjung Malim, Perak, Malaysia, mhariz@fskik.upsi.edu.my
²Faculty of Science and Information Technology, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Perak, Malaysia mfadzil_hassan@utp.edu.my
³Department Computer, Dhofar University, Oman, nzulkefli@du.edu.om

ABSTRACT

Many double auction frameworks have been proposed for cloud service negotiations [1]. However, the frameworks are not able to accommodate both the heterogeneous cloud services and multi-attributes negotiation simultaneously. Therefore, this paper proposed a double-auction framework to accommodate heterogeneous cloud services and multi-attributes negotiation. The study postulated four activities namely literature review, cloud service marketplace investigation, data formulation and double auction-based negotiation framework development. The market requirements, auction requirements and two new mechanisms of a double auction framework have been proposed.

Key words : auction mechanism, automated negotiation, cloud services, double auction.

1. INTRODUCTION

Many double auction frameworks have been proposed for cloud service negotiations [1]. But, the frameworks are not able to accommodate both the heterogeneous cloud services and multi-attributes negotiation simultaneously. The auctioneer was designed to auction only a single type of cloud service. For heterogeneous cloud services, the auction coordinator needs to create multiple auctioneers based on the number of cloud services. The size of the solution space and the execution time will increase and this could lead to sub-optimal results. Similarly, the utility function and the matching function were designed for a single-attribute negotiation. The consequences could be sub-optimal as negotiations are more difficult for heterogeneous cloud services with multi-attributes [2-4]. Hence, a double-auction framework to accommodate heterogeneous cloud services and multi-attributes negotiation is proposed in this paper.

The paper is organized as follows. In Section 2, related works of double auctions used for cloud service negotiations are presented. Section 3 presents the methodology used in this study. Section 4 and Section 5 present the proposed framework and conclusion.

2. RELATED WORK

Negotiation can be used by a cloud service provisioning framework to manage resources [5]. Negotiations protocol is a set of rules that defines interaction boundaries between participants, and it covers participant types, negotiation states, the event that triggers a change of negotiation state and permissible action by agents in each state [6]. In the current literature, the double auctions are the preferred M-N negotiation protocols used for cloud service negotiation, however, it requires efficient coordination and consistency [1].

CDA and combinatorial double auction are examples of cloud service negotiation's double auction that able to solve several types of real-time negotiations and cloud services combinations [1,6]. The combinatorial double auction enables participants to bid on compounds of discrete items preferably than just single items [7]. Some argue that cloud services are a type of combinatory items such as the VMs, CPUs, and storage [7]. On the other hand, the CDA protocol allows multiple buyers and sellers to send bids and sell service respectively and matches them in real-time [8, 9].

There are three categories that have been categorized from the double auction protocols namely the double auction, continuous double auction (CDA) and combinatorial double auction.

2.1 Double Auction

To cater to the issues of maximizing the time-average profit in dynamic VM trading and scheduling, [10] has proposed the

double auction-based mechanism. This double auction-based mechanism is a benefit for cloud organization ultimately and to fulfill the resource and SLA requirements of each job.

Meanwhile, for cloud resource allocation, a Double Multi-Attribute Auction (DMAA) was proposed by [11]. DMAA is a double auction-based mechanism that used to predict the price, and it implements the Support Vector Machine (SVM) for price prognostication and Neural Network (NN) to determine the Quality Index (QI).

2.2 Continuous Double Auction

The combinatorial double auction indicates a proper protocol for cloud services intervention, which broadly used to resolve several sorts of cloud services combinations [7, 12-15]. To allocate service combinations (bundling), [16] proposed a double auction-based mechanism that used to hold future services from a forward business and the current services from the spot business. Besides, for IaaS resource allocation, Intelligent Economic Approach for Dynamic Resource Allocation (IEDA) was proposed by [12]. It based on a double auction-based mechanism and able to applies enhanced combinatorial double auction protocol by implement two mechanism agents that is Paddy Field Algorithm (PFA) and Backpropagation Neural Network (BPNN) algorithm.

