
H. SeetharamaTantry et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 134 –
141

134

Impact Analysis of Legacy System Migration to the Cloud Environment:
A Focused Study

H. SeetharamaTantry1, Murulidhar N.N2., K. Chandrasekaran3

1 Department of Mathematics & Computational Sciences, National Institute of Technology Karnataka, Surathkal, India, e-mail:
hstantry@gmail.com

2 Department of Mathematics & Computational Sciences, National Institute of Technology Karnataka, Surathkal, India, e-mail:
murulidharnn@gmail.com

3 Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal, India, e-mail:
kch@nitk.ac.in

ABSTRACT

Although “Legacy System” frameworks are frequently
worked over numerous years by a blend of IT and business
specialists. They stay inflexible inside the authoritative
setting and business speculation made by practical
applications. Semantic Design provides highly automated
tools and services to migrate legacy system to a new
platform. The proposed migration of the legacy software life
cycle model is used for legacy migration. Legacy
modernization encourages the organization to rejoin to the
changing interest in the business world. Manufactured goods
conveyed through the cloud give the organization both new
chances to expand their business and to manage expenses.
The researchers concurred that the different legacy
programming languages are discussed as in the result
section. Both interoperability considerations and
incorporation, expand upon measures for SaaS, PaaS, and
IaaS in IT Business in the cloud market, has increased.

Key words: Legacy System, Cloud Adopt, Cloud
Computing, Migration, Software Modernization.

1. INTRODUCTION

The word “Legacy System” is intended and executed for an
effective system and mounted by the current trends and
Telecommunications Technology strategies. Even though
these frameworks are frequently worked over numerous
years by a blend of IT and business specialists, they stay
inactivity inside the authoritative setting and business
speculation made by practical applications. A few elective
meanings of what precisely a legacy system is presented
here. (Bennett et al. 1995) Alluded to the legacy system as
"vast software frameworks that we do not have of the
foggiest idea how to adapt. However, that is fundamental to
the organization." This is fundamentally unique about the
first, yet it contains significant usefulness and information
from the legacy system. The expected maintenance activity
can never meet the required level in due course of time.
Legacy Software Modernization is the way towards
advancing existing software frameworks by substituting, re-

creating, and recycling the software modules and platforms
when expected maintenance follow-ups can never again
accomplish the ideal framework properties. The essential
point of software modernization [1] is to decrease support
cost and increase adaptability. The majority of these
frameworks were created years back and have kept on
advancing. New necessities have repeated changes on these
legacy system bringing about unstructured source code that
is hard to keep up. These issues have been perceived by the
software designing network and sufficient legacy system
modernization methodologies.

Today, an ever-increasing number of organizations prefer to
reposition their information, applications, and foundation to
Cloud Computing. Cloud Computing is an on-request
provision model that enables clients to exploit a few
advantages, like, adaptability and decreased cost. Cloud
Migration is the way towards moving all or part of an
organization’s data and software framework from an existing
domain to the cloud state. To date, there has not been a
Systematic Literature Review (SLR) of research on cloud
migration, making it difficult to evaluate the growth in
general and identifying trends, research gaps, and future
dimensions of cloud migration in particular. A SLR
identifies, classifies, and creates a comparative overview of
state-of-the-research and enables knowledge transfer in the
research community.

The setting of the fundamental goal in this present work is to
examine some underlying issues which to some extent the
existence cycle of legacy software framework. This study
expects to the accompanying commitments by leading
methodological research of existing exploration:
 Dynamic motivations in legacy software framework

modernization and migration on to the cloud.
 A novel migration of Legacy Software Life Cycle
 Existing approaches and methods to empower the

relocation of the legacy software framework to the
cloud.

 Research benchmark study between Legacy and Cloud
Migration.

 ISSN 2278-3091
Volume 9, No.1, January – February 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse21912020.pdf

https://doi.org/10.30534/ijatcse/2020/21912020

H. SeetharamaTantry et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 134 – 141

135

This paper presents the establishment of migrating legacy
software frameworks in the higher setting of software
maintenance and reclaim. Also it shows an outline of
methodologies for moving to Cloud Computing platform and
related service-oriented methodologies.

