
NataliiaYeromina  et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2343  – 2349 

2343 

 
 

 
ABSTRACT 
 
The results of the synthesis of the optimal reference image 
(RI) of the correlation-extreme navigation systems 
(CENS) of vehicles are presented in this article. They are 
represented in the ratio scales, differences scales and 
intervals scales that are relative to the strong scales as well 
as in the ordinal scales. The algorithm of the synthesis of 
the optimal RI in the ordinal scales is suggested. 
 
Key words: Strong scales, ordinal scales, reference 
images, optimal algorithms, navigation systems. 
 
1. INTRODUCTION 
 
The solution of the problems of navigation of air-, sea- and 
land-launched vehicles with the use of autonomous 
correlation-extreme navigation systems is impossible 
without the corresponding reference images of the viewing 
surface. 
The complexity of generation of the RI of the viewing 
surface is determined by the variation of conditions of 
formation of the original data, which is used for further RI 
synthesis. As a result of the lack of accurate data on the 
geometry of the viewing surface, weather conditions 
differences, the season when the original data has been 
gathered, weather conditions changes, the differences 
between the formed current image (CI) in the navigation 
system and the previously obtained RI can arise. 
Consequently, the accuracy characteristics of the 
navigation system can differ significantly from the 
required ones [1, 2, 3,4]. 
 
1.1 Problem analysis 
 
One of the directions of synthesis of the optimal RI, which 
corresponds the fixed constituent of the informative 
parameter, is the use of the terms of scale of the Theory of  
 
 

 
 

 
Change. In the article [5] it has been suggested to choose 
the optimal RI, which corresponds the fixed constituent of 
the informative parameter, in each comparison act for the 
CI fragment. The description of the informative parameter 
is suggested to perform with the help of the term of the 
scale of the Theory of Change [6]. In accordance with this 
theory, the brightness component of RI, shifts, rotations of 
the RI with respect to the current image (CI), as well as an 
operation of the enumeration of CI fragments is suggested 
to formalize in terms of the Granander Image Theory, the 
fundamental principles of which are outlined in the article 
[7]. Therein, taking into consideration the necessity of 
provision of high precision navigation of vehicles, the 
most favorable option for the RI synthesis may be the 
representations in strong scales and the ordinal scales. 
 
The goal of this article is the development of the RI 
synthesis method for the navigation systems of vehicles in 
the representations in strong scales and the ordinal scales. 
 
2. MAIN MATERIAL 
 
2.1The synthesis of the optimal RI, represented in the 
ratio scales, differences scales and intervals scales 
 
The solution of the optimal RI synthesis problem in its 
representation in strong scales will be performed with the 
help of the Kuhn–Tucker theorem, which belongs to the 
finite-dimensional problems of the convex programming. 
 
In accordance with this theorem, the statement [8] is valid: 
1. let the functionsf:	܀୒ → ,gଵ ,܀ … , g୫:܀୒ →  ܀
be convex and continuously differentiable in܀୒; 
2. let us assume that the vectors ෝૈ ∈ ୒andෝૄ܀ ∈  ୫satisfy܀
the conditions: 
 

     (  ,  ) (  ) (  )  ,    f g 0   (1) 
 

g 0 0(  ) ,  ,  (  , , .      j jg j m 0 1  (2) 
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Then ෝૈis the absolute minimum point of the problem: 
 

 arg min ( ), ( ) .   f g 0   (3) 
 

In the representations (1)(3): 
 

 L f( , ) ( ) , ( )      g   (4) 
 

the Lagrange functionof the problem (3), the vector 
inequalityૄ ≥ ૙defines the inequality satisfaction for each 
vector component, and∇܏(ૈ)m × Nis the matrix with the 
elementsࣔ୥౟(ૈ)

ࣔ஠ౠ
, the columns of which are the gradients of 

functiong୧. 
Condition: 
 

 (  , , j jg j m  0 1   (5) 

 
is the complementary slackness condition. 
Let us consider the problem of the optimal RI synthesis: 
 

2

g G
ĝ=arg min -g

 Ay z   (6) 

 
when it is represented in the ratio scales, differences scales 
and intervals scales that are relative to the strong scales. 
 
Ratio scale. The group of the permissible transformations 
of the RI is represented as a one-parameter group of 
similarity transformationg(ܠ) = αܠ, α > 0,the problem (6) 
is defined by the expression: 
 

 argmin ( ) arg min , , .  
 