2.3 Combinatorial Double Auction

The CDA protocol enables various buyers to send bids, while sellers are allowed to tender asks (offering) in the auction market [8, 9, 17-19]. MANDI is a double auction-based mechanism used for market exchange infrastructure and proposed by [20]. MANDI selected as an integration of the double auction that consists of the first bid sealed auction and commodity market. In MANDI mechanism, the first bid sealed auction is a typical auction protocol where every bidder tenders contemporaneous unrevealed bids. In different circumstances, [21] proposed a Nash Equilibrium Continuous Double Auction (NECDA) for cloud resource allocation and performance optimization. This double auction-based mechanism is also known for its benchmark with the CDA, Min-min algorithm, and Max-min algorithm to present promising outcomes.

Besides, a cloud service agreement for the prospective market and spot market uses a double auction-based mechanism and the implementation of a knowledge-based CDA as proposed by [22]. Meanwhile, an auction-based mechanism for cloud resource allocation and strategic pricing was introduced by [23] to engage a multi-unit CDA. Likewise, [24] proposed a double auction mechanism established from the Parallel CDA (PDCA) for cloud service allocation where PCM and PREZ algorithm used to allocate the resource. Contrarily, to improve profit known as Belief based Hybrid Strategy (BH-strategy), a double auction-based mechanism is introduced by [25]. The approach used here is based on CDA protocol for homogeneous market and utilizes a new bidding strategy and decentralize resource allocation in cloud markets. The CDA has been identified as the preferable double auction protocols in the literature compared to the combinatorial double auction and double auction.

Figure 1 illustrates the double auction framework for cloud service negotiations [10-16]. The combinatorial double auction indicates a proper protocol for cloud services negotiation that broadly used to solve various problems.

Figure 1: A general example of the double auction framework for cloud service negotiations

A. Auctioneer

The auctioneer is an individual agent that starts, manages, end cloud service auctions. The auctioneer used double auction protocols. The auctioneer sorted the bids and cloud services from service customers and service providers to determine the winner [17].

B. Broker

The broker is an autonomous agent that represents the service customer. The broker received service requests from a customer, formulated bids and submitted bids to the auctioneer. The broker has its coordinator that creates a proposal (bids). The broker's coordinator relies on mechanisms, namely, the service preference mechanism and negotiation strategy mechanism to create a proposal. The service preference mechanism accepts service requirements from the customer and formulates the price utility. Meanwhile, the negotiation strategy mechanism is responsible for selecting the best negotiation strategy for the broker to use during the auction, e.g. truthful, concession making, BH-strategy, or Efficient Bidding Strategy (EBS) [18-22].

3. METHODOLOGY

This research postulated four activities that are depicted in Figure 2. The listed four activities are literature review, cloud service marketplace investigation, data formulation and double auction-based negotiation framework development.

Figure 2: The research activities.

The framework is proposed after completing the first three activities: literature review, cloud service marketplace investigation, and data formulation. The literature review was conducted to investigate the problem domain, identify gaps, analyse related works, and find applicable methods for the research. The sources of the study are books, journals, conference proceedings and papers, and online articles. The cloud service marketplaces, namely, Amazon EC2, Google IaaS, Microsoft Azure, Zimory and CloudSurfing were investigated after the literature review was conducted. The goal of the review is to gain an understanding of how the marketplaces. Another goal of the review is to identify the types of required datasets.

4. PROPOSED FRAMEWORK

The double auction framework illustrated in Figure 1 has limitations. Firstly, the auctioneer was designed to auction only a single type of cloud service. The problem lies in heterogeneous cloud services, where the auction coordinator must create multiple auctioneers based on the number of cloud services. The size of the solution space will increase as well as the execution time. It could lead to sub-optimal results in service discovery and matchmaking. Therefore, the frameworks would be inefficient if applied for heterogeneous cloud services, especially in real-time auctioning using the CDA.

Secondly, the service preferences mechanism illustrated in Figure 1 calculated the utility based on a single attribute which is the price [14]. It was designed for a single-attribute negotiation. It is perhaps crucial for the cloud service negotiation mechanism to consult various properties of various options to meet bidder's decisions [3, 4]. For the heterogeneous cloud services, the mechanism must compute the utilities for multi-attributes. The results could be sub-optimal as negotiations are more difficult for heterogeneous cloud services and multi-attributes [2-4]. Consequently, the results can increase service adoption costs, resource wastage, negotiation delay, and risks [23-29].

