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 

ABSTRACT 

 

Low area, low power and efficient arithmetic operations are 

the need of the decade. Arithmetic operations like modular 
operations have wide applications like cryptography where 

security is also a factor.  The portability of a device, power 

consumed, response time of the system, power dissipation are 

some of the important aspects that need to be considered while 

designing a system with complex operations. The best and the 

most suitable method would be to employ efficient arithmetic 

algorithms that are the building blocks of complex operations 

like signal and image processing and DSP. The arithmetic 

operations include the addition, multiplication, and the 

modular operations. Vedic methodology and the reversible 

gates are infused together to work as multipliers and are 

analyzed. Montgomery modular operation is modified and its 
efficiency is checked with the different multipliers and the 

modular reduction algorithms implemented here. The area, 

timing and power consumed by the algorithms is tabulated and 

studied. The LUT’s, slice registers and IOB’s used by the 

design is tabulated. The tabulated values help the designer to 

choose an efficient algorithm based on the resources that are 

available while designing. An algorithm can thus be 

application specific. All the algorithms are implemented in 

Xilinx 14.2 with Spartan 6 as the family and in Cadence using 

45nm technology. The hardware description language used is 

Verilog.  
 

Key words: Reversible logic, Vedic Methodology, Barrett 

Reduction, Mod without division algorithm, Montgomery 

modular operation.  

 

1. INTRODUCTION 

 

The emergence of Internet of Things where billions of 

resource constrained devices referred as “smart objects”, 

communicate effectively in tandem to share the highly 

confidential information. Moreover both conventional devices 

like the desktop, supercomputers and the resource constrained 

devices like RFID perform together in a concert, thus leading 

to a concern of wide range of new security and privacy issues 

 
 

[1]. The greatest challenge is to apply conventional standards 

to resource constrained devices. The design of computing 

resources to such resource constrained devices also is a major 

challenge [2][3]. 

Over the years there has been extensive research carried out in 

implementing arithmetic operations, to implement such 

cryptographic arithmetic in such highly resource constrained 

devices could be possible only by optimization or the designer 

may have to trade-off between security and performance. 

Hence, the need for efficient and effective implementation of 

arithmetic operation for cryptography is the greatest 

challenge. The term “effectiveness” means how effectively 

the data is secured and efficiency means implementing the 

conventional cryptographic arithmetic operations efficiently 

considering parameters speed, Area and Power 

Engineers have been able to develop powerful devices that 

have resulted in a huge revolution in the digital world. The 

revolution has also surfaced issues related to power 

dissipation, clocks and leakage currents and so on. Developers 

had to integrate complex operations in mobile phones keeping 

into account the area, power and timing – important and 

critical parameters of any design. With wireless devices 

effortlessly making their way into the market, the key factor 

is portability and power consumption. The aim of any design 

is to run the devices for maximum time with minimum 

requirements like battery, memory, etc   

 

2. LITREATURE SURVEY 

 

Perumalsamy et al. [4] designed an innovative 8bit reversible 

ALU that dissipates 39% less power and is 10% faster than the 

conventional design. The same design can be extended to 

16bit, 32bit, 64bit and higher bits. With a 33 reversible gate1 

being the fundamental block of the ALU, a deduction in power 

dissipation is possible.  

Xiaodong Yan and Shuguo Li [5] modified the hardware for 

modular inversion, expedited the algorithm and then analysed 

it. The algorithm was accomplished with 256 prime fields. It 

was observed that the algorithm occupied 10% larger space 

but was 31% brisk than the Extended Euclidean algorithm. 
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Ryan and Mill [6] proposed an algorithm that was 

implemented in a standard processor that usually faced issues 

because it is reliant on the length of the inputs. The lookup 

table was constructed so that it could be stored in the cache. 

Hence restricting the memory access to minimum.  

Haniotakis et al. [7] integrated a Manchester Main Carry 

(MCC) adder in the Vedic multiplier. Analysis of the design 

was done by integrating a MCC adder in 4bit, 8bit Vedic 

multiplier and a conventional RCA Vedic multiplier. Even 

though an increase of 10.8% was observed in the timing, the 

Power Delay Product (PDP) and the area wa0s reduced by 

106% and 80% respectively.  

Gururaj et al. [8] studied the Vedic multiplier alongside with 

the array multiplier. The 8x8 Vedic multiplier exhibited a 

delay of 18.642ns which was less than the time taken by an 

array multiplier. Ramasubramanian et al. [9] proposed an 

algorithm to deduce the multiplicative modular inverse of two 

numbers that are coprime to each other. The designed 

incorporated a lookup table, hence it was named LUK-mod-

inverse algorithm.      

