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ABSTRACT 
 
Recognizing user-expressed intentions in social media can be 
useful for many applications such as business intelligence, as 
intentions are intimately linked to potential actions or 
behaviors. This paper focuses on a binary classification 
problem: whether a text expresses purchase intention (PI) or 
not (non- PI). In contrast to existing research, which relies on 
labeled intention corpus or linguistic knowledge, we proposed 
an unsupervised method called split over-training for the PI 
identification task. Experiments on PI identification from 
tweets showed that our approach was effective and promising. 
The best classifying accuracy of 84.6% and PI F-measure of 
70.4% was achieved, which are only 7.7% and 4.9% 
respectively lower than fully supervised models. This means 
our unsupervised method may provide reasonable 
preprocessing for intention corpus labeling or intention 
knowledge acquisition. 
 
Key words : Intention analysis, text analysis, purchase 
intention identification 
 
1. INTRODUCTION 
 
Social network analysis has gained significant attention in 
recent years, largely due to the success of online social 
networking platforms, and the consequent availability of a 
wealth of social network data. One interesting and important 
aspect of making use of and understanding such valuable data 
is to identify the intention expressed in user-generated 
messages[1]. Formally, an intention or intent, which often 
involves planning and forethought, is a mental state that 
represents a commitment to carry out an action or actions in 
the future[2]. Intentions are intimately linked to potential 
actions or behaviors e.g. continuance intention to use  
Facebook[3], intention of using mobile apps in transportation 
(i.e. GoJek and Grab)[4] etc. The ability of recognizing and 
understanding intentions from texts is also crucial for many 

 
 

domains like business intelligence[1], cyber security[5], and 
industrial robotics[6]. For instance, the tweet “Anyone have a 
suggestion in Paris for a 2-night getaway idea? Coast, mts? 
Need ideas!” contains a purchase intention (PI), i.e., booking 
accommodation in Paris. Automatically detecting purchase 
intentions expressed in texts can be very useful for business 
intelligence as the intentions may directly correspond to an 
immediate business opportunities or admiration for products 
or services.  
 
Existing research about intention identification are either 
based on acquired linguistic knowledge of syntactic and/or 
semantic patterns[7], [8] or manually labeled intention 
corpus[1], [5]. To our knowledge, there is no large-scaled 
labeled social media intention corpus or linguistic knowledge 
database publicly available. However, the booming volume 
(e.g. 500 million tweets per day1 and wide variety of social 
media texts (e.g. posts in Facebook are often both 
linguistically and pragmatically different from Tweets) make 
the acquisition of linguistic knowledge greatly challenging, 
and large corpus labeling very expensive. 

 
Motivated by the above observations, and under the linguistic 
hypothesis that PI and non-PI texts are formally 
distinguishable, we proposed a novel unsupervised algorithm 
called split over-training for identifying purchase intentions 
from social media. Our algorithm analytically borrowed the 
concept of split over-training from athletic science[9]. Both 
athletic split over-training and our algorithm explore and 
benefit from the relations among parts of the main 
body/corpus, and relations between the main body/corpus and 
each part. Our algorithm is distinguished from existing 
approaches for intention detection in three aspects: a) free 
from corpus labeling; b) independent from domains or social 
media sources for training; and c) complementary to 
supervised approaches.  

 
 

 
1http://www.internetlivestats.com/twitter-statistics/ 
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We experimented on purchase intention identification from 
Twitter texts represented on three levels: whole tweets, local 
patterns of word windows around general intention words, 
and local patterns of dependency structures around general 
intention words. Evaluations on 2K manually annotated 
tweets showed that our proposed method was effective and 
promising, with the best OCA (overall classification 
accuracy) of 83.8% and F-PI (F-measure score for the PI 
class) 68.2% achieved on 3-level local dependency structures. 
In addition, we linearly combined models trained on different 
corpus representations, and achieved even better 
performances, with the best OCA of 84.6% and F-PI of 
70.4%, which are only 7.7% (OCA) and 4.9% (F-PI) lower 
than the upper bound based on a fully supervised model 
trained on the testing set.  