Thirdly, the matching function used by the auctioneer was designed to sort and match bids and cloud services only for a single attribute. The matching function, which was used to determine the winner, should be designed for sorting and matching multi-attributes services. Also, the execution time of the double auction frameworks and mechanisms must be considered. Several mechanisms have been reported to have longer execution time due to the utilization of various algorithms [30]. It was also suggested that the speed of negotiation should be increased [22]. Therefore, it is important to test the double auction frameworks and mechanisms for execution time and ensure it can be implemented efficiently within an acceptable time. The researcher believes the term 'acceptable time' means the framework and its mechanism can work in real-world scenarios such as in the cloud-based marketplace.

The proposed framework was instigated with the investigation of cloud service negotiation frameworks from the literature [6, 31-35]. The aim was to understand how the existing cloud service negotiation frameworks were proposed and developed. Subsequently, the double auction protocols and frameworks were investigated to understand the current design of M-N double auction frameworks for cloud service negotiations. Then, the market requirements and auction requirements were identified from related works.

Muhamad Hariz Muhamad Adnan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3961 – 3969

4.1 Market Requirements

Market requirements are necessary for an exchange marketplace [36]. The market requirements are shown in Table 1.

Table 1:	Market requirements	that a cloud	service	negotiation
framework should fulfill				

M. 1 4	Deneral 4	
Market	Descriptions	Proposed
requirements		Framework
Multiple	The framework must	The proposed
application	support various	framework can
models and	customer resource	accommodate
compute	requirements and the	multiple
services	provider's services. In	application models
	other words, the	and compute
	framework should be	services. However,
	able to accommodate	the current
	multi-attributes	framework limits
	resources	the number of
	requirements and	negotiation
	heterogeneous cloud	attributes to five
	services [36]	(price VCPU
	501 11005 [50].	RAM storage size
		and time slot
Maltinla and	The fuero error 1	
Multiple user	The framework	The framework can
objectives	should be able to	support different
	satisfy different	customers
	customers' objectives	objectives using
	such as cost reduction	the multi-attribute
	and benefit	utility function.
	maximization [33,	Meanwhile, the
	36, 37]. It should have	different objectives
	matching strategies to	have been matched
	meet different	to heterogeneous
	objectives.	cloud services
	5	using the
		multi-attribute
		matching function.
		However to
		support the
		different business
		level objectives
		simultaneously
		such as client
		satisfaction and
		satisfaction the
		from output 1
		framework must be
2		further expanded.
Resource	The framework	The framework can
discovery	should allow	discover
	customers to access	heterogeneous
	and discover	cloud services as a
	heterogeneous	result of the
	resources on-demand	proposed
	[36].	automatic
		clustering

		mechanism. On the
		other hand the
		proposed
		proposed
		multi-attribute
		negotiation
		mechanisms can
		allow service
		customer to
		prioritize their
		needs based on the
		attributes.
Support for	The framework	The framework is
multiple	should be generic	flexible in adapting
martet	should be generic	the negotiation
market	enough to support	
models	many market models	protocol for its
	[36].	auctioneers (either
		double auction or
		CDA). Besides, the
		proposed
		multi-attribute
		negotiation
		mechanism can
		support
		combinatory cloud
		combinatory cloud
		services [7]. The
		proposed
		framework
		negotiation
		protocol is suitable
		to be extended into
		the combinatorial
		double auction.
Coexistence/is	The framework	The framework is
olation of	should support	flexible in
market	different negotiation	choosing the
models	protocols	nagotistion
models		
	concurrently [36].	protocol for the
		auctioneers (either
		double auction,
		CDA, or any other
		forms of auction).
		The auctioneers
		can run
		concurrently.
		However, the
		coordination of
		different protocols
		will be
0		challenging.
Support for	The service customers	The framework's
holding,	may have their bids	broker agents can
joining. and	lose or unmatched in	hold, join, and
discovering	the current auction.	discover auctions
auctions		
	Also, they can	according to the
	Also, they can discover, wait. or join	according to the negotiation
	Also, they can discover, wait, or join other auctions if	according to the negotiation strategy

Muhamad Hariz Muhamad Adnan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3961 – 3969

4.2 Auction Requirements

Auction requirements defined the parameters of the auction design space [38]. The auction requirements are shown in Table 2.