The rest of this paper is organized as follows. Section 2
throws some light on need of legacy system modernization.
Section 3 gives overall picture of legacy system migration
challenges, methods and the actions to be taken to protect the
legacy systems. Section 4 discusses the need of migration of
legacy system to cloud. Section 5 proposes a model for
legacy system migraton. Section 6 reveals results of study
carried out and discusses various reports. Finally the paper
concludes with the various studies carried out during the
process.

2.BACKGROUND

A legacy system is a business specific software framework
that fundamentally faces modification, and their absence can
seriously affect the business [2]. The essential point of
software modernization is to moderate support cost and
increment adaptability. software modernization is the way
toward advancing existing software frameworks by
replacing, re-creating, reusing, or relocating the software
segments and phases when routine maintenance practices can
never again accomplish the ideal framework properties.
Following many years of legacy system modernization
research, it might come as an unexpected fact that numerous
legacy system are still in everyday’s task. Novel
requirements have provoked frequent changes of these
legacy system bringing about unstructured source code that
is hard to keep up. Besides, information about the legacy
system is not available fully as unique developers leave the
organization or resign, and documentation is generally lost
[3]. This exploration, linked with the modernization
procedure has performed to reuse and incorporate legacy
valid codes.

Organization’s frameworks are required to be increasingly
agile, flexible, high combination, and versatile to remain to
adapt to the present business need. Organizations are forced
to give their clients the objects and administrations as fast as
could be expected under the circumstances. What they need
is the frameworks with adaptability, methods, and tools that
give better considerations to code and new models which
encourage interoperability. The perfect answer to overcome
issues brought about by legacy system is legacy
modernization. Legacy modernization encourages the
organization to rejoin to the changing interest in the business
world. [4] characterizes legacy modernization as an endeavor
to progress a legacy system, when routine practices, for
example, maintenance and improvement, can never again
accomplish preferred framework properties.

Several studies explored in the academic world have been
conversing about legacy systems and how would they make
issues for the organizations in reality. Issues, complications,

and many negative impressions about legacy system are
controlling the journals, research articles, and some other
reports in the educational domain. The study by Gartner
Group detailed that 88% of the world's business kept running
on COBOL with more than 200 billion lines of code at
present [5]. Likewise, support that report and expresses that
there assessed 6 billion lines of new COBOL code every
year. Moreover, the legacy system TIOBE file likewise
reports that COBOL as the most standard code as ever used
[6]. In recent research, researchers differentiate IT
implementation and relocation since movement occurs from
a binding IT to a temporary IT, while implementation does
not expect a current IT [7].

3. THE LEGACY SOFTWARE SYSTEM

Software frameworks are never considered as tomorrow's
legacy system when they are fabricated, and their
requirement for change isn’t considered. [8] communicates a
similar conclusion about software preservation. As indicated
by this researcher, the principle issue of support is that
software frameworks are not intended to sustain, and if
circumstance does not change, their dependability happen
issues with maintenance of the frameworks in future.

3.1 The Key challenges of Legacy Software System

Software change is a particular portion of software
improvement. In this method, maintenance and advancement
are considered during the beginning of improvement of the
software framework. While selecting technologies, total
lifetime costs, not just starting improvement costs, surveyed,
and probable maintenance issues with this specific
innovation, should be considered [9]. Also, the software
framework should be sufficiently adaptable for development,
as new client necessities could increase.

As indicated by [10], starting advancement, yet additionally,
development should be controlled. The Managed Evolution
approach, in which all upgrades to the framework is isolated
into two classifications: one expands business esteem, and
another improves the agility and spreads enhancements in
such regions as architecture, technologies, and codebase.

3.2. Legacy Software Modernization Approaches

Framework advancement covers an expansive scope of
improvement training from adding a line of code to re-
execute the framework. In [17], framework development
training partitioned as follows:
 Maintenance is a steady and iterative procedure in

which little changes made to a framework. These
progressions are regularly bug fixes or little practical
improvements that does not include significant auxiliary
changes.

 Modernization includes more broad changes than
support; however, it preserves a critical bit of the current
framework. These progressions may incorporate
rebuilding the framework.

H. SeetharamaTantry et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 134 – 141

136

 Replacement requires remaking the framework starting
with no external support. Frameworks replaced by
utilizing the “big-bang” approach.