   
 0 0

2f My z y z RA
 (7) 

 
According to the comparison with the general case (1)-(3) 
it follows thatm = 1, gଵ(α) = −α ≤ 0. Functions 
f(α)andgଵ(α)areconvex, as the first one is the quadratic 
function, while the second one is the linear function of the 
variableα. 
Let us form the Lagrange function of the problem (7): 
 

L(α,μ) = ܡ‖ − αۯ‖ܢଶ − αμ,  (8) 
 

for which the condition (1)is represented as: 
 

    2 2 02y z zA A,    ,  (9) 

 
and the complementary slackness condition (5) is 
represented as: 
 

μොαෝ = 0.    (10) 
 

As αෝ ≥ 0in accordance with (2) and‖ۯ‖ܢଶ ≥ 0, 
thenαෝ‖ۯ‖ܢଶ ≥ 0, and according to (10) μොandαෝcan not be 
simultaneously distinct from zero, the solution of the 
equation (9) depends on the index of the scalar 
product(ܡ,  .ۯ(ܢ
If (ܡ, ۯ(ܢ > 0,in accordance withμ ≥ 0it follows that two 
cases are possible: μො = μଵ = 0 andμො = μଶ ≠ 0. 

In the first case, the equation (9) results inαෝ =
,ܡ) ۯ(ܢ ⁄ଶۯ‖ܢ‖ > 0. 
In the second case, the condition (10) results in αෝ = 0and 
according to the equation(10) it follows thatμො =
,ܡ)2− ۯ(ܢ < 0. 
This condition contradicts the conditionμ ≥ 0. 
If(ܡ, ۯ(ܢ ≤ 0,then during the analysis of two cases, we 
find that the first case is contradictory, while the second 
one is equal toμො = ,ܡ)2− ۯ(ܢ ≥ 0andαෝ = 0. 
Thus, the solution of the problem (7) is defined by the 
equation: 
 

   
 


, , , ,

, , ,
 










y z z y z
y z

A A
2

A

A

0
0 0

  (11) 

 
and the lowest value of the decisive function is equal to: 
 

   
 

f (  )
, , , ,

, , ,
  

  
 






y

y z y z
y zA

2 A A

A

2 0
0 0

 (12) 

 
where  z z z . 
 
Thus, to ensure that the algorithm of the reference object 
localization is invariant to the scale distortion of the 
image, it is necessary to use the standardized RI and the 
decisive function (12). 
Difference scale.The permissible transformation group 
(PTG) is the group of shifts in܀(g(ܠ) = ܠ + β,β ∈  the ,(܀
problem (6) can be determined by the expression: 
 
β෠ = arg min f(β) = arg min‖ܡ − ܢ − ૚୑β‖ۯଶ . (13)  

 
where૚୑is the vector in܀୑, all the components of which 
are equal to 1. 
From (13) it follows that the problem is considered to 
finding the unconditional extremum of the functionf(β). 
As a result of the differentiation, we’ll obtain: 
 
       f y z f( ) ; ( )  2 2 2 2 0 , 

 
whereyത = ∑ p୧y୧୑

୧ୀଵ , zത = ∑ p୧z୧୑
୧ୀଵ are the weighted average 

values of the vectorsܡ,  .ܢ
Therefore,the sought extremum is the minimum and the 
solution of the problem is defined with the expressions: 
 

  , ()      y z f y zM My 1 z 1
A
2 . (14) 

 
The vectorܢ ∈  .ۯ(ܢ૚୑)if ,ۯ୑is centered to metric܀
It is obvious that the vectorsܡ − ૚୑yത, ܢ − ૚୑zതareۯ- 
centered. 
Thus, to ensure that the algorithm is invariant to the scale 
distortion of the current image or to the change of the 
brightness point of reference, it is necessary to center both 
RI and CI fragments while processing. 
 
Interval scale. The PTG is represented as a linear 
groupin܀ (g(ܠ) = αܠ + β, β ∈ α,܀ > 0), the problem is 
given by: 
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  ,  arg min ( , ) arg min     
 

   
 0 0

2f y z A
. (15) 

 
Since the unconstrained minimum is sought in accordance 
with the variable , it can be given that the optimal value 
is 
  y z ,using it in (15), results in the following 

problem: 
 
 arg min ( ,  ) arg min   

 
    

 0 0

2f y z A
,  (16) 

 
where      y y 1 z z 1M My z, . 
 