Table 2: Auction requirements that an auction-based framework			
should consider [38]			

A		p. December 1
Auction	Descriptions	Proposed
requirements	·> • 1 · 1 · C	Framework
Bidding rule	1) A bid refers to a	1) The proposed
	message that	framework
	states an agent is	express bids for
	willing to make	multi-attributes
	an exchange	namely, the
	(money for	VCPU, RAM,
	service or vice	storage size, cost
	versa) [38].	per hour, and
	ii) The bid	time slot
	dominance rule	attributes.
	determined the	ii) The service
	relationship of	customers and
	an agent's new	providers have
	offer to the	been allowed to
	current bid.	compete in M-N
	iii) The	auctions. The
	Beat-the-Quote	broker agents
	rule set the	generate and
	conditions for a	place bids
	new bid	autonomously on
	compared to	behalf of the
	bids by other	service
	bidders and	customers.
	often	iii) The
	complimentary	framework`s bid
	with the bid	dominance rule
	dominance rule.	was set to
		increase.
		iv) A prior bid can
		only be replaced
		by a superior bid.
		This is to ensure
		bid progression.
		v) The framework's
		beat-the-quote
		rule has been set
		where a new bid
		must be superior
		to the currently
		unmatched bid
		in the auction It
		is to ensure hid
		nrogression
		vi) Rids have been
		allowed to be
		withdrawn if it is
		not matched
		not matched.

		vii) The framework
		only allowed
		broker agents to
		replace their
		current bids in
		each round. The
		agent must
		progressively
		make bids to stay
		in the auction.
Clearing	i) The clearing	i) The proposed
policy	nolicy	framework
poney	determines the	matching
	allocation of	function has
	resources [38]	been conditioned
	ii) The clear	to maximize
	timing policy	total surplus
	dotorminos	$n^1 n^2$ The n^1
	when a clear	p-p. The p
	should occur in	service buying
	should occur in	service buying r^2 is
	nomoly	price and p is
	namery,	service sering
	scheduled,	price [56]. The
	random, bidder	auctioneer sorted
	activity, or	DIUS IN
	bluder	descending order
	inactivity.	and cloud
	iii) The closing	services in
	determine when	ascending order.
	determine when	ii) The framework
	a clear should be	clear timing
	a milar clear. It is	policy is bluder
	known as the	activity
	day a married	(CDA) where
	uay, a period	CDA) where
	when service	clear occurs
	customers and	when a new blu
	providers are	is received. The
	allowed to	policy call be
	sublint offers	unggered when a
	(20) and (20) .	of bide ere
	when two	to blus are
	brokers hid for	(5.10.20) for
	the come	(3,10,20) 10r hondling c lorger
	resources of the	nanuning a larger
	same price	transactions
	same price.	iii) The fremeworl
		alosing
		conditions have
		boon determined
		according to the
		according to the
		sotting
		iv) The fremework
		proformed bid
		that was placed
	1	mai was placed

		earlier or bid
		with the larger
		quantities.
Information	i) The information	i) The proposed
mormation		1) The proposed
revelation	is revealed as a	framework has
policy	quote function	shown the
	that represents	minimum and
	the summary of	maximum values
	current bid state.	for each cluster.
	ii) Quote timing	It is anonymous
	iii) Order book	where the same
	refers to the set	quote is reported
	of active bids	to every broker
	iv) Transaction	agent The price
	history	has have
	instory is	nas been
	information	determined by
	about past	the average of
	exchanges.	the matched bid
		and service.
		ii) The framework
		has generated
		the price quote
		with new bidder
		activity
		iii) The framework
		has close book
		naliou where
		policy where
		active bids are
		not shown. Only
		the highest
		service utilities
		for each cluster
		are shown to the
		broker agents.
		iv) The framework
		has not
		nublicized any
		historical
		information (
		information to
		the broker agents
		as it is not
		necessary for this
	1	study.