 
Furthermore, the state-of-the-art supervised method[1] 
produced OCA of 92.8% and F-PI of 76.5% after being fitted 
on the testing set, which is comparable to our upper bound. 
This proves our hypothesis: PI and non-PI texts are indeed 
formally different in general, and even more distinguishable 
from each other locally around general intention words. 
 
2. RELATED WORKS 
 
In this section, we first address the relevant theories of 
intentions in section 2.1. We then discuss the existing research 
on understanding intentions in section 2.2.  
 
2.1 Relevant Theories 
 
In philosophy, due to the different renditions, intention has 
been approached as: a) action with which another action is 
done in terms of a primary reason[10]; b) action in terms of 
acting for a reason[11]; and c) practical attitude marked by its 
pivotal role in planning for the future[2]. Cognitive or robotic 
research often adopt one or both of the first two renditions, 
and focus on the process of becoming aware of the intention 
of another agent or inferring an agent's intention through its 
actions and their effects on the environment [6], [12]–[14]. 
Social media or web-based research usually take the last 
rendition, and try to detect intention as practical attitude from 
texts[1], [5], [15]. Our research complies with the last 
rendition. 

 
In Speech Act Theory, performative utterances or sentences 
involve locutionary, illocutionary, and perlocutionary acts 
[16]. For an utterance, there are usually “primary” and 
“secondary” illocutionary acts simultaneously, with the 
primary also called an indirect speech act and the secondary a 
direct one[17]. Some research classify emails or sentences 
directly into different speech acts[7], [18], [19], [20],while 
others and our present work focus on the speech acts that 
communicate future intentions [1], [5], [15]. Specifically, we 
regard linguistically instantiated or textual intentions as 
indirect illocutionary speech acts with special reasons or 
practical attitudes.  

Relevant communication theories depict intentions as 
sensitive to specific scenarios or contexts, across which the 
speaker's intention or the intention inferred by the receiver or 
an audience may vary widely[7]. The context sensitivity 
makes manual annotation of intention corpus more difficult 
and expensive, which is one of our motives for pursuing the 
unsupervised approach. In a commercial survey, 
questionnaires about purchase intention often employ scalable 
expressions to form alternative answers to intention questions, 
and these scales are then translated into intention 
probabilities[21]. In this study, we use the prediction 
confidence of classifiers to simulate the intention probability. 
 

2.2 Computational Efforts 
 
Existing research on intention identification or analysis from 
natural language involve different social media platforms, 
various textual genres, and a diversity of intention categories. 
Mostly covered social media includes Facebook[22], 
Yahoo[8], Twitter[15]and Amazon[5]; textual genres include 
emails[7], chat rooms[23] and message boards[18]; intention 
categories vary from two simple ones as commercial versus 
non-commercial[24] to very complicated 136 intention types 
from a social-psychological framework[8]. 

 
There have been generally three types of approaches for 
identifying intention: i) based on keyword ontology[7]or 
intention knowledge[8]; ii) linguistically data-driven 
expression features[18]or syntactic/semantic intention 
patterns[5]; and iii) supervised machine learning approaches 
using manually labeled intention corpus[1]. To the best of our 
knowledge, there is no large-scaled labeled social media 
intention corpus or linguistic knowledge database publicly 
available, and the booming volume and wide variety of social 
media texts can make the acquisition of linguistic knowledge 
greatly challenging, and large corpus labeling very expensive. 

 
Therefore, this study proposes an unsupervised method for 
identifying purchase intentions from social media texts, which 
requires no other linguistic or domain knowledge for model 
training except a short list of manually collected intention 
keywords and the hypothesis that PI and non-PI texts are 
formally distinguishable. Furthermore, the unsupervised 
characteristic makes our method independent from social 
media sources and intention categories. [5]manually built a 
domain-independent framework of intention lexicon and 
grammar for general intention identification. The limited 
coverage and difficulty in extending are their disadvantages, 
which might be avoided with our unsupervised method. 
 