In such a manner, Lehman's first law states that software
must be consistently maintained, or it will turn out to be
logically less acceptable. Modernizations, for the most part,
suggest massive scale changes that help to expand the
software's lifetime. The modernization methodologies
ordered into two distinct classes: “Black-Box”
Modernization and “White-Box” Modernization [21].

3.3 The Modernization Process of Legacy Software
System

Semantic Designs provides highly automated tools and
services to help migrate legacy system to new languages
such as Object-Oriented Programming languages (Java and
C#). Legacy systems are effective and progress along these
lines, and likely to be in field for an extensive span of time.
An outcome is that legacy software by utilizing equipments
accessible at the time it developed, rather than the most
current software developments. More experienced
technologies are increasingly hard to keep up, and this is a
crucial purpose of legacy framework administrators. The
primary alternate is called redevelopment [11].
Redevelopment is one method for modernization where the
target framework built from scratch. The legacy system is
remade and supplant with the new target framework.
Towards the finish of the execution, the new framework has
a new design, so it is simpler to maintain, expand, and build
up the framework after modernization.

Service-Oriented Architecture (SOA) [12] is a compositional
world view that communicates to an open, extensible, and
compostable software design assembled from reusable
software parts known as services. SOA concentrates around
the reusability of the modules by isolating the interface from
the interior execution. The fundamental rules that advance
SOA incorporate free coupling, a reflection of necessary
foundation, agility, adaptability, reusability, dependence,
statelessness, and discoverability. From an software
modernization point of view, SOA guarantees to reuse the
prior legacy resources by representing them as included
esteem organizations. While recognizing the issues of legacy
modernization [13], the followed measures are complexity
and changeability.

3.4 Necessary Changes in Legacy Systems

Software needs to empower business tasks in a domain
portrayed by globalization, expanded challenge, and
portability. This expects initiatives to adjust to changes in the
business atmosphere. For inviting new clients and supporting
a fast development, achievements, and the data frameworks
utilized by undertakings should have the capacity to adjust to
new principles, changes in working conditions, and upgrade
of business procedures. Software necessities are as yet
subject to Lehman laws, including [14]:

 “Continuous Change” of necessities, locations, and
business rules;

 "Expanding Complexity Nature" of software
frameworks;

 "Authoritative Security," decided in administration;
 "Proceeding with Development" of the back-end

framework; and
 "Declining Quality" without proactive measures.

3.5 Legacy Software Systems Protection

The advancement to totally new frameworks, adjusted to the
existing trends, would include complex improvement cycles,
staggering expenses, in addition to the need to keep up the
old framework amid this undertaking. These states to an
exertion that can't be sustained by the individuals who have
just put resources into their data frameworks and have
qualified personnel to work with them. The need to protect
legacy system contains various perspectives that are regular
to the benefits of reuse: exploiting software that has been
widely tried, in actuality, decreasing risk, preserving valid
area information, and accelerating the procedure for
achieving current business targets. It frequently symbolizes
to a low-scale reuse, performed for making a new version for
reusing at a bigger scale.

3.6 Legacy Software Migration

Migration is regularly low for installed software frameworks
due to the huge expenses of retrofitting, for example, the
smart home appliances with new software. The software
maintenance modules as per the arranged model of software
life cycle [15], after the underlying improvement,
maintenance is made out of three stages: (1) Evolution:
When adjustment and improvement managed without
rebuilding or significant changes; (2) Servicing: When
patches and wrappers presented with the unavoidable impact
of harming the building reliability; (3) Phase-out: When it is
just likely to work around for protection of the application
used.

4. LEGACY SOFTWARE MIGRATION TO CLOUD

Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of
configurable resources that can be rapidly provisioned and
released with minimal management effort or service
provider’s interaction defined by US National Institute of
Standards and Technology (NIST) [18].

Software migration has been the enthusiasm of the software
engineers and somewhat the business side of the
organization. The migration to the cloud puts more attention
on the business side of the organization and includes a more
significant number of stakeholders than the designers.
Manufactured goods conveyed through the cloud give the
organization both new chances to expand their business and
to maintain costs.

H. SeetharamaTantry et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 134 – 141

137

There are variety of reasons that a migration of a legacy
system may be needed:
 The legacy system languages and maintenance tools [24]

which are expected to help the legacy system are
progressively troublesome or costly to acquire.