The framework is designed according to market requirements and auctions requirements that fulfilled and considered multiple application models and compute services, multiple user objectives, resource discovery, support for multiple market models, coexistence/isolation of market models, support for holding, joining and discovering auctions, auctions' bidding rule, clearing policy, and information revelation policy. The framework is designed to have similar functionalities to the CloudSim, i.e. for modeling and simulation of cloud computing infrastructures and services [39]. However, the proposed framework was made specific to cloud service negotiation. The architecture of the proposed framework is illustrated in Figure 3.

Figure 0: The proposed framework.

The proposed framework was constructed with:

A. Automatic Clustering Mechanism

The auction coordinator uses the proposed automatic clustering mechanism to cluster heterogeneous cloud services into several clusters, namely, cluster A, cluster B, ...n as shown in Figure 3.

The auctioneer agents manage concurrent double auctions for each cluster (cluster A, cluster B, and cluster C). The aim of using clustered cloud service concurrent negotiations is to reduce the number of individual cloud service concurrent negotiations.

B. Multi-attribute Negotiation Mechanism

The proposed multi-attribute negotiation mechanism of the proposed framework consists of two main functions which are multi-attribute utility function and multi-attribute matching function (as shown in Figure 3).

The broker agent negotiates on behalf of the customer. The broker agent consists of a coordinator. The coordinator creates a proposal using the service preference mechanism and negotiation strategy mechanism. The service preference mechanism consists of the proposed multi-attribute utility function while the strategy mechanism selects suitable a strategy during negotiation.

5. CONCLUSION

The investigations of current literature have identified that the current double auction frameworks would be inefficient if applied for heterogeneous cloud services, especially in real-time auctioning using the CDA. Furthermore, the current frameworks only focused on single attribute negotiations. Therefore, this paper presented a double auction framework that able to accommodate both heterogeneous and multi-attributes cloud service negotiation.

ACKNOWLEDGEMENT

The author would like to thank Universiti Pendidikan Sultan Idris, Universiti Teknologi PETRONAS and Dhofar University for supporting this study.

REFERENCES

- [1] Adnan M.H., Hassan M.F., Aziz I.A., Rashid N.A.
 A Survey and Future Vision of Double Auctions-Based Autonomous Cloud Service Negotiations, in Saeed F., Gazem N., Mohammed F., Busalim A. (eds) Recent Trends in Data Science and Soft Computing. IRICT 2018. Advances in Intelligent Systems and Computing, Vol. 843, pp. 488-498, 2019.
- [2] G. Lai, C. Li, K. Sycara, and J. Giampapa. Literature review on multi-attribute negotiations, *Robotics Institute, Carnegie Mellon* University, Pittsburgh, PA, Technical Report CMU-RI-TR-04-66, 2004.
- [3] P. Saripalli and G. Pingali. Madmac: Multiple attribute decision methodology for adoption of clouds, in *Cloud Computing (CLOUD), 2011 IEEE International Conference on*, 2011: IEEE, pp. 316-323.

https://doi.org/10.1109/CLOUD.2011.61

F. Nassiri-Mofakham, M. A. Nematbakhsh, A. Baraani-Dastjerdi, N. Ghasem-Aghaee, and R. Kowalczyk. Bidding strategy for agents in multi-attribute combinatorial double auction, *Expert Systems with Applications*, vol. 42, no. 6, pp. 3268-3295, 2015.

https://doi.org/10.1016/j.eswa.2014.12.008

[5] P. K. Vadla and K. B. Prakash. Residue based adaptive resource provisioning through multi-criteria decision and horizontal scaling of vm's in agent-based model for federated cloud, International Journal of Advanced Trends in Computer Science and Engineering, vol. 9, no. 2, pp. 1610-1622, 2020. https://doi.org/10.30534/ijatcse/2020/108922020

- [6] M. B. Chhetri, J. Lin, S. K. Goh, J. Yan, J. Y. Zhang and R. Kowalczyk. A coordinated architecture for the agent-based service level agreement negotiation of Web service composition, in Australian Software Engineering Conference (ASWEC'06), Sydney, NSW, 2006, pp. 10 pp.-99.
- [7] S. Zaman and D. Grosu. Combinatorial auction-based dynamic vm provisioning and allocation in clouds, in 2011 IEEE Third International Conference on Cloud Computing Technology and Science (CloudCom), 2011: IEEE, pp. 107-114.