Kaihara et al. [10] has presented the hardware for modular 

multiplication/division. It contains four steps with the first 

step being initialization, second step includes selection of the 

mode of operation, the respective logic for each case, third 

step comprises of addition operations while the last step 

produces the result. Nagaria et al. [11] compared a modified 

array multiplier with regular hydrid adder, an array multiplier 

using new hybrid adder and a conventional array multiplier. 

The modified array multiplier has the lowest PDP and driving 

capability, while the array multiplier with the new hybrid 

adder has optimal PDP. It was also observed that both the 

designs suffered from voltage swing problem.  

  

3.  ARITHMETIC OPERATIONS 

 

The below section includes the description of the various 

arithmetic operations implemented. 

 

3.1 Addition  

Addition being the basic element of any arithmetic operation. 

32bit adders are implemented using reversible logic and the 

performance is compared with the standard logic. Reversible 

gate is defined as a gate with equal number of inputs and 

outputs and is capable of retrieving the inputs from the 

outputs. The leaf module of the design is a reversible 1-bit 

full-adder constituting of two Peres-gates and two Feynman-

gates. The design is modified to replace the four reversible 

gates with two reversible gates, Peres-gates. Figure 1 is a 

description of the modified reversible full adder. An N-bit 

adder is designed by iteratively placing a full adder. The other 

adder is implemented using basic gates. The inputs to both the 

adders are 32bit.  

3.2 Multiplication 

The performance of any system is dependent on the slowest 

element. Multiplier being one of the slowest element, 

designing of a multiplier needs to done taking into 

consideration critical parameters – area, timing and power. In 

this paper, three different algorithms are implemented. The 

first is the multiplication performed using only Reversible 

gates. Figure 2 is the shows the computation of Partial 

Products for a 4×4 Reversible multipliers. Figure 3 is the 

description of 4×4 Reversible multiplier using Peres gate and 

HNG Gate. Two different versions of Vedic methodology are 

implemented. 

One is using Reversible gates and the other is using Basic 

gates. Vedic mathematics constitutes 16 sutras and 13 sub 

sutras. Among the 16 sutras, there are two multiplication 

sutras, Urdhva–Tiryagbhyam and Nikhilam Navatascaramam 

Dasatah sutra. The former is called vertically and crosswire 

algorithm. 2×2 Vedic multiplier is the base module for an Nbit 

multiplication. 4×4 multiplication involves breaking of the 

4bit input into two groups. Figure 4 is the block description of 

N×N Vedic Multiplier 

 
Figure 1: Full Adder using Peres Gates 

 

 
Figure 2: The partial products generation for a 4x4 Reversible 

multiplier 
 

 
Figure 3: Reversible multiplier Product generation stage 
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3.3 Modular Operations   

The modular operations form an essential part of 

cryptography. In this paper, inverse modular, modular 

multiplication and modular reduction are some of the 

arithmetic operations that are implemented 

 

The modular multiplication is implemented in two steps: First, 

the product P = A×B using Vedic/reversible multiplier is 

computed and then reducing P to compute M = A×B (mod N).  

3.3.1Modulo-multiplicative inverse algorithm 

Modulo multiplicative inverse algorithm also called as 

Extended Euclidean algorithm. It utilizes all the common 

arithmetic operations like addition, shift operation and 

subtraction, hence reducing the complexity of the algorithm. 

The algorithm duration is depended on the value of remainder; 

hence it results in different number loop for different values 

of the input. It is observed that if the modulo is in the range of 

216 + 1 then all the possible values for the input are {0, 1… 

65536} and the maximum number of iterations would be 

eighteen. The Pseudo-code is given in algorithm 1 shows 

implementation of Modulo-multiplicative inverse algorithm. 

Algorithm 1 shows the steps for modulo multiplication 

algorithm.  

 

 

3.3.2 Montgomery algorithm  

Montgomery algorithm is the most efficient and widely 

applied modular multiplication algorithm. Simple arithmetic 

operations like addition and shift operations are realized for 

reduction, and can be easily implemented in VLSI. 

 

Montgomery-modulo algorithm computes xy mod p for 

positive integers x, y, and p. It reduces the computation time 

when multiplication of large numbers is to carry out using 

same mod m and with limited multipliers. 