 Persons who knows the legacy system languages and
maintenance work are getting to be hard to discover and
hold. Moreover, younger generation is hesitant to learn
legacy system that it doesn't seem to propel their long-
term profession [22][23].

 Numerous legacy system keep running on legacy system
hardware frameworks. Such equipment frameworks are
winding up increasingly, costly to maintain, and
workforce that realizes these frameworks are likewise
progressively hard to discover.

 The software engineering of legacy system languages
frequently does not fit its structure platforms to other IT
frameworks that have grown up around it.

5. A PROPOSED MODEL FOR MIGRATION OF
LEGACY SOFTWARE LIFE CYCLE

The proposed Migration of legacy Software Life Cycle
Model worked whereby addressed by circles contrast with
learning states while changes (addressed by square shapes)
identify with strategies [16]. The legacy software life cycle
model depicted in figure 1.

Figure 1: Migration of Legacy Software Life Cycle Model

It is essential to keep learning about the current scheme
objectives and how they are accomplished through the
present undertaking ways just as secure information about
the usefulness of the legacy system to the degree essential for
the relocation. The model continues to characterize an
organized method for distinguishing and assessing the
different advances for the legacy system movement. The
plan and advancement of the objective framework can extend
from the easy to the complex. It includes the actual
relocation process for both legacy system and business
forms.

6. RESULT AND DISCUSSIONS

The finding pursued a Grounded Theory (GT) [19][20] way
to deal with examining 50 in and out semi-organized
reviews, for example, a subjective procedure, to distinguish
how legacy system frameworks and their modernization
agreed in the industry. In an observational investigation, for
example, this investigation, the utilization of different
research procedures (subjective and quantitative systems in
this situation) expands the certainty that the outcomes are
dependable. GT is an explorative research strategy that goes
for finding new points of view and bits of knowledge, as
opposed to affirming existing ones. To begin with a
progression of surveys directed with 50 researchers
(distinguished as R1-R50 in this research, refer table 1). The
witnesses were chosen on the two criteria that they have
involvement with legacy system, and with legacy system
modernization projects.

A strategy that utilizes more than one information source, or
gathers similar information at various events is usually used
to build (decline) trust in finding by giving affirming
(opposing) proof and improves the legitimacy of the
discoveries of an observational investigation. Designers
framed the biggest gathering of supporters (22%), trailed by
IT Managers (14%) and Scientists (12%); they originate
from different areas, for example, software advancement
organizations (28%), counseling organizations (21%),
specialist organizations (11%), and money related
establishments (9%).

Table 1: The utilization of different research procedures

Researchers Service Domain
R2,R11,R12,R20,R21 Info Knowledge Services
R1,R15,R17,R22 Economic Service Provider
R4,R5,R25,R26,R39 Management Organization
R7,R8,R18,R19,R40 Software Change Business
R6,R10,R24,R27,R50 Consultancy Firm
R3,R28,R34,R41,R42,R43 Aeronautics Manufacturing
R9,R32,R33,R44 Security Enterprise
R16,R30,R31,R45 Manufacturing Enterprise
R13,R35,R36,R46 Poultry
R23,R37,R47,R48 Nutrition
R14,R29,R38,R49 Apparatus

6.1 Observed Features of Legacy Systems

This review displays the consequences of the
investigation of the data of legacy systems, also, an overview
is signified to the features: a) Industry Significant b)
Technology c) Reliability and d) Performance showed in
figure 2.

Review Legacy Software

Review Business Framework

Classify Assessment

Generate Conversion

Software Migration

Industry Migration

System
Evaluation

Product
Cost Estimation

Significant
Methods

Migration
Set-up

Software
Migration

Industry
Migration

Migration
Process

Legacy
Software

Migrated
Software

Initial Process

Review
 Activities

Deployment
Activities

H. SeetharamaTantry et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 134 – 141

138

Figure 2: Research review responses for benefits

6.2 Legacy Programming Languages

The more significant part of the sources concurred that
legacy systems are "main" frameworks. Furthermore, the
observers called attention to that legacy system are "center"
frameworks that have been demonstrated to work accurately
in a construction atmosphere for a considerable length of
time (refer table 2).