Problem (16) is solved while investigation of the case of 
RI representation in ratio scale, where it is shown that

 α̂ , 
A

y z : 
 

   
 

f (  , )
, , , ,

, , ,
    

    
  






y

y z y z
y zA

2 A A

A

2 0
0 0

 (17) 

 
whereܢᇱᇱ = ᇱܢ ⁄‖ᇱܢ‖ . 
Hence, to ensure that the algorithm of RO localization is 
invariant to the group of linear transformations of the 
current image, it is necessary to use the centered CI 
fragments, as well as the centered and standardized RI. 
 
2.2 The synthesis of the optimal reference image when 
represented in the ordinal scale 
 
In this case	Ris the linear quasiorder on X. 
The relationR is represented as the sum of the equivalence 
relation R୍and the strict order relationRୗ, which establishes 
a linear order relation on a set of zones . Assuming that 
the zones are renumbered in order of increasing 
brightness, the set of acceptable digitizations by zones can 
be described as follows: 
 

 C N
N  R      . 

 
We take into account that the linear operator h:܀୒ →  ,୑܀
having a matrix ۶,allows to build the digitization of the RI 
in accordance withthe vector of brightness of the zones 
digitization. 
The matrix۶has the elementsh୧୨ = 	 ઼୰౟୨ ,wherer୧ is the 
number of the zone to which the i-th element of RI 
corresponds. 
 
As a rule, the vector y,when compared with the 
digitization of RI, is pre-centered. The vectorܡ ∈  ୑is܀
called centered in the metricA or A-centered, if 
 

 1 y 1 AyAM M j
j

M
jp y,     

1
0. 

 
The following clauses are possible:  
Clause 1. 
If the vectory in the problem 
 

 arg min 
 

 
C SM

y A
2 , 

 
whereS୑ = ܓ} ∈ ଶۯ‖ܓ‖|୑܀ = ૚}is a unit sphere in܀୑, 
isA-centered, then optimal digitization ෝૂis equallyA-
centered. 
 
Proof.From the chain of equalities 
 

૚୑ᇱ ෝૂۯ = ෍ p୧κనෝ =
୑

୧ୀଵ

෍p୧πෝ୰౟ =
୑

୧ୀଵ

෍πෝ୧ ෍ p୩
୩∈୒౟

=
୒

୧ୀଵ

 

= ෍෍ p୩y୩
୩∈୒౟

୒

୧ୀଵ

= ෍p୩y୩

୑

୧ୀଵ

= 0 

 
the proposition statement follows. 
In the case of centered and normalized RI and CI 
fragments, the decisive function has the form: 
 

B k m y ek
i
k

i
k

i
i

N
( , )  







2 1
1

, 

 
and the algorithm is equivalent to the correlation one. 
Clause2. 
Narrowing the image h:܀୒ →  ୑܀
 

h|େૈ = Cૈ ⟶ Cૂ = {ૂ ∈ ૂ|୑܀ = ۶ૈ,ૈ ∈ C஠} 
 
is bijective. 
 
Proof. 
It is known [9] that for an image to be bijective, it is 
necessary and sufficient that it is both injective and 
surjective. 
Injectivity.Note that for everyπ ∈ C஠the way of reflection 
h is determined by a vector with components: 
 

   i r j
j

M
j ri i

i M   
1

1, , .  

 
Let us take two arbitrary vectorsૈᇱ ,ૈᇱᇱ ∈ Cૈ, ૈᇱ ≠ ૈᇱᇱ, 
find the corresponding imagesૂᇱ = ۶ૈᇱ, ૂᇱᇱ = ۶ૈᇱᇱand 
suppose that ૂᇱ = ૂᇱᇱthat is 
 
ૂᇱ − ૂᇱᇱ = ൫π୰భ

ᇱ −π୰భ
ᇱᇱ , … ,π୰౉

ᇱ − π୰౉
ᇱᇱ ൯

ᇱ
= 0. 

 
This equality holds only for ૈᇱ = ૈᇱᇱ, which proves the 
injectivity of the reflectionh|େܓ. 
Surjectivity follows from the construction of the setCܓ. 
Definition.The setC ⊂  ୒is considered a cone if܀
 

ૈ ∈ C ⇒ λૈ ∈ X, λ > 0. 
 