The Montgomery modular algorithm implemented is modified 

as in algorithm 2. The inputs, x, y and p are four hexadecimal 

digits each of 16 bits. The condition for value of R > p. Unlike 

normal algorithm, the value of R is taken to be equal to bk
  

where b is the base and k is the width of the input. Here the 

value of R taken as 164.  This way the process of converting 

the inputs into Montgomery domain can done by appending 

four hexadecimal 0’s thus there will be a considerable 

reduction of two multipliers.  Next step is the reduction of the 

product and returning the product to the integer domain. For 

 
Figure 4: A 44 Vedic multiplier using reversible-logic 

 

Inputs: 

            (a, b positive integers);             

Algorithm: 

𝑞1 = 𝑎 𝑑𝑖𝑣 𝑏; 
k ∶= 1; 𝑞0 = 𝑎; 𝑟0 = 𝑏; 

while 𝑟𝑘 ≠ 0 

k ∶= k +  1 

𝑏𝑒𝑔𝑖𝑛 

𝑞𝑘 = 𝑟𝑘−2 𝑑𝑖𝑣 𝑟𝑘−1; 
𝑟𝑘 = 𝑟𝑘−2 𝑚𝑜𝑑 𝑟𝑘−1; 
𝑒𝑛𝑑 ;  %𝑐𝑜𝑚𝑚𝑒𝑛𝑡 ∶  
𝑔𝑐𝑑(𝑎, 𝑏)  = 𝑟𝑘−1  

Algorithm 1:  Modulo multiplicative inverse algorithm  

 

INPUTS:T 
             X = (XK−1XK−2 …  X2X1X0) 
             Y = (YK−1YK−2 …  Y2Y1Y0) 
             P = (PK−1PK−2 …  P2P1P0) 

ALGORITHM: 

STEPS: 
P′ =  −P−1 MOD B 

T = 0 ( T = TN−1TN−2T2T1T0) 
FOR  I = 0 TO K − 1 

    A = ((T0 + (XI ∗  Y0)) P′) MOD B 
                 T = (T + XIY + AIP)/ B 

WHILE T ≥ P ,    T = T − P 
xyR−1 mod p = t  

 

 
Inputs: 

             x = (xk−1xk−2 … x2x1x0)  

             y = (yk−1yk−2 … y2y1y0)  

             p = (pk−1pk−2 … p2p1p0)  

Algorithm: 

Steps: 

p′ =  −p−1 mod b  

t = 0 ( t = tn−1tn−2t2t1t0)  

for  i = 0 to k − 1  

                         a = ((t0 + (xi ∗  y0)) p′) mod b  

                       t = (t + xiy + aip)/ b 

while t ≥ p ,    t = t − p  

Algorithm 2: Montgomery multiplication and montgomerry 
reduction 
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this purpose, another algorithm called Montgomery Reduction 

is used which is also the last step of Montgomery modular 

operation. The additional data that is needed for the algorithm 

is inverse of p that can be calculated using an inverse 

algorithm.  

Modular multiplication with Barrett reduction  

The Barrett reduction is based on the knowledge that ⌊
𝑧

𝑝
⌋ can 

be written in the form 

𝑄 =  ⌊ (
𝑧

𝑏𝑛−1
) (

𝑏2𝑛

𝑝
) (

1

𝑏𝑛+1
) ⌋                                         …… 

(3.1) 

The purpose of Barrett reduction is to compute z mod p where 

z and p are inputs given to the algorithm and n is the length of 

p. The lengths of z and p are 32bits and 16bits respectively. b 

is the word-size of the processor, hence it is usually assumed 

to be greater than 3. Here it is assumed to be 16.  The algorithm 

3 needs a pre-computed value µ making the algorithm very 

beneficial if many reductions are to be performed using the 

same modulus 

Inputs: 

           z = (zk−1zk−2 … z2z1z0) 

           p = (pk−1pk−2 … p2p1p0)  
such that pk−1 ≠ 0 

Outputs: 

           y = z mod p 

Steps : 

1.     μ =  ⌊
b2n

p
⌋ 

2.  q1 =  ⌊
z

bn+1
⌋  

3.  q2 =  ⌊
q1 ×  μ

bn+1
⌋  

4.  r1 = z mod bn+1 

5.  r2 = (q2 × p) mod bn+1 

6.  r =  r1 −  r2 

7.  if r < 0, 𝑟 = 𝑟 +  bn+1 

8.  while r ≥ p, r = r − p    

Algorithm 3 :Barrett Reduction 

 

 

 
Figure 5: RTL schematics of 32 bit adders using(a)  standard 

logic and (b)using reversible logic 

 
(a) 

 
(b) 

 
(c) 

Figure 6 :(a)RTL schematics of 32 bit multiplier 

using(a)  standard logic (b)using reversible logic (c) 

reversible multiplier 
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4. IMPLEMENTATION RESULTS AND ANALYSIS 

Addition  

The 32 bit adders are implemented using basic gates and 

reversible gates. Figure 5 shows the RTL schematic using 

Xilinx 14.2 of a 32-bit adder using standard logic gates and 

32bit adder using reversible logic gates. 

 

Multiplication  

Three multipliers are implemented using two methodologies, 

Vedic mathematics and Reversible logic. Figure 6 a shows the 

RTL schematic of multiplier using only reversible gates and 

figure b shows Vedic methodology using reversible gates and 

fig c vedic multiplier using standard logic gates. 