Table 2: Demonstrated work by the researchers

Researchers Solution
R1,R3,R6,R9,R13,R14,R
18,R19,,R22,R23,R24,R3
6R33,R34,R35,R46,R49

The greater part of the
legacy system is more
seasoned than 3 to 4
decades.

R2,R5,R8,R11,R16,R17,
R25,R26,R27,R32,R37,R
38,R39,R42,R43,R47,R50

Legacy system is an old
framework; a great deal of
legacy system is the center
framework

R4,R7,R10,R12,R15,R20,
R21,R28,R29,R30,R31,R
40,R41,R44,R45,R48

A legacy system is a
framework that do not have
a place with in vital
innovation objectives.

In the following examination, the researchers were inquired
as to whether programming language is a deciding element
for a framework being legacy system and obtained varied
results. Such a different conclusion additionally perceived
from the study of the surveys from legacy system (COBOL,
PASCAL, FORTRAN, BASIC, ASSEMBLER, and VB).
The respondents concurred that the languages like COBOL is
38%, PASCAL is 12%, FORTRAN is 10%, BASIC is 11%,
ASSEMBLER is 8%, and VB is 21% do decide whether a
framework is legacy system, which is depicted in figure 3.

Figure 3: Review analysis of Legacy Programming

6.3 The Legacy Programming Language Review

In summary, it gives complete understanding and analysis of
legacy system proposed by various researchers (refer table
3).

Table 3: Review of legacy programming language

Proposed
Techniques

Tools /
Methods

Approached
Researchers

Reverse
Engineering and

Software
Architecture

UML
Mapping

R1,R3,R6,R9,R13,R1
4,R18,R19,R22

Source Code
Assessments API R2,R5,R8,R11,R16,R

17,R25,R26,R27
Development

Modeling
USE Case

Graph
R4,R7,R10,R12,R15,

R20,R21,R28,R29
Documentation SMART Tool R23,R24,R36R33,R3

4,R35,R46,R49
Functional
Requests

Tool: Reverse
Engineering

R32,R37,R38,R39,R
42,R43,R47,R50

Test
Circumstances

Tool: Code
Reporting

R30,R31,R40,R41,R
44,R45,R48

Figure 4: Problems in Legacy Systems

Figure 4 portrays the problems of legacy system over the
range of 3 decades. It perceived that the documentation,
framework plan necessities represents the difficulties for the
support of legacy system. In Figure 4, it additionally refers to
System Upgrading, Software Documentation, Software
Requirements, Merchant IT Products and legacy system
Design.

Figure 5 outlines the examination of different programming
languages used to create business applications concerning
software measures, for example, Code Reusability, Methods,
Tools and Modularity. It is mentioned that the common
legacy system programming languages, for example,
COBOL, PASCAL, FORTRAN, BASIC, ASSEMBLER,
and VB, give increasingly complex techniques contrasted
with the other present-day object oriented programming
languages, like, JAVA, C#, .NET, and PHP. With regard to
the reusability metrics, legacy system code in JAVA, C#,
.NET, and PHP have a more reusable rate than COBOL,
PASCAL. Further, it is represented in Figure 5 that

H. SeetharamaTantry et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 134 – 141

139

instruments, particularly measures in JAVA, C#, and .NET
contribute preferred remarks over COBOL, PASCAL,
FORTRAN, BASIC, ASSEMBLER, and VB.

Figure 5: Legacy Software measures

6.4. Security Analysis in Migration to Cloud
Environment

To sum up the results of the systematic review, we present in
Table 4, a summary of the number of studies by the
initiative. The initiatives obtained from the main topics
found on the approaches analyzed of the review carried out
about migration processes to the Cloud. The advantages are
analyzed by the frameworks if these approaches are focused
on software structure, ethics, renovations, security analysis
and tools, and reengineering propose transformations of
models in the migration process if security is considered in
these approaches. This migration study among
comprehensive technology and cloud providers, is to provide
interesting aspects to take into account the migration of
legacy systems to Cloud computing.