2.3 Formulations and Definitions and Acronyms 
 
In this section, we define the relevant concepts and problems 
for the task of purchase intention (PI) identification from 
social media by drawing on the experiences and conventions 
in sentiment analysis[25][26]. 
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A. Intention 
An intention in social media is defined as a 

quintuple (ܽ , C൫ ܹ൯, ݁ , ݐ (, ,where ܽ is an intention 
holder;  
ܹ is one or a group of intention words or 

phrases;ܥ൫ ܹ൯maps ܹ to a set of predefined intention 
categoriesܥ; ݁is a target entity or intention theme; ݐis the 
time stamp when the intention is expressed; and  is the 
degree of ܽݏcertainty about this intention or the probability 
of the social media text being considered as an intention. The 
tweet (a) in Table 1expresses the purchase intention, where 
can be formatted 
as (ܽ = ൫ܥ,′ݕ@ݔ′ ܹ൯ = ,′݈݈݅ݓ′})ܥ ({′ݕݑܾ′ =
,′ݕݑܾ	ݐ′ ݁ = ,′݂݂݁ܿ	݈ܾ݇ܿܽ′ ݐ =
′11/22/201421: 38: 03ᇱ , = 1.0). 
 

Table 1: Examples of Purchase Intention in Twitter. 

(a) x@y (11/22/2014 21:38:03): I’ll definitely buy 
someblack coffee for my best!!!  

(b) I want some black coffee for my best. 
(c) My best is thirsty. 

 

B. General Intention Part (GI) and Special Intention Part 
(SI) 
The intention words or phrases in ܹ may include a 

General Intention Part (e.g. ‘will’, ‘want’, ‘need’, etc.) that 
functions as a lexical symbol for the intention, and a Special 
Intention Part (e.g. ‘buy’, ‘purchase’, ‘drink’, etc.) that 
specifies the intended immediate or future action. Both GI and 
SI can be optional, but SI is often collocated with GI. As 
shown in the tweet (a) in Table 1, GI = ‘will’, and SI = ‘buy’, 
where ܹ is made up of both GI and SI. 
 

C. Explicit Intention vs. Implicit Intention 
An explicit intention is consistent with the literal meaning 

or locutionary/direct speech act described in the text. The 
intention example of (a) in Table 1 is explicit if we define ܥas 
{‘to buy’,‘not to buy’}. GI is indispensable for ܹ in explicit 
intentions. An implicit intention lies in the hidden meaning or 
illocutionary/indirect speech act, of which the direct speech 
act can either be mapped to another intention or an 
informative text about a fact that may reasonably lead to the 
implicit intention. For the same intention, an implicit 
expression usually results in smaller 	 than an explicit 
expression, and 	  is also sensitive to the degree of 
implicitness. For the intention of‘buy coffee’, sentences of (b) 
and (c) in Table 1 might be considered of respectively less 
certainty in the speaker's mind, and thus are examples of being 
implicit. 
 

D. Purchase Intention (PI) 
A purchase intention is a text expression signifying a desire 

or need to purchase or consume a product or service [15], and 
is closely related to product recommendation[27], [28]. 
Specifically, SI in a PI is either a word with purchasing 
meaning (i.e. explicit) or indicates a purchasing potentiality 
(i.e. implicit). All examples in Table 1 could be regarded as 
PIs. 
 

E. Intention Identification 
The task of intention identification (aka. intention analysis 

or mining) can be understood as identifying a corresponding 
intent category for every action indicative in a given text 
[8]and/or specifying the five elements in the quintuple. The 
present work focuses on the first part of this task, which is to 
approximate the prediction function ݂: ܵ × ூܥ ⇒ [0,1], where 
ܵis a text or a sequence of sentences, ܥூ = ଵூܥ} ଶூܥ, , …  ூ}is aܥ,
set of predefined intent categories, and [0,1]defines the value 
range of . 

 

F. Purchase Intention (PI) Identification 
Here, we address the task of identifying PI from social 

media texts, or the two-class classification problem where 
ூܥ = ݊݊,ܫܲ} − {ܫܲ . Specifically, we regard a text 
expression ܵ as PI  when ݂(ܵ × −(ூܥ ݂൫ܵ × ିூ൯ܥ =
ߜ > 0, where ߜis the prediction margin of a classifier about ܵ, 
and ߠis an empirical threshold. 
 