Definition.The setC ⊂ ୒is considered a convex if܀
    , R N the section connecting the pointsπᇱ , 
πᇱᇱbelongs to С, that is. 
 

            1 0 1, , C . 
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Clause3. 
Cૈ = {ૈ ∈ ୒|πଵ܀ < ⋯ < π୒}is a convex cone in܀୒. 
Proof.If ૈ ∈ C஠, thenλૈ ∈ C஠, as the system of 
inequalitiesλπଵ ≤ ⋯ ≤ λπ୒is equivalent to the 
systemπଵ ≤ ⋯π୒ , that isCૈis a cone in܀୒. 
To prove the convexity of the cone Cૈlet’s take arbitrary 
vectorsૈᇱ ,ૈᇱᇱ ∈ ۱ૈ. 
Multiplying the system of inequalities πଵᇱ ≤ ⋯ ≤ π୒ᇱ byλ ∈
[0,1], and the systemπଵᇱᇱ ≤⋯ ≤ π୒ᇱᇱby 1, andgiven 
thatλ, 1 − λ ≥ 0, we will receive: 
 
λπଵᇱ + (1 − λ)πଵᇱᇱ ≤ ⋯ ≤ λπ୒ᇱ + (1 − λ)π୒ᇱᇱ .  
 
Corollary.Cૂ = {ૂ ∈ ૂ|୑܀ = ۶ૈ,ૈ ∈ Cૈ}is a convex 
cone in ܀୑. 
Prooffollows from the convexity of the cone Cૈand from 
the bijectivity of the reflection:h|۱ૈ = Cૈ ⟶ Cૂ , h(ૈ) =
۶ૈ. 
The problem of finding the optimal digitization of RI has 
the form: 
 

ෝૂ = arg minૂ∈େૂ‖ܡ − ଶۯ‖ૂ   (18) 
 
where

  C CM N
N          R H R,      . 

 
Based on the Clause1this problem is equivalent to the 
following: 
 

 arg min ( ) arg min    f y H A
2  (19) 

 
under restrictions: 
 

g j Nj j j( ) , , .        0 1 1  (20) 

 
By direct calculations, we find the vector  
 

  












H Ay p y p yj j j j

j Nj N N

, ,
1

 

 
and matrix∇܏(π), the columns of which are the gradients 
of functiong୨: 
 

 



























g( )

1 0 0 0 0
1 1 0 0 0

0 0 0 1 1
0 0 0 0 1





     





. 

 
Then the vector∇܏(π)μ ∈  ୒ିଵis defined by the܀
expression: 
 
ૄ(π)܏∇ = (μଵ ,μଶ −μଵ , … , μ୒ିଵ − μ୒ିଶ,−μ୒ିଵ)ᇱ. (21) 

 
Let us write the system of equations for determining 
vectors ෝૈ, ෝૄ in the coordinates taking into account (21), for 
simplicity omitting the tildes of the components of these 
vectors: 

 
 

 

 
 

 

2 0
2 0

2 0
2 0

0 1 1

1 1 1 1

2 2 2 2 1

1 1 1 1 2

1

1

n
n

n
n

j N

N N N N N

N N N N

j j j

  
   

   
  

  

   
    

    
   

   
















    





;
;

. . . . . . . . . . . . . . . . . . . . . . . . . .
;

;

, , ,

 (22) 

 
where the vectorૈᇱis defined by the relation: 
 

πෝ୧ =
1
n୧
෍ p୩y୩
୩∈୒౟

, i ∈ 1, Nതതതതത 

 
which follows from the chain of equalities: 
 
h i M j N

f p p i M j N

b p n i j M

c n i j M

d i M j N

e

ij r j

ij r i k kj
k

M
j r i

ij r i k r j
k

M
ij i

ij ij i i i

ij r k i ik
k

M
i r j

ij i r

i

k j

k k

j i

  

      

    

   

      

 










  

  

  

    

 

, , , , ;

, , , , , ;

, , , , ;

, , , , , ;

, , , , , ;

,

1 1

1 1

1

1 1

1 1

1

1
1

1

F H A

B FH

C B

D CH

E DA
k ji k kj

k

M
i r i jp p i M j N  


   

1
1 1, , , , .

