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ABSTRACT 
 
Autism spectrum disorder (ASD) is a heterogeneous disorder 
that causes impaired social interactions and altered 
behavioral patterns. It is currently diagnosed by assessing 
the developmental screenings, followed by a diagnostic 
evaluation of an individual using standard screening and 
diagnostic tools. However, a more concrete diagnostic 
method is required to get hold of the underlying cause of the 
disorder to ensure better treatment and prevention of the 
disorder. Recent research on ASD has shown resting state 
functional magnetic resonance imaging (r-fMRI) as a useful 
tool for classification of ASD and neurotypical subjects. 
However, due to the large dimensionality of fMRI scans, 
directly applying classification methods to the data results in 
high computational cost. In order to avoid the curse of 
dimensionality , we propose a combined multistage SAAK 
transform and CNN based approach which selects the most 
relevant and discriminative features without losing any 
information and uses them for a more accurate and less 
computationally expensive classification of ASD subjects 
from typically developing controls. A classification accuracy 
of 74.55% is achieved using the proposed method. We show 
that the performance of the proposed approach of 
classification using ABIDE dataset is comparable to that of 
standalone CNN while being less computationally intensive. 
 
Key words : ABIDE, Autism Spectrum Disorder, 
Convolutional Neural Network (CNN), Karhunen- Loeve 
Transform (KLT), subspace approximation 
 
1. INTRODUCTION 
 
Autism Spectrum Disorder is a neurological and 
developmental disorder that affects the overall cognitive, 
social, emotional and physical health of an individual. It is 
characterised by a broad range of conditions, due to which 
the disease is referred to as a spectrum.  
 
*The authors contributed equally to this work. 
These impact the nervous system and cause uneasy social 
interactions, difficulty in communication, restricted and 

repetitive behaviours and frequent sensory overloads. It is 
found to occur in more than 1% of the global population. 
Currently there is no single notion regarding the underlying 
causes of the disorder. Medical professionals diagnose ASD 
by analysing the behaviour and development of the child 
using a range of screening and diagnostic tools like Autism 
Diagnosis Interview- Revised [1], Childhood Autism Rating 
Scale (CARS) [2]. The reliability of these diagnostic 
methods remains questionable as they are prone to 
misdiagnosis [3]. Moreover, these methods give no 
information about the biological aspects of the disorder. To 
get a clearer idea about the underlying brain activity of 
autistic individuals, an inclination towards exploring the 
brain variance between healthy and diseased populations 
based on neuroimaging data has been observed.  
 
However, given the high dimensionality of neuroimaging 
data, directly applying machine learning models for 
classification turns out to be computationally expensive. C. 
Jay Kuo and Yueru Chen proposed a multi-stage Subspace 
approximation with augmented kernels (SAAK) transform 
method for feature extraction. In this work, we borrow the 
SAAK transform method from [4] and propose a combined 
SAAK transform and CNN based approach for classifying 
the subjects as autistic and neurotypical (healthy) 
individuals. This approach reduces the computational cost 
without compromising on the accuracy of classification. We 
consider the functional magnetic resonance imaging (r-
fMRI) scans of the subjects and the associated Blood 
Oxygen Level Dependent (BOLD) time series signals to 
build connectivity matrices, which act as input to the model. 
Each stage of SAAK transform reduces the dimensionality 
of the feature space. It also nullifies the rectification loss due 
to the ReLU layer by augmenting a negative kernel to all the 
kernels obtained. Here we point out a major difference 
between the ReLU layer in CNN and that in SAAK 
transform.  
 
Traditionally CNNs have given state-of-the-art results in 
image analysis problems. Multiple convolution and pooling 
layers enable repeated extraction and processing of features 
till one gets the final features, which exhibit high robustness 
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and do not show changes with transformations in the input. 
The feature extraction step imposes constraints when dealing 
with a large sample size and high dimensionality data such 
as ABIDE dataset. SAAK transform acts as a 
computationally less expensive alternative for extracting 
relevant high level features from the data.  
The rest of this paper is organised as follows: In section 2 
we discuss the methods implemented so far in this field, 
followed by a thorough explanation of the proposed 
approach in Section 3. Section 4 and 5 contain the 
experimental details and a brief description of the 
experiments conducted in this study. Section 6 and 7 present 
the classification results, followed by a comprehensive 
discussion. Concluding remarks are presented in section 8. 
 