3.  METHODOLOGY 
 
Instead of manually labeling corpus or acquiring linguistic 
knowledge, we propose split-over training, an unsupervised 
approach to the task of PI identification from social media 
texts. Flow chart in Figure 1 illustrates the whole process, 
which takes social media texts as input and outputs a final 
classifier to label new texts. There are two major parts 
involved in the process, i.e. clustering and classification. The 
clustering part implicitly exploits possible formal differences 
among the input social media texts, and the classification part 
iteratively develops the clustering results into a final classifier 
by means of split over-training.  
 
First, a large corpus ܦwith ܰentries is retrieved from social 
media by filtering the raw input texts with a given list of GI 
words; second, the ܰ entries are then clustered respectively 
into 2 groups and ܭgroups, where ܭ should be comparatively 
much larger than ݉, which is the number of splitting on the 
dataset, and is in positive proportion to ܰ; for the 2-cluster 
results, the group with more entries that contain words from a 
given list of SI are labeled as possible PIs, and the other group 
as possible non-PIs; finally, a baseline classifier ݂ᇱ is trained 
on the labeled 2-cluster results. ݂ᇱ and ܦwith K-clustering 
results will be input to the classification part of split 
over-training. 
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Figure 1: Flow Chart for Unsupervised PI Identification from Social 

Media Texts. 

Table 2: Pseudocode for Split Over-Training. 

Input:ܦthe main corpus with k-clustering results; ݂ᇱa baseline classifier; 
 .an empirical thresholdߠ
Output: A final classifier for labeling new texts. 
Algorithm: 
Step 1: Randomly split ܦinto m blocks such that each block ܤcontains 
ܰ/݉entries; 
Step 2: Predict the labels for all the ܰentries in ܦwith  ݂ᇱand ݃(ߠ); 
Step 3: Train a new classifier ݂

	ଵon ܦwith the newly predicted labels; 
For each block ܤof the݉blocks, set ݅	 = 	1 
Loop: 
     Step 4: Predict labels for all entries in ܤwith ݂

		and ݃(ߠ); 
     Step 5: Train a classifier ݂

		
on ܤwith newly labeled entries; 

     Step 6: Go to Step 10 if the cross-validation performance 
ܨ ቀ ݂

		
ቁdeteriorates, or 	 ݂		 overfits, or ݅ goes beyond a given limit 

 ;ܫݔܽܯ						
     Step 7: Set ߠ = ߠ	 −  ;݅߂	
     Step 8: Predict the labels for all entries in ܦwith ݂

		
and ݃(ߠ); 

     Step 9: Set݅	 = 	݅	 + 	1, train a new classifier ݂
		onܦwith newly  

labeled entries, and go to Step 4; 
     End loop; 
Step 10: Predict labels for entries in ܤwith ݂

		ି

ଵ; 

End for; 
Step 11: Train the final classifier on	1}ܤ, 2, … ,݉}. 
Function ݃(ߠ): (Refer also to Figure 2) 
Step 1: For a given classifier ݂ and each entry S , if when ݂(ܵ ×
݂൫ܵ																ூ)-ܥ × ିூ൯ܥ >  ;as PI; else label ܵ as non-PI	label ܵ ,ߠ	
Step 2: For each cluster ݇of the ܭclusters, if in ݇the proportion of entries  
labeled as PI in Step 1 is larger than ߠ, re-label all entries in ݇as  
PI; else if in ݇the proportion of entries labeled as non-PI in Step 1  
is larger than ߠ, re-label all entries in ݇as non-PI. 
 
In athletic science, split over-training is a kind of planned 
over-training[9], which splits the training program so that 
different sets of muscles are worked on different days. We 
analytically borrowed this concept to describe our algorithm 
that over-trains a PI/non-PI classifier by iteratively exploiting 
the formal differences and relations among social media texts. 
Table 2 gives the pseudocode for the split over-training 
algorithm. The initial value of ߠis related to PI and non-PI 
distribution of the corpus, but this relation is not very 
sensitive. Since ߠis set for the PI proportion, which tends to be 
much smaller than that of non-PI in social media, it could be 
set very close to 1 initially and decreased by ݅߂ , where 
݈݅݉→∞ ߂ = 0 . Function ݃(ߠ) is the key module for 
exploiting the clustering results by fine-tuning the predicted 

labels of a classifier ݂ . The tuning process of ݃(ߠ) is 
graphically explained in Figure 1. 
 