 

 
To solve system (22), we will use the method of 
successive exclusion of variables, starting with the first 
equation. In the absence of restrictions (whenૄ = ૙) we 
receiveૈ = ૈᇱ. Therefore, in the first step, we check the 
order relation using the elements πଵᇱ ,πଶᇱ .Ifπଵᇱ < πଶᇱ then in 
accordance to the complementary slackness condition (6)it 
follows thatμଵ = 0,πଵ = πଶand the first two equations are 
excluded from the system (22). 
If during thei-thstep it happened that π୧ᇱ ≥ π୧ାଵᇱ Let’s call 
this situation a block of inversions. To satisfy the 
condition π୧ ≤ π୧ାଵit is necessary to putπ୧ = π୧ାଵandμ୧ >
0up to this step we haveμଵ = ⋯ = μ୧ିଵ = 0, π୩ =
π୩ᇱ ൫k ∈ 1, i − 1൯,and the system (22) takes the form of: 
 

 
 

 
 

 

2 0
2 0

2 0

2 0

0 1

1 1 1 1

1 1 1 1 2

1

1

n
n

n

n

j i N

i i i i

i i i i i

N N N N N

N N N N

j j j

  
   

   

  

  

   
    

    

   

   
















   

    





;
;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
;

;

, , .

 (23) 

 
Using the first equation of system (23) we find 

   i i i in   2 1 , while adding up the first two 
equations, we get: 
 

 2 01 1 1 1       ni i i i   ,  
 
where 
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              n n n n n ni i i i i i i i i1 1 1 1 1 1, .    
 
Thus, in this step, the following variables are excluded: 
μ୧,π୧.Further, ifπ୧ାଵᇱᇱ ≥ π୧ାଶᇱ ,then we assume π୧ାଵ ≥
π୧ାଶand findμ୧ାଵ = 2n୧ାଵᇱ (π୧ାଵᇱᇱ − π୧ାଶ). 
Let on the(i + 1)-th step the conditionπ୧ାଵᇱᇱ < π୧ାଵାଵᇱ  is 
satisfied, which corresponds to the end of the block of 
inversions. The number l is called the length of the block 
of inversions. To this step, system (22) takes the form: 
 

 
 

 
 

 

2 0
2 0

2 0
2 0

0 1 1

1 1 1 1

1 1 1 1 2

1

1

    
    

    
   

   
















   

        

    





n
n

n
n

j N

i l i l i l i l

i l i l i l i l i l

N N N N N

N N N N

j j j

  
   

   
  

  

;
;

. . . . . . . . . . . . . . . . . . . . . . . . . .
;

;

, , .

 (24) 

 
Thenμ୧ାଵ = 0and from the first equation of system (24) 
we find: 
 

  i i l i     1 1 ,  (25) 
 
where 

 

      



 i k j j i k

j i

i k
n n k l, ,0 1, (26) 

 

  



n ni k j

j i

i k .  (27) 

 
Furthermore,  
 

  i k j j i l j
j i

i k

j i

i k
n n k l 








   







  2 0 1, ,  (28) 

 
Using (26), (27), expression (28) can be transformed to: 
 

   i k
i l

p j p j
j i k

i l

p i

i k

n
n n k l

   









    

2 0 1
1

, , . (29) 

 
Continuing in a similar way the process of solving the 
system (22) with the allocation of blocks of inversions, we 
can solve all the equations and find the vector π. In order 
for this vector to be optimal, i.e. to be a solution to 
problem (19), (20), it remains to demonstrate that 
 i k k l   0 0 1, , . 
 
If in the process of solving system (22) it turns out that the 
block of inversions begins with the first equation and ends 
with the last, then, as follows from formula (25) while 
i = 1, l = N − 1, the solution is defined by the vector: 
 

 1
1

   


 N k
k

M
kp y . 

 

Let us rewrite the expression (28) and the system of 
inequalities that are satisfied at each step of the block of 
inversion, in the form: 
 

  i k

j
j i

i l j p p j p
p i

i k

p i

i k

j i k

i l

n
n n n












  





   








2
1

, (30) 

 

n n k lp p i k p
p i

i k

p i

i k
      








  1 0 1, , . (31) 

 
Lemma 1.μ୧ା୩ ≥ 0, k ∈ 0, l− 1. 
Proof.Sincen୨ > 0, it suffices to prove that all terms of the 
inner sum in (30) are non-negative, i.e.: 

 

n n j i k i l k lp p j p
p i

i k

p i

i k
         








  , , , , .1 1 0 1 (32) 

 
To prove (32), we use the method of mathematical 
induction on j. 
Atj = i + k + 1the system (32) consists of one inequality, 
which coincides with inequality (31). 
Suppose that the statement of the lemma is true forj = i +
l − 2, i.e. 