 

 

Modular Arithmetic 

Figure 7 shows the RTL schematic of the modulo 

multiplicative inverse algorithm 

Figure 8 shows the RTL schematics of the barett reduction 

algorithms. 

Figure 9 shows the RTL schematics of the mod- without 

division algorithms. 

Figure 10 is the RTL schematic of Montgomery modular 

algorithm. 

 

 

 

 

 

 
Figure 7: Modulo Multiplicative inverse 

 
Figure 8: RTL schematics of the barett reduction algorithms 

 
Figure 9: RTL schematics of the modwithout division  algorithms. 

 
Figure 10: RTL schematic of Montgomery modular algorithm 
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The below section tabulates the area, power required and the 

timing of the implemented circuits. Table 1 tabulates the 

synthesis report of the implemented addition, multiplication 

algorithms. 

Table 2 tabulates the synthesis report of the implemented 

Modular algorithms. 

Figures 11 and 12 show the comparative FPGA performance 

analysis for the proposed multiplication and modulo 

algorithms on Virtex-6 FPGA. Figure 12 shows the area and 

power dissipation using 45nm Cadence tool shows that the 

area and power dissipation in better than the standard gate 

implementation for both addition and multiplication 

Table 1: Synthesis report of addition, multiplication algorithms. 

Cell Name 

Spartan 6 45nm Technology 

Area 
Timing 

(ns) 
Area 

Power 

(µW) 
Slices 

Registers 
LUT IOB’s 

32bit Adder using Basic Gates 48 0 98 9.309 501 36.548 

32bit Adder using Reversible Gates 48 0 98 11.720 545 37.708 

Reversible Multiplier (RM) 2843 0 128 18.612 12228 1236.625 

Vedic Methodology using Reversible 

Gates 
2609 0 128 22.384 35630 2293.531 

Vedic Methodology using Basic Gates 2358 0 128 16.868 16103 1426.011 

Table 2: Synthesis report of modular algorithms 

Algorithm 

Spartan 6 45nm Technology 

Area 

Timing 

(ns) 
Area 

Power 

(µW) 
Slices 

Registers 
LUT IOB 

Modulo Multiplicative Inverse 83 610 49 54.029 5988 5079.74 

Barrett Reduction (BR) 18 2771 64 3.358 7701 8253.96 

Mod without Division (MWD) 75 1555 64 11.808 9700 11304.02 

Modified Montgomery Modular(MM) 71 4229 65 54.028 1793 92.70 

Ref[10] -- -- -- 303.3 2695 -- 
 

 

 

 
Figure 11 : Comparison of Slices IOBs and power of Multipliers using different logic (Xilinx Tool) 

 
Figure 12 : Comparison of Timing Area and power of Multipliers using different logic (Cadence Tool 45nm Technology)  
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algorithms. Figure 13 and 14 shows the analysis of modular 

multiplication algorithms using both tools. And the above 

algorithms has been compared with the implementation in 

Ref[10] and has found better timing and area 

 

5. CONCLUSION 

Parametric analysis of the algorithms helps the designer to 

decide the best and the most effective algorithm based on the 

resources that are available. Form the tabulated values it can 

be observed that despite of the adders having more or less 

same area and timing constraints in Spartan 6, a notable 

difference can be observed in Cadence. Hence from the results 

it can be concluded that the Basic adder appears superior with 

a reduction of 20%, 8% and 3% in timing, area and power 

respectively. In multiplication, a mixed response is observed. 

In Spartan 6, Vedic methodology with Basic gates occupies 

the least area of 2358 slice registers while in Cadence, 

Reversible multiplier occupies the least area of 12228 cell 

area.  Reversible multipliers consumes the least power of 

1236.625μW. In Spartan 6, the quickest algorithm is 

Reversible multiplier with a duration of 52.694ns while in 

Cadence it is Vedic methodology with Basic gates with a 

duration of 16.868ns. The timing and the area of the 

implemented Montgomery modular algorithm is compared 

with [10]. The number of slice registers utilized is reduced by 

72% and an increase in slice LUT’s by 30% is observed. They 

need to be modified in such a way that they can be applied to 

inputs unconditionally. There is scope for modification in 

reversible multiplier and the reversible adder as well. Other 

multiplication algorithms like Kasturba multipliers and so on 

need to be compared with the reversible multipliers and Vedic 

methodology to determine the most effective and efficient 

multiplier. The modular operations also need to be researched 

more extensively. The condition on the base selected in 

Barrett reduction makes it a selectively used algorithm. The 

requirement that the length of the input should be greater than 

modulus value is a limitation of the mod without division 

algorithm. Further reduction of timing in the proposed 

Montgomery modular operation is required.  
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