 
Figure 2: The Function of ݃(߆): (a) Labeling Before Step 1; (b) 
Labeling after Step 1; (c) Labeling after Step 2 (Notes: +: True 
Positive; -: True Negative; x: False Positive; *: False Negative). 

The over-training stops in Step 6 when the cross-validation 
performance ܨ ቀ ݂

		
ቁ deteriorates, or ݂

		
 overfits, i.e. 

1− ܨ ቀ ݂
		
ቁ < .ܤܰ)ߝ ߝ > 0), or ݅goes beyond a given limit 

 The first two halting conditions are closely related to .ܫݔܽܯ
practical purposes. For PI identification, a comparatively 
large ߝand F-measure score for the PI class (F-PI) could be a 
good ܨ ቀ ݂

		
ቁ , while a smaller ߝ and the percentage of 

correctly classified entries (OCA) serves better preprocessing 
corpus for manual annotation or knowledge acquisition. 
 usually leads to߂ A larger .߂ is negatively related toܫݔܽܯ
smaller ܫݔܽܯ, and vice versa. 

4. EXPERIMENTAL SETUP 
 
As Twitter is one of the most popular social media platforms 
with 284 million monthly active users and 500 million tweets 
sent per day, we test our algorithm for the PI identification 
task on a corpus of collected tweets. 
 
4.1 Dataset 
 
Our intention lexicon involves a manually collected short list 
of 12 general intention key-words GI = {‘want’, ‘need’, ‘will’, 
‘plan’, ‘intend’, ‘eager’, ‘purpose’, ‘goal’, ‘aim’, ‘interest’, 
‘look for’, ‘look forward to’ }, which conveys some degrees of 
intentionality, and 4 special intention keywords SI 
= { ‘purchase’, ‘buy’, ‘pay’, ‘order’ } ,which describes the 
action to purchase and were used to determine the class labels 
of the 2-clustering results. We collected as raw input data 
about 1.4M tweets using the Twitter streaming API2. The raw 
data were then filtered with GI, i.e. a tweet was retrieved if it 
contained any of the 12 general intention keywords, as the 
same way by[5]. The final dataset consisting of 142,50 tweets, 
from which 2,000 were randomly held out to serve as the test 
set, where the average length of a tweet is 19.1 words. The 
remaining 12,250 tweets were used for split over-training, and 
the average length is 17.5 words. 
 
The language used in social media, especially in tweets, is 
often informal and lacks overall grammatical structure; usage 
of acronyms and miss-spellings is also common. These 
factors make the social media data highly dimensional in 
 

2 https://dev.twitter.com/streaming/userstreams 
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nature, and the semantic analysis of social media difficult 
[15].At the sub-sentence level, however, words in social 
media texts tend to be arranged in correct order and 
grammatically to a certain degree[29]. Therefore, it is also 
important for our task to answer the research question: How 
PI and non-PI texts are formally different from each other and 
related among themselves. The answer to this question 
depends on how effectively our unsupervised approach will 
perform. 
 
Besides using the whole tweets as main corpus, we also 
experimented separately with the local patterns of n-word 
window and ݊-level dependency around GI keywords as input 
data. A local pattern of n -word window is defined as a 
sequence ݓ = ൫ିݓ, … ଵݓ,ݓ,ଵିݓ,ଶିݓ, ,ଶݓ, …  ൯, whereݓ,
ݓ is the GI keyword, and ݊	 = 	݆	+ 	݇	 + 	1 . The English 
tweet parser TWEEBOPARSER 3 [30] was employed for 
obtaining the dependency structures of tweets. A local pattern 
of ݊ -level dependency is defined as a sequence ݀ =
൫ିݏ , … , ,ଶିݏ ,ଵିݏ ,ିݏ ,ଵݏ ,ଶݏ … ,  ൯, where s is a sub-sequenceݏ
of words on the same dependency level, ݏis the sub-sequence 
of the GI keyword, ݏ{ି , … ,ିଶ ,ିଵ }are sentential constituents 
indirectly or directly governing ݏ, ଵ,ଶ}ݏ , … , 	}are sentential 
constituents indirectly or directly governed by ݏ , and 
݊	 = 	݆	+ 	݇. For the tweet and its dependency structure in 
Figure 3, where ‘want’ is GI, some examples are ݓହ= “I 
would want some black”, ݓ  = “I would want some black 
coffee”,݀ଶ= “I would want coffee for”, and ݀ଷ = “I would want 
some black coffee for my best”. Because there can be more 
than one GI keywords in one tweet, one or more local patterns 
may be extracted. To remove possible redundancy, the same 
GI won't appear in two or more patterns in adjacency to 
another GI. 