 

p p j pn π π n , j i+k+1,i+l-2,k 0,l-1
i k i k

p i p i

 

 
       (33) 

 
Let us prove that it is valid forj = i + l − 1. 
We write inequality (31) for k = l − 1: 

n n np p j j
j i k

i l
i l p

p i

i l

p i

i k
     

  

 




 




  

1

1 1  

and strengthen it by replacing π୨ᇱ by

 n n j i k i lp p
p i

i k
p

p i

i k
     








 , ,1 2 , which is 

admissible by virtue of the system of inequalities (33). 
  
As a result, we obtain: 
 

n n n np p p
p i k

i l
p

p i

i k

p i

i k
i l p

p i

i l
   






   

  

 












 
 1

1

1 1 , 

 
where, given the fact that n୨ > 0	൫j ∈ 1, N൯, the inequality 
follows: 
 

n n k lp p i l p
p i

i k

p i

i k
     








  , ,0 1. (34) 

 
Adding inequality (34) to system (33), we obtain statement 
(32), which completes the proof of the lemma. 
 
Clause4. 
If the CI vectorܡ ∈  ୑is centered in the metric A, then the܀
vectorૂ = ۶ૈ, whereૈis the solution of the problem (19), 
(20), isA-centered. 
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Proof. 
The following chain of equalities holds: 
 
 1 AM j

j

M
j i ij j

j

N

i

M
j r j j
i

M

j

N
j k j j

j

N

k Nj

N

j j
j Q

j j
j Q

p p h p n

n n

i
j

,

,

        

   

   

 

1 11 11 11

1 2

      

 

(35) 
 

wheren୨is defined by the expressionn୧ = ∑ p୩୩∈୒౟ ; 
Qଵ ⊂ 1, Nis the set of components of the vector , not 
falling into blocks of inversions; 
Qଶ = 1, N\Qଵ. 
 
Let J is the number of blocks of inversions. Then the 
setQଶcan be represented as 

Qଶ = ራ i୯, i୯ + l୯

୎

୯ୀଵ

 

 
Wherei୯is the number of the vector component , с which 
is the beginning point of the q-thblock of inversions; 
l୯ is its length. 
Then the relation (35) can be written as follows: 
 

 1 AM j j
j Q

j j
j i

i l

q

J
n n

q

q q

,    
 




 

1 1

. (36) 

 
From the expression (25) and the procedure for solving the 
system (22) it follows: 

 

  j j
j

k k
k Nn

y j Q
j

   


1
1, ;  (37) 

 
q q q q q q q q

q q q p q

i +l i +l i +l i +l

j j+l p p p k k p
p=i p=i p=i k n p=i

q q

π π n π n = π y n ,

j i , l , q 1,J



  

 

      (38) 

 
Substituting (37), (38) in (36), we obtain: 
 

 
q q

1 j q j

1 j 2 j

j

i +lJ

M k k k kA
j Q k N q=1 j=i k N

k k k k
j Q k N j Q k N

N M

k k k k
j=1 k N k=1

, = π y + π y =

= π y + π y =

= π y = π y = 0,

  

   



   

   

 

1 κ
 

 
since the vectoryisA-centered.  
 
It is of interest to obtain a normalized solution to problem 
(18), i.e. to solve a problem: 
 

 arg min 
 

 
C SM

y A
2 ,  (39) 

which is equivalent to the problem of minimizing: 
f ( )  y H A

2   (40) 

 
under restrictions  

g i Ni i( , , , ( )           1
20 1 1 1 0H A

. (41) 

 
Clause5. 
To obtain a solution to problem (40), (41), it is necessary 
to solve problem (19), (20) and normalize the resulting 
solution.  
 