2. LITERATURE SURVEY 
 
Ample of studies have used neuroimaging data obtained 
using magnetic resonance imaging (MRI) for the 
classification of ASD. With the advent of MRI as a medical 
imaging technique, researchers have been able to gain 
deeper knowledge about the pathology of the disorder [5] [6] 
[7]. It generates detailed images of the internal organs and 
tissues, along with their working using strong magnetic 
fields and radio waves. There are two variants of MRI: 
structural MRI and functional MRI. Structural MRI is a 
technique for examining the anatomy and pathology of the 
brain. The studies for ASD detection conducted using 
structural MRI [8] [9] [10] used features like volume, 
surface and thickness as parameters for classification. Apart 
from structural alterations, autistic and normal individuals 
also exhibit differences in underlying brain connectivity [11] 
[12] [13]. The second technique of MRI, called functional 
MRI, is used to cap these differences. In functional MRI, the 
level of interaction between the different components of the 
brain, which may or may not be physically connected are 
measured. The brain activity is examined by detecting 
changes in the Blood Oxygen Level Dependent (BOLD) 
signals. It relies on the fact that cerebral blood flow and 
neuronal activities are coupled i.e. the blood flow to a brain 
region increases when that part of the brain is in use [14].  
 
Various studies have used pairwise correlations between 
different regions of interest (ROIs) as features to define 
connectivity matrices for the subjects [13] [15] and then 
implemented supervised learning methods like SVM [16] 
and leave-one-out classifier [17], as well as CNN [18] for 
classification. Subbaraju et al. (2017) achieved an accuracy 
of 77.3% using a combined spatial filter and SVM classifier. 
Their method selects the most discriminative features using 
a spatial filter by orthogonally projecting the connectivity 
matrices of BOLD signals of ASD and control individuals, 

and feeds them to an SVM classifier. Another work by Sarah 
et al. (2019) used a graph based classification where they 
viewed the brain structure as a graph, with the ROIs as 
nodes and BOLD signals as edges of the graph, and used 
graph signal processing to obtain features related to the 
frequency content of the signals. A decision tree trained 
using these features for 452 subjects gave a classification 
accuracy of 73.5%. Studies that used fMRI data collected 
from a single site have achieved accuracy as high as 97% 
(Just et al., 2014). Plitt et al. (2015) compared the 
classifications of various machine learning algorithms on the 
scans of 178 ASD and IQ matched neurotypical males, and 
achieved a peak accuracy of 76.67% with ridge regression 
method. Relatively better classification is performed when 
sample size is small, typically constrained to around 100 
participants (Arbabshirani et al., 2016), while it experiences 
a considerable drop when the sample size is large or in case 
of multi- site data. (Nielson et al., 2013).  
 
In this study, we use data collected at multiple sites and from 
people of varied demographic conditions for a more robust 
study. 
 
3.  PROPOSED APPROACH 
 
Here we present our strategy to adopt a combined subspace 
approximation with augmented kernel (SAAK) transform 
and CNN based approach for classification. Our data 
consists of 4-dimensional (time- series) fMRI scans of the 
subjects. Different parcellations of the brain, called regions 
of interest (ROI), are defined by various atlases. These 
atlases were used to obtain association matrices for the 
subjects [19]. We start by building a brain connectivity 
matrix for each subject. A connectivity matrix helps to 
quantitatively visualise the strength of functional 
connections. It reflects the pairwise functional connectivity 
between voxels of different regions of the brain and is 
created using the averaged Blood Oxygen Level Dependent 
(BOLD) time-series signals. These signals are extracted 
from the regions of interest defined by an atlas. The 
connectivity between ROIs is estimated using correlation 
between the time- series signals. We used three different 
methods for calculating the entries of the matrices: partial 
correlation, Pearson correlation and tangent space 
embedding [20]. An illustration of this approach is shown in 
Figure 1. 
 
3.1 Subspace Approximation 

 
The connectivity matrices obtained so far are of size , 
where N is the number of regions the brain is divided into, 
giving us  features corresponding to each data item. We 
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Figure 1: Illustration of the proposed approach

seek to reduce the feature space while retaining as much 
information as possible. This is done by transforming the 
data to a linear subspace with an orthogonal basis using KLT 
in multiple stages.  
First the connectivity matrices are scaled to have dimensions 
that are the  power of 2, for some . These scaled 
connectivity matrices act as the input to the multistage 
SAAK transform. We then obtain the KLT basis functions, 

 , for the input vectors . The requirement for 
multiple stages arises as it is practically infeasible to conduct 
KLT on the entire input matrix due to its large size , as 
explained below. 
 