https://doi.org/10.1109/CloudCom.2011.24

- [8] P. Vytelingum, D. Cliff, and N. R. Jennings. Strategic bidding in continuous double auctions, *Artificial Intelligence*, vol. 172, no. 14, pp. 1700-1729, 2008.
- [9] M. Bichler. A roadmap to auction-based negotiation protocols for electronic commerce, in System Sciences, 2000. Proc. of the 33rd Annual Hawaii International Conference on, 2000: IEEE, p. 10 pp. vol. 1.
- [10] X. Vilajosana, D. Lázaro, A. A. Juan, and J. M. Marquès. A multi-lane double auction for economic-based service management in the cloud, in *Intelligent Networking*, *Collaborative Systems and Applications*: Springer, 2010, pp. 117-148
- [11] Y. Lan, W. Tong, Z. Liu, and Y. Hou. Multi-unit continuous double auction based resource allocation method, in 2012 Third International Conference on Intelligent Control and Information Processing, 15-17 July 2012 2012, pp. 773-777. https://doi.org/10.1109/ICICIP.2012.6391559
- [12] X. Wang, X. Wang, C. L. Wang, K. Li, and M. Huang. Resource Allocation in Cloud Environment: A Model Based on Double Multi-attribute Auction Mechanism, in 2014 IEEE 6th International Conference on Cloud Computing Technology and Science, 15-18 Dec. 2014 2014, pp. 599-604.
- [13] S. Chichin, Q. B. Vo, and R. Kowalczyk. Towards Efficient Greedy Allocation Schemes for Double-Sided Cloud Markets, in 2015 IEEE International Conference on Services Computing, June 27 2015-July 2 2015 2015, pp. 194-201.
- [14] G. Baranwal and D. P. Vidyarthi. A fair multi-attribute combinatorial double auction model for resource allocation in cloud computing, *Journal of Systems and Software*, vol. 108, pp. 60-76, 2015.
- [15] H. Wang, Z. Kang, and L. Wang. Performance-Aware Cloud Resource Allocation via Fitness-Enabled Auction, *IEEE Transactions* on Parallel and Distributed Systems, vol. 27, no. 4, pp. 1160-1173, 2016. https://doi.org/10.1109/TPDS.2015.2426188

- [16] N. Shinde and P. S. Kiran. A survey of Cloud Auction mechanisms & decision making in Cloud Market to achieve highest resource & cost efficiency, in 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), 9-10 Sept. 2016 2016, pp. 1158-1162
- [17] G. Amirthayogam and C. Anbu Ananth. Business policy violation in web service integration of QoS-aware web service using hybrid genetic algorithms for security in SOA, International Journal of Advanced Trends in Computer Science and Engineering, vol. 9, no. 2, pp. 1056-1062, 2020. https://doi.org/10.30534/ijatcse/2020/24922020
- [18] H. Li, C. Wu, Z. Li and F. C. M. Lau. Virtual Machine Trading in a Federation of Clouds: Individual Profit and Social Welfare Maximization, IEEE/ACM Transactions on Networking, vol. 24, no. 3, pp. 1827-1840, June 2016.
- [19] N. Farajian and H. Ebrahim pour-komleh. Parallel Continuous Double Auction for Service Allocation in Cloud Computing, Computer Engineering and Applications Journal, no. Vol 4, No 2 (2015), pp. 133-142, 2015.
- [20] X. Shi, K. Xu, J. Liu, and Y. Wang. Continuous double auction mechanism and bidding strategies in cloud computing markets, *arXiv preprint arXiv:1307.6066*, 2013.
- [21] S. Zaman and D. Grosu. Combinatorial Auction-Based Mechanisms for VM Provisioning and Allocation in Clouds, in 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), 13-16 May 2012 2012, pp. 729-734.
- [22] I. Fujiwara, K. Aida, and I. Ono. Applying double-sided combinational auctions to resource allocation in cloud computing, in *Applications and* the Internet (SAINT), 2010 10th IEEE/IPSJ International Symposium on, 2010: IEEE, pp. 7-14. https://doi.org/10.1109/SAINT.2010.93
- [23] S. K. Garg, S. Versteeg and R. Buyya. SMICloud: A Framework for Comparing and Ranking Cloud Services, 2011 Fourth IEEE International Conference on Utility and Cloud Computing, Victoria, NSW, 2011, pp. 210-218.
- [24] Q. Zhang, M. F. Zhani, R. Boutaba, and J. L. Hellerstein. Dynamic Heterogeneity-Aware Resource Provisioning in the Cloud, *IEEE Transactions on Cloud Computing*, vol. 2, no. 1, pp. 14-28, 2014.
- [25] Z. Zhang, L. Cherkasova, and B. T. Loo. Exploiting Cloud Heterogeneity to Optimize Performance and Cost of MapReduce Processing, SIGMETRICS Perform. Eval. Rev., vol. 42, no. 4, pp. 38-50, 2015.