Table 4: Summary of the number of studies by initiative

Researchers Boundaries
R1,R3,R6,R9R23,R24,R36R33,
R34,R35,R46,R49 Software Structure

R2,R5,R8,R11,R32,R37,R38,
R39,R42,R43,R47,R50 Software Ethics

R4,R7,R10,R12,R15,R20,
R41,R44,R45,R48 S/W Renovations

R13,R14,R18,R19,R22 Security Analysis
R16,R17,R25,R26,R27, Case Study

R21,R28,R29,R30,R31,R40 Tools &
Reengineering

6.4.1 Advantage of Cloud Computing

In another examination about Cloud Computing, most of the
researchers anticipate six fundamental drivers of Cloud
computing: Flexibility, Cost estimation, Scalability, Business
promotion, Security, Latest Technology in the IT industry.
Cloud Computing benefits by the faster sending off
applications for lesser expense. In this equivalent
examination, overpowering the mainstream of members,
considering security issues, to be their principal concern
considering the utilization of Cloud computing (refer fig. 6).

Figure 6: Advantages of Cloud computing

6.4.2. Threats Assessment of Cloud Computing

Likewise, security, legal, privacy, integration, loss of
performance, lack of functions viewed as regions of threats.
The review results indicated in figure 7. It creates the
impression that they are not stressed principally over the
absence of safety efforts in themselves, yet about the absence
of straightforwardness in favor of sellers. A littler, cost-
controlled association may find that a cloud organization
enables them to exploit tremendous scale framework safety
efforts that they couldn't generally manage.

Figure 7: Threats Assessment of Cloud Computing

6.5 IT Business in Cloud Market - Predictions for 2021

IaaS hints at no backing off soon and is relied upon to reach
$83.5 billion by 2021. SaaS industry is relied upon to
develop by 22.2% to reach $83.6 billion before the end of
2019. As indicated by the equivalent Gartner report, SaaS

Figure 8: Global Business Income for Cloud Technology

H. SeetharamaTantry et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 134 – 141

140

is anticipated to develop to an astonishing $117.1 billion by
2021. Though a portion littler than SaaS, IaaS and PaaS are
required to develop at an impressive 26% to reach $15
billion before the end of 2019. By 2021, Gartner expects
PaaS to pick up a total market size of $27.3 billion. Industry
master predicts that the IaaS market created by 35.9% in
2019 (only a slight decreasing from 38.6% in 2018) to reach
$40.8 billion preceding the year ended. The results analyzed
in figure 8.

7. CONCLUSION

Legacy systems are progressively turning into a problem for
a wide range of IT business. Though explicit difficulties stay,
some of them identified with the administrative
establishment and others explicit to the proposed
methodology of cloud computing. The researchers concurred
that the languages like COBOL is 38%, PASCAL is 12%,
FORTRAN is 10%, BASIC is 11%, ASSEMBLER is 8%,
and VB is 21% do decide whether a framework is legacy
system. The threat assessment of cloud computing is also
discussed. The investigation of the business method for
reasoning on-premise IT administrations to the cloud is
brought up by this cloud adoption by Implications of
Integration and Interoperability for Cloud applications. In
Cloud Interoperability, both Considerations and
Incorporation expand upon measures for SaaS, PaaS, and
IaaS in IT Business in Cloud Market 2019, and Predictions
for 2021 increased.

REFERENCES

1. Ulrich, W., 1994, From Legacy Systems to Strategic

Architectures, Software Engineering Strategies, 2(1),
18-30.

2. S.C. Misra, A. Mondal, Identification of a company’s
suitability for the adoption of cloud computing and
modeling its corresponding return on investment,
Math. Comput. Modell. 53 (2011) 504–521.
https://doi.org/10.1016/j.mcm.2010.03.037

3. Ulrich, W. (2004, September). A status on OMG
architecture-driven modernization task force. In
Proceedings EDOC Workshop on Model-Driven
Evolution of Legacy Systems (MELS), IEEE
Computer Society Digital Library.

4. Khadka, R., Saeidi, A., Idu, A., Hage, J., Jansen, S.,
(2013), Legacy to SOA evolution: a systematic
literature review. In Migrating Legacy Applications:
Challenges in Service Oriented Architecture and
Cloud Computing Environments. A. D. Ionita, M.
Litoiu, G. Lewis Editions. IGI Global.

5. Kizior, R. J., Carr, D., & Halpern, P. (2005). Does
COBOL Have a Future?. Proceedings of the
Information Systems Education Conference 2000, P.
126.