Proof. 
The Lagrangian of problem (40), (41) is determined by the 
expression: 
L(ૈ, λ,ૄ) = f(ૈ) + λν(ૈ) + ૄᇱg(ૈ). 
System of equations for determining the optimal vector 
(ૈ, λ,ૄ) ∈  :ଶ୒has the form܀
 

  
 

2 1

0 1 1

1
1

     

   

 


H AH H Ay 0

  

g

j Nj j j

 

   

;

, , ;

,

 

 
or in the coordinates 
 

  
  

  
  

 

2 1 0
2 1 0

2 1 0
2 1 0

0 1 1

1 0

1 1 1 1

2 2 2 2 1

1 1 1 1 2

1

1

2

1

n
n

n
n

j N

p

N N N N N

N N N N

j j j

i i
i

N

   
    

    
   

  



    
     

     
    

   

  


















    







;
;

. . . . . . . . . . . . . . . . . . . . . . . . . .
;

;
, , ;

.

 (42) 

 
Comparing the system of equations (42) with the system 
(22), we conclude that it is possible to solve the first 2m-1 
equations by the previously described method and to find 
the vector ૈᇱᇱ = ૈ(λ+ 1)and then to determine  from the 
last equation: 
 

       A A
2 21 1 , .  

 
Hence,ૈ = ૈᇱᇱ ‖ૈᇱᇱ‖ۯ⁄ .  
The following algorithm 1 follows from the methodology 
for solving system (22) and Clauses 1 and 2. 
Step 1. Set the vectors ܘ = (pଵ, … , p୑), p୧ >
0,∑ p୧ = 1; ܡ ∈ ܚ;୑܀ ∈ 1, N

୑୑
୧ୀଵ  

where the componentr୧of the vectorܚis equal to the 
number of the zone to which the i -thelement of RI 
belongs. 
 
Step 2. Build the matrix۶with elementsh୧୨ = δ୰౟ ୨, whereδ୧୨ 
is the Kronecker symbol, i ∈ 1, M, j ∈ 1, N.  
 
Step 3. Build the setN୧ = ൛j ∈ 1, Mหr୨ = iൟ, i ∈ 1, N 
Step 4. Build the vectorsܖ ∈ ୒, n୧܀ = 	∑ p୩୩∈୒౟ , ૈᇱ ∈ ୒܀

 

 i

i
k k

k Nn
p z
i

1 . 

Step 5. Seti = 1. 
 
Step 6. Setj = i, l = 1, 	sଵ = π୧ᇱn୧ , sଶ = n୧ 
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Step 7. Ifπ୨ᇱ > π୨ାଵᇱ andj ≤ N− 1then repeatl ≔ l + 1,  
sଵ ≔ sଵ + n୨ାଵπ୨ାଵᇱ , sଶ ≔ sଶ + n୨ାଵ, π୩ᇱ = sଵ sଶ⁄ ,	 
k ∈ j − 1 + 2, j + 1, j: = j + 1. 
 
Step 8. Ifl = 1then continuei: = i + 1ori = j. 
 
Step 9. Ifi ≤ N− 1then go to step 6. 
 
Step 10. Construct an optimal digitization vector ෝૂ = ۶ૈᇱ.  
 
Theorem1. 
The vectorෝૂ =  ୑, constructed by Algorithm 1 is a܀
solution of problem (39) centered and normalized in the 
metric A. 
 
Proof. 
Problem (39) is equivalent to problem (40), (41), and the 
conditions of the Kuhn-Tucker theorem for the latter have 
the form: 
 

   L( , ) ; 0   (43) 
 

   j j j j N( ) , , ;   1 0 1 1  (44) 

 
H A 2 1 0  ;   (45)  

 
 j j N  0 1 1, , . (46) 

 
Using Algorithm 1, the vector ૈᇱᇱis first calculated in 
accordance with the methodology for solving the system 
of equations (22), therefore, the vectorૈᇱᇱalong with the 
vectorૄis a solution to system (22), i.e. conditions (43), 
(44) are satisfied. 
It follows from Clause 5 that the vector (ૈ, λ,ૄ) ∈  ଶ୒is a܀
solution to the system of equations (42), i.e. condition (45) 
is also satisfied. 
Condition (46) follows from Lemma 1, and the statement 
that the vector is centered ૂ = ۶ૈ- from the Clause 4. 
Finally, the statement of the theorem follows from the 
equivalence of problem (40), (41) to problem (39). 
 
3. CONCLUSION 
 
After the research conducted, the optimal reference image 
(RI) of the correlation-extreme navigation systems 
(CENS) of vehicles has been obtained, which is 
represented in the ratio scales, differences scales and 
intervals scales that are relative to the strong scales as well 
as in the ordinal scales. 
The algorithm of the synthesis of the optimal RI in the 
ordinal scales has been developed. 
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