 

 
Figure 3: An Example of Dependency Structure. 

4.2 Settings 
 
We prepared five different versions of main corpus ܦ , as 
listed in Table 3. Since local patterns of other lengths lead to 
rapid overfitting of ݂

		
	 ,	we do not report them in this study. 

We employed the clustering and classification APIs in Weka 
3.74  for all experiments. Simple K-Means was used for 2 
andܭclustering. TF and IDF parameters were set to be ‘true’, 
while other parameters were kept default. Naive Bayes 
Multinomial for Text (NBMT) was used for training all 
classifiers, and 10-fold cross validations were performed to 
provide halting measurements for over-training. 

 
 

3 http://www.ark.cs.cmu.edu/TweetNLP/#parser_down 
4 http://www.cs.waikato.ac.nz/ml/weka/ 

Table 3: Different Versions of the Main Corpus 

Main corpus D Number of entries 
wt: whole tweets 12,250 
w5: 5-word window 18,860 
w6: 6-word window 18,860 
d2: 2-level dependency 18,580 
d3: 3-level dependency 18,580 

 
For the algorithm of split over-training, there are five 
parameters to be set, which are listed in Table 4. Our 
experiments showed that on all the five different versions of 
main corpus mwith a value between 5-10 made no significant 
difference that could affect the convergence in the training 
process, while other smaller or larger numbers might lead to 
rapid overfitting of ݂

		
 . We report results of 5- and 10-fold 

split over-training. 
 

Table 4: Parameter settings of Split Over-Training. 

Parameters  Settings 
݉	for random split  5 and 10 
Initial value of ߠ	for ݃(ߠ) 0.98 
Descending value of߂ for ݃(ߠ)) 1.6/(i+3)(i+4) 
ܨ ቀ ݂

		
ቁfor halting conditions  F-PI or OCA 

߳for overfitting measurement  0.05 
 
We set ߠ = 	0.98, which implies݂(ܵ × (ூܥ > 0.99. There 
are two reasons for such a setting. First, according to our 
observation, the classification model of Naive Bayes 
Multinomial for Text tends to assign large confidence to all its 
prediction; second, in our main corpus PI entries are much 
fewer than non-PI entries, and the estimated ratio of PI : 
non-PI could be less than 1:5. In ߂ = 1.6/(݅ + 3)(݅ + 4), ݅is 
the iteration index of over-training. This setting made the 
convergence quick (often within 5 or 6 iterations for one split) 
yet without rapid overfitting. Another advantage of this 
setting is that it ensures ߠ > 	0.5 when ݅	 ≤ 10 , which is 
suitable for the small proportion of PI entries in the main 
corpus. We experimented with both F-PI and OCA as halting 
measurements for the purposes of practical PI identification 
and corpus annotation in our future work. ߳ = 	0.05means  

݂
		
 is considered as over-fit whenܨ ቀ ݂

		
ቁ ≥ 0.95. Besides, 

there are also two relevant peripheral parameters: ܭandܫݔܽܯ, 
which do not influence the training process directly. In fact, it 
was found that the setting ܭ	 ≥ 1.5݉works for the algorithm 
very well. We setܭto be 20 simply because for our data size 
it's the largest number to which Weka API provides easy 
memory management.ܫݔܽܯis relevant to߂, the above setting 
of which ensuredܫݔܽܯ	 ≤ 10. 
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5. EXPERIMENTAL RESULTS AND EVALUATION 
 
We implemented two groups of experiments respectively with 
OCA (overall classifying accuracy) and F-PI (F-measure 
score for the PI class) asܨ ቀ ݂

		
ቁ, i.e. the convergence or 

overfitting measurement for over-training on each random 
splitܤ. For both groups, NBMT classifiers were developed on 
the five different versions of the main corpus listed inTable 3 
with 5 and 10 random split over-training. NBMT classifiers 
trained on 2-cluster and SI-check results served as baseline5, 
and the NBMT classifiers trained on respective forms of the 
manually labeled testing set served as upper bounds for 
comparison. Besides, we also combined the three classifiers 
of 5 split over-training on ݓ௧  and ݀ଷto further explore theirݓ,
potentialities (Refer to Figure 4). 
 