- [26] A. Gourinovitch. Challenges in Heterogeneous Resources and the Cloud, in *cloudlightning* vol. 2016, ed, 2016.
- [27] Z. Ou, H. Zhuang, J. K. Nurminen, A. Ylä-Jääski, and P. Hui. **Exploiting hardware heterogeneity** within the same instance type of Amazon EC2, In *Proc. of the 4th USENIX conference on Hot Topics in Cloud Ccomputing (HotCloud'12).* USENIX Association, USA, 4 2012.
- [28] M. Dubash. **CompuerWeekly.com** http://www.computerweekly.com/feature/Cloud-sto rage-Five-things-that-go-wrong-and-how-to-avoid-t hem (accessed 16 May, 2016).
- [29] Rightscale. **State of the Cloud Report**, 2016. [Online]. Available: https://www.rightscale.com/lp/state-of-the-cloud.
- [30] X. Wang, X. Wang, C. L. Wang, K. Li, and M. Huang. Resource Allocation in Cloud Environment: A Model Based on Double Multi-attribute Auction Mechanism, in 2014 IEEE 6th International Conference on Cloud Computing Technology and Science, 15-18 Dec. 2014 2014, pp. 599-604.

https://doi.org/10.1109/CloudCom.2014.103

- [31] L. Wu. **SLA-based Resource Provisioning for Management of Cloud-based Software-as-a-Service Applications**, Ph.D. dissertation, The University of Melbourne, Australia, 2014.
- [32] K. Sim. Towards Complex Negotiation for Cloud Economy, in Advances in Grid and Pervasive Computing, vol. 6104, P. Bellavista, R.-S. Chang, H.-C. Chao, S.-F. Lin, and P. A. Sloot Eds., (Lecture Notes in Computer Science: Springer Berlin Heidelberg, 2010, ch. 42, pp. 395-406.
- [33] M. Macıas. Business-Driven Resource Allocation and Management for Data Centres in Cloud Computing Markets, Technical University of Catalonia, 2014.
- [34] Di Nitto E., Di Penta M., Gambi A., Ripa G., Villani M.L. Negotiation of Service Level Agreements: An Architecture and a Search-Based Approach. In: Krämer B.J., Lin KJ., Narasimhan P. (eds) Service-Oriented Computing – ICSOC 2007. ICSOC 2007. Lecture Notes in Computer Science, vol 4749. Springer, Berlin, Heidelberg, pp. 295-306.
- [35] F. H. Zulkernine and P. Martin. An adaptive and intelligent SLA negotiation system for web services, *Services Computing, IEEE Transactions on*, vol. 4, no. 1, pp. 31-43, 2011.
- S. K. Garg, C. Vecchiola, and R. Buyya. Mandi: a market exchange for trading utility and cloud computing services, *The Journal of Supercomputing*, vol. 64, no. 3, pp. 1153-1174, 2013. https://doi.org/10.1007/s11227-011-0568-6

- [37] J. O. Fitó and J. Guitart. Business-driven management of infrastructure-level risks in Cloud providers, *Future Generation computer* systems, vol. 32, pp. 41-53, 2014.
- [38] P. R. Wurman, M. P. Wellman, and W. E. Walsh. A Parametrization of the Auction Design Space, *Games and Economic Behavior*, vol. 35, no. 1, pp. 304-338, 2001.
- [39] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya. ContainerCloudSim: An environment for modeling and simulation of containers in cloud data centers, *Softw., Pract. Exper.*, vol. 47, pp. 505-521, 2017. https://doi.org/10.1002/spe.2422