6. A. Khajeh-Hosseini, D. Greenwood, J. W. Smith, I.
Sommerville, The cloud adoption toolkit: supporting
cloud adoption decisions in the enterprise, Softw. 42
(2012) 447–465.

https://doi.org/10.1002/spe.1072
7. Warren, I & Ransom, J 2002, Renaissance: a method

to support software system evolution, in Computer
Software and Applications Conference, 2002.
COMPSAC 2002. Proceedings. 26th Annual
International, IEEE, pp. 415-420

8. Stehle, E., Piles, B., Max-Sohmer, J., & Lynch, K.
(2008). Migration of Legacy Software to Service
Oriented Architecture. Department of Computer
Science Drexel University Philadelphia, PA, 19104, 2-5.

9. Vu, Q. H.; Asal, R. Legacy application migration to
the cloud: Practicability and methodology. In: World
Congress on Services, 8., 2012, Honolulu. Electronic
proceedings. Honolulu: IEEE, 2012. p. 270-277.
https://doi.org/10.1109/SERVICES.2012.47

10. P.-J. Maenhaut, H. Moens, V. Ongenae, and F. De
Turck, Migrating Legacy Software to the Cloud:
Approach and Verification by means of Two Medical
Software Use Cases. Software: Practice and
Experience, 2015.
https://doi.org/10.1002/spe.2320

11. Frey, S.; Hasselbring, W. The clouding approach:
Model-based migration of software systems to cloud-
optimized applications. International Journal on
Advances in Software, v. 4, n. 3 and 4, p. 342–353,
2011.

12. Lehman, M. M. (1996). Laws of software evolution
revisited. In C. Montangero (Ed.), Proceedings of the
5th European Workshop on Software Process
Technology (EWSPT 1996), (pp. 108-124). London,
UK: Springer-Verlag.
https://doi.org/10.1007/BFb0017737

13. Sommerville, J. (2006). Software engineering (8th ed.).
Reading, MA: Addison-Wesley.

14. Bennett, K. H., & Rajlich, V. T. (2000). Software
maintenance and evolution: A roadmap. In A.
Finkelstein (Ed.), Proceedings of the Conference on the
Future of Software Engineering, (pp. 3-22). ACM Press.
https://doi.org/10.1145/336512.336534

15. L. Peterson, Petri Nets, Computing Surveys, Vol 9, No.
3, September 1977
https://doi.org/10.1145/356698.356702

16. Weiderman, N., J. Bergey, D. Smith, Tilley, Scott R.,
Approaches to Legacy System Evolution (CMU/SEI-
97-TR-014), Pittsburgh, Pa.: Software Engineering
Institute, Carnegie Mellon University, 1997.
https://doi.org/10.21236/ADA336213

17. Sneed, H., Encapsulating Legacy Software for Reuse
in Client/Server Systems, Proc. of WCRE-96, IEEE
Press, Monterey, 1996.

18. Chikofsky, E., J. Cross II, Reverse engineering and
design recovery: A taxonomy, Software
Reengineering, IEEE Computer Society Press, 1992,
p.54–58.

19. Demeyer, S., S. Ducasse, O. Nierstrasz, Object-
Oriented Reengineering Patterns, Square Bracket
Associates, Switzerland, 2009.

H. SeetharamaTantry et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 134 – 141

141

20. V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch.
How to adapt applications for the cloud
environment. Computing, 95(6):493-535, 2013.
https://doi.org/10.1007/s00607-012-0248-2

21. Microsoft Azure. http://azure.microsoft.com/. [Visited:
May 2014].

22. Google App Engine. https://cloud.google.com/
products/app-engine/. [Visited: June 2014].

23. Jeffery, K., & Neidecker-Lutz, B. (2010). The future of
cloud computing: Opportunities for European cloud
computing beyond 2010. Geneva, Switzerland:
European Commission, Information Society, and Media.

24. Petcu, D., Craciun, C., Neagul, M., Rak, M., &
Lazcanotegui Larrarte, I. (2011). Building an
Interoperability API for sky computing. In
Proceedings of the International Conference on High-
Performance Computing and Simulation (HPCS), (pp.
405-411). HPCS.
https://doi.org/10.1109/HPCSim.2011.5999853