 
Figure 4: Evaluation Results on the Testing Set. 

 
In order to compare our methods with the state-of-the-art 
research, we also fitted on our test set a rule-based classifier: 
Carlos'12, on the basis of the intention analysis results by [1]. 
Their method involves supervised Naive Bayesian, Maximum 
Entropy and SVM classification models, which able to detect 
multi-intention, sentiment and negation. It detected 15 
intentions (See Table 5) in our testing set, and assigned them 
with sentiment values of ‘positive’, ‘neutral’ and ‘negative’, 
and negation values of ‘negated’ and ‘not-negated’.  

 
Table 5: Intention Categories [1]. 

accuse suggest purchase other sell 
direct inquire complain thank meet 
opine compare apologize quit wish 

 
As our task is to detect purchase intention, we manually 
developed 9 rules to map the 15 intention categories to PI and 
non-PI. Thus, Carlos'12 can detect implicit as well as explicit 
purchase intentions. These mapping rules were built in a way 
to fit an optimal classifier on our test set, so the ability of 
Carlos'12 to generalize may not be good but this disadvantage 
doesn't affect its function as one more upper bound 
comparison for our unsupervised method. Table 6 lists the 8 
rules that map intentions of[1] to PIs, and the other rule not 
covered here maps all the other conditions to non-PIs. 

 

 
5 Another naive and straightforward baseline performance might be the 

SI-checking results on the testing set, for which OCA = 71.6% and F-PI = 
8.2%. 

Table 6: Purchase Intention (PI) Mapping Rules. 

Wish→ PI accuse (negated) →PI   
compare  → PI   apologize (negated)  → PI   
inquire →PI opine (positive)  → PI 
purchase → PI quit (negated) →PI 

 
All classifiers and combinations of classifiers were evaluated 
against the manually annotated test set consisting of 2000 
tweets. Two annotators were involved in the labelling. The 
agreement rate for the first round of an independent 
annotation has been 92.6%, and the ambiguous 7.4% were 
agreed on after discussion between the two annotators. In the 
final labelled test set, there are 537 PI and 1,463 non-PI labels. 
The upper bounds were obtained by training the supervised 
NBMT classifiers on the respectively represented test sets 
with 10-fold cross-validation. Note that the testing sets are not 
used for any of our split over-training models. OCA 
performances of all classifiers are given in Figure 4(a), and 
F-PI performances in Figure 4(b). For ݓହ,ݓ ,݀ଶand݀ଷ , a 
tweet may contain more than one GI keyword so that more 
than one local pattern might be extracted for one tweet. 
Similarly, Carlos'12 splits a tweet into sentences and then 
assigns each sentence with its intention category and 
sentiment and/or negation information. To keep the 
performances of different classifiers compatible, both OCA 
and F-PI were measured on the unit of tweets, i.e. a tweet will 
be classified as PI in the case of at least one of its constituent 
local patterns or sentences has been labeled with a PI tag; and 
classified as non-PI only if all its constituent local patterns or 
sentences have been labeled with non-PI tags. 
 
Furthermore, as the task of PI/non-PI identification is an 
imbalanced classification in our corpus, i.e. there are much 
fewer PI texts than non-PI texts, we made a combination of 
classifiers (denoted as ‘Combined’ in Figure 4) works in a 
way that a tweet should be labeled as PI if and only if all its 
combining classifiers have labeled the tweet as PI, and the 
tweet should be labeled as non-PI otherwise. 