3.2 Multiple Stages 
 
For the determination of the KL transform of a feature set, it 
is first required to calculate the covariance matrix. Let 

 denote the initial feature matrix of a 
subject. The covariance matrix of X is computed as:  

                           (1) 

Now, the eigenvectors, V, of the covariance matrix are 
arranged into rows to form the orthogonal transformation 
matrix, T. 
 

 
Figure 2: Multistage SAAK Transform quad-tree structure 

Thus, the transformation matrices in KLT are dependent on 
the feature set, more precisely on its covariance matrix. For a 
feature set with dimension , the matrix will be of the 
order . In case of large values of N, the transformation will 

require non- trivial computations, suggesting the infeasibility 
of application. Consequently, large sized connectivity 
matrices are transformed into a smaller subspace by 
recursively decomposing them into smaller parts. The 
application of KLT at each level brings down the dimensions 
of the feature set by a factor of two. 

Hence, we decompose the matrices into four smaller non-
overlapping parts in each stage, eventually forming a quad-
tree structure. Each node of this tree is half the size of its 
parent node, the leaf nodes being of the size . KLT is 
applied at each level of the tree to obtain the basis functions.. 
All the stages of SAAK transform are cascaded in a bottom 
up manner. A sign-confusion problem occurs due to the 
recursive application of KLT [18]. Therefore, a ReLU 
activation function is introduced between two successive 
transforms. Figure 2 shows the formation of quad tree 
structure in multistage saak transform, useful for 
transforming images with dimensions  into 
dimensions , where  denotes . 
 
3.3 Kernel Augmentation 
 
The addition of the ReLU operation between the KLT 
transforms is accompanied by an increased rectification loss. 
We attempt to bring down the rectification loss by using 
kernel augmentation [4]. We generate  pairs of AC 
kernels, in addition to a DC kernel, using the KLT basis 
functions obtained above. We retain the projections on the 
DC kernels and pass the AC projections through the ReLU 
activation function. The DC vector is represented as 

           (2) 

Each AC kernel pair consists of a positive kernel, , 
augmented with its negative vector, . These are generated 
using the basis functions, , according to as: 

       (3) 

The input vectors, f, are projected onto these kernels to yield 
a projection vector  
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              (4) 

where  represents the projection of f on kernel . 
The above process representing a single stage SAAK 
transform is repeated till signed KLT coefficients of 
dimensions  are obtained, where  is the 
initial size of the connectivity matrix. All the projection 
vectors except the DC projection  are passed through the 
ReLU function and we obtain the SAAK coefficients, o, as: 

          (5) 

where,   (DC projection retained) and for k = 1, ..., N: 

            (6) 
 (7) 

Unlike CNN where the activation of input signals introduces 
non- linearity in the output, we preserve all the convolution 
input by augmenting the kernels with their negatives. This 
way, there will be a positive/negative correlation pair of each 
input vector with kernel pair . ReLU will allow 
one correlation from the pair to pass through it and will block 
the other one. 
 
3.4 Feature Selection 
 
Finally, we calculate and compare the F- score of the 
coefficients to select the most important features. The 
discriminative power of a feature is directly proportional to 
its F-test score, hence features with highest F-test scores are 
chosen to form the final feature vectors. F- score is computed 
as:  

                    (8) 

The larger sample variance (LSV) and smaller sample 
variance (SSV) can be written respectively as: 

                                     (9) 

where,  is the mean of the entire data,  is the mean of the 
classification group,  represents the number of 

observations in the group, and K is the total number of 
groups. 

                                (10) 

where,  is the observation in the group and N is the 
total size of the sample. 
In this study, for the CC200 atlas, the initial size of the 
connectivity matrix is 200 x 200. The number of features was 

reduced to 7294 after the multistage SAAK transform. After 
calculating the F-score for all the features, we chose 1000 top 
features with the highest F- scores. 
 
3.5 CNN 
 
Our CNN architecture, represented in Figure 3, consists of 
three convolution layers interspersed with pooling layers 
followed by a fully connected layer which computes disease 
probability and is subsequently used for classification. The 
model has a batch size of 32 and was trained for 20 epochs. 
To avoid overfitting the data, the learning rate of CNN was 
set to 0.001 and momentum to 0.9. 
 
Note that Figure 3 is only for architectural  representational 
purposes. The actual CNN used is one dimensional in nature 
and takes as input the output of SAAK transform. 
 