 
Evaluation results in Figure 4 show that our unsupervised split 
over-training approach achieved significant improvements 
over baseline classifiers, and the gaps between baselines 
performances and those of the upper bounds and the 
state-of-the-artclassifier: Carlos'12, were significantly 
narrowed. T-Test results in Table 7 show the significance of 
the improvements. For both OCA and F-PI, all 10-split, 5-split 
and combined PI identification models outperformed the 
baseline significantly, with p-values much smaller than 0.05. 
For single classifiers by 5-split over-training, the one 
ondଷ(3-level dependency local pattern) reports the best result 
of OCA 83.8% and F-PI 68.2%, with the OCA gap between its 
baseline and upper bound cut from 28.1% to 8.5%, and the 
F-PI gap from 18.7% to 7.1%; and for combined models, the 
combination of ݐݓ(whole tweets) and ݀ଷgives the best OCA 
of 84.6% cutting the gap to 7.7%, and the best F-PI of 70.4% 
cutting the gap to 4.9%. 
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Table 7: T-Test Results (Notes: For the test type, 1 means paired test 
and 3 means unpaired test.). 

 Data1 Data2 Tails Type T-Test 

OCA 

Baseline 10-split 1 1 0.0004 
Baseline 5-split 1 1 0.0004 
Baseline Combined 1 3 < 0.0001 
10-split 5-split 2 1 0.3262 

F-PI 

Baseline 10-split 1 1 0.0009 
Baseline 5-split 1 1 0.0012 
Baseline Combined 1 3 < 0.0001 
10-split 5-split 2 1 0.3943 

 
In general, our experiments showed that PI and non-PI tweets 
are more distinguishable locally around general intention 
words, while long distance information also captures some 
different classifying features. This explains why models on 
ݓ  and ݀ଷ were both improved when combined with 
 ,Furthermore, considering both OCA and F-PI measures.ݐݓ
the difference between our upper bounds and Carlos'12 is not 
significant with the unpaired one-tail T-Test p-value of 0.73, 
which shows that our upper bounds are reasonable. 

6. CONCLUSION 
Our contributions in this chapter are three-fold: a) A formal 
definition of linguistically instantiated intentions, and 
especially GI and SI parts, which are the keys to identifying 
and distinguishing intentions; b) An unsupervised approach of 
split over-training for mining intentions, which may provide 
reasonable pre-processing for intention corpus labeling or 
intention knowledge acquisition; c) The empirically proved 
hypothesis that PI and non-PI texts are formally 
distinguishable. 

We focused on the task of identifying Purchase Intention (PI) 
from social media, with a goal to solve the binary 
classification problem: whether a text expresses PI or non-PI. 
To the best of our knowledge, there is no large-scaled labeled 
social media intention corpus or linguistic knowledge 
database publicly available. Besides, the booming volume and 
wide variety of social media texts make the acquisition of 
linguistic knowledge greatly challenging, and large corpus 
labeling very expensive. Based on clustering and 
classification techniques, we proposed an unsupervised 
approach called split over-training for the purchase intention 
identification task, and simultaneously tried to answer the 
research question of how PI and non-PI social media texts are 
formally different from each other and related among 
themselves.  

Experiments for PI identification were conducted on Twitter 
data represented on three levels: whole tweets, local patterns 
of word windows around general intention words, and local 
patterns of dependency structures around general intention 
words. F-PI and OCA were used as performance measure for 
over-trained split models and the output final models. 
Evaluation results on a manually labeled testing set of 2K 
tweets showed that our unsupervised method was effective 

and promising, with OCA and F-PI improved significantly 
over the baseline. Combined models of the split over-trained 
classifiers further reduced the gaps between respective 
baselines and upper bounds, while our upper bound classifiers 
are comparable to the state-of-the-art supervised method. 

For future, we plan to extend our work to studies related to 
intention analysis in mental health domain e.g. for identifying 
user’s intention to self-harm or suicide[31]. In order to 
facilitate adaptation of the proposed method to mental health 
domain, a few changes on the special intention keywords or 
phrases (SI) are needed. For instance, keywords like ‘cut’, 
‘kill’, ‘suicide’ provide clues of self-harm or suicide intention. 
Furthermore, we plan to leverage both structured and 
unstructured data for model learning[32]in order to achieve 
better intention identification performances. 
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