 
Figure 3: Convolutional neural network architecture 

 
4. MATERIALS AND METHODS 
 
4.1 Data and participants 
 
The data used for this study was downloaded from the 
Autism Brain Imaging Data Exchange (ABIDE) project 
(http://fcon_1000.projects.nitrc.org/indi/abide/). The data 
comprises of rs-fMRI scans of subjects, along with 
phenotypic information such as subject identity number, age, 
sex, assessment scores (IQ test, social interaction, 
communication etc.) for each subject. 
 
Due to the difference in conditions (eye status during scan 
i.e. opened/ closed, taken stimulants 24 hours prior to scan, 
etc) while sampling the data, and the variety in demographic 
conditions of the subjects (age, sex, handedness, etc) the 
dataset shows a significant extent of heterogeneity. Hence, 
making use of the phenotypic information available to us, we 
define the participants of this study as the subjects who met 
all the following criteria: 
 

● Eye status during rest scan- open 
● Quality control (manual assessment) 

Table 1 shows the demographic details of the 609 
participants. 

Table 1: Participant classification 
 

Gender Individual Orientation 
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ASD Neurotypival 
Male 252 252 
Female 36 69 
Age (<=20) 242 270 
Age (>20) 46 51 

 
 
4.2 Preprocessing 
 
The ABIDE consortium shared a preprocessed version of the 
data as a part of the Preprocessed Connectomes Project 
(PCP). Out of the four available pipelines, we chose the data 
which was pre-processed according to the C-PAC 
(Configurable Pipeline for the Analysis of Connectomes) 
pipeline. The data obtained was corrected by reslicing for 
head-motion, intensity normalisation (with global mean = 
1000), motion realignment, and nuisance signal removal (due 
to physiological processes like heartbeat and respiration). 
The data were transformed from the individual native space 
to the Montreal Neurological Institute (MNI) space. Global 
signal regression, however, is not used in this study. Steps 
involved in data processing are shown in Figure 4. 
 

 
Figure 4: Data preprocessing workflow 

 
5. EXPERIMENTS 
 
The following experiments were carried out in this study: 
1. Classification Model: Experiments were conducted to 

determine the best classifier for classification of data 
before applying SAAK transform as well as that for 
linear SAAK transform output. SAAK transform output 
was classified using linear support vector classifier 
(SVC), Dense Net and CNN. 

2. Atlas for time-series extraction: Atlas for time-series 
extraction: Out of the seven atlases used by PCP for ROI 
time-series extraction, we consider the following five 
atlases for the input data and compare the classification 
performances: Harvard-Oxford (HO), Craddock 200 
(CC200), Eickhoff-Zilles (EZ), Talaraich and Tournoux 
(TT) and Dosenbach 160 (DOZ160).   

3. Type of connectivity matrix: Connectivity matrix for a 
subject is estimated based on its time-series data. Three 
kinds of connectivity measures: partial correlation, 
correlation and tangent space embedding were used to 
construct the connectivity matrix and the classification 
ability of the model corresponding to each of these was 
analysed . 

4. Time demand of CNN vs proposed approach: 
Computational efficiency of CNN and proposed 
combined SAAK and CNN approach was evaluated and 
compared. 

 
6. RESULTS 
 
6.1  Performance comparison of proposed approach and 
other approaches 
 
Performance of the proposed approach was compared with 
various machine learning and deep learning classification 
models present in the literature.  Table 2 shows the cross- 
validation accuracy for all the atlases used in the PCP for 
ROI time series extraction. These scores are corresponding to 
the partial correlation connectivity matrices. Five 
classification approaches viz. Decision tree, SVC, dense net, 
CNN and SAAK + CNN were evaluated. CNN achieved 
classification accuracy of 75.23 percent, marginally higher 
than accuracy of 74.55 percent obtained using the proposed 
approach. 
 

Table 2: Performance of classifiers with different atlases 

Brain 
Atlas 

Classifier Accuracy (%) 
Decision 

Tree SVC Dense Net CNN SAAK + 
CNN 

HO 62.12 64.35 67.71 71.92 71.26 
CC200 64.55 65.78 69.20 75.23 74.55 
EZ 64.98 65.21 64.88 72.67 71.98 
TT 60.23 60.47 62.55 69.04 68.39 
DOZ160 62.63 59.71 68.23 70.95 70.31 
 

Table 3: Performance of different correlation measures 
 

Correlation 
Measure 

Classifier Accuracy (%) 

SAAK+SVC SAAK + 
Dense Net SAAK+CNN 

Partial 68.84 71.62 74.55 
Pearson 66.29 69.13 70.61 
Tangent 68.51 70.02 74.46 

Table 3 presents classification accuracy corresponding to the 
different correlation measures used for constructing the 
correlation matrix, using the CC200 atlas. 
 
6.2. Computational Efficiency 
 
All experiments were conducted in python. on a system with 
windows 10 operating system, core i7 processor and 8 GB 
RAM. Execution time of both CNN and proposed approach 
are as follows: 

● CNN : 7 minutes 23 sec 
● SAAK + CNN : 3 min 9 sec 

 
6.3 Filtering of Signals 
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Band pass filtered and non band pass filtered signals were 
evaluated and the observed accuracy of signals after band 
pass filtering was found to be marginally better.  

● Band pass filtering (0.01 - 0.073 Hz): 74.55% 
accuracy 

● Non band pass filtered : 74.39% accuracy 
 

7.  DISCUSSIONS 
 
We carried out a detailed experimental evaluation of our 
proposed approach on the ABIDE dataset and observed that 
classification using the proposed method gave results 
comparable to other state-of-the-art methods for large data 
sets while being more computationally effective.  
 
7.1 Impact of connectivity parameterisation 
 
We computed the connectivity matrices of subjects to use 
them as input to the model. The connectivity matrices were 
established using three techniques - Pearson correlation, 
partial correlation and tangent space embedding (which is a 
combination of both), and the performance of the model in 
each case was studied. The best accuracy was obtained using 
a partial correlation based network. Only a marginal 
difference in accuracy was seen between the partial 
correlation and tangent space methods. The tangent space 
method has a strong mathematical foundation and is being 
explored in various studies. This result can be backed up by 
the findings of previous studies on correlation methods 
which suggest the Pearson method only reflects the marginal 
association between network nodes and does not capture the 
true or direct functional connection between them. For 
example, a large correlation between a pair of nodes can 
appear due to their common connections to a third-party 
node, even if the two nodes are not directly connected. [21], 
[22]. Figure 5 shows the connectivity matrices for the three 
types of connectivity measures: pearson, partial and tangent. 
 

 
Figure 5: Pearson, partial and tangent correlation matrices 

 
7.2. Impact of parcellation scheme on prediction     
accuracy 
 
BOLD signals inside the brain are averaged at parcel level. 
Therefore, both coordinates of the brain regions defined and 
the size of regions have an effect on the signal content. 
Hence, we analyse the impact of parcellation scheme on the 
accuracy of prediction by considering five atlases. 
We evaluated the atlases against the proposed method as well 
as some other state-of-the-art methods on the same dataset. 
We found out that the SAAK transform classification gave 

better results than all other methods tested. Further, ROIs 
defined using the functional CC200 atlas outperformed all 
other atlases shown in the table. This shows that 
classification performance is indeed influenced by the atlas 
selected.  
 
7.3  Impact of frequency of signals 
 
The extracted time- series signals were band-pass filtered to 
obtain signals in the frequency band 0.01Hz - 0.073Hz (Slow 
4 and Slow 5 bands). We implemented our approach with 
both filtered and non- filtered signals. The filtered signals 
gave a slightly better discrimination performance over the 
non- filtered ones. However, we could not establish a clear 
preference between the two. 
 
7.4 Computational efficiency: SAAK vs CNN 
 
Convolutional neural networks (CNN) and SAAK transform 
both employ the ReLU activation function. However, there is 
a fundamental difference in the way these techniques 
determine their  filter  weights.  In  CNN,  a  supervised  
learning  approach is used to determine the weights. The 
mapping between input and  their  corresponding  output  
labels  is  used  to  update  the weights iteratively. Usually, 
back-propagation of the loss helps update  weights,  thereby  
reducing  the  classification  error.  On the other hand, multi-
stage SAAK transform uses the second-order statistics of the 
input vector to select the filter weights. While CNNs usually 
require a large number of iterations, both input vector, and 
associated labels to learn the weights, SAAK transform is a 
feed-forward single-pass process. Using just the input  
vector,  SAAK  transform  effectively  deduces  the  filter 
weights in a single pass. This makes SAAK transform a 
simple and a faster alternative to CNN. 
 
8. CONCLUSION 
 
As of present, no scientific method is used in industry for 
diagnosis and subsequent management of ASD. Recent years 
have shown a rise in ASD research [23], [24] but this has 
been limited by the high dimensionality of images. In this 
paper, we proposed a SAAK transform based classifier to 
identify ASD affected individuals from healthy individuals. 
We analysed the functional connectomes using different 
atlases, and selected the best parcellation scheme. We also 
showed that our proposed approach achieved classification 
accuracy comparable to the existing machine- learning state 
of the art approach, while being significantly more efficient 
computationally. 
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