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ABSTRACT 
 
Canopy Height Model (CHM) derived from Airborne LiDAR 
Scanning (ALS) is used for analyzing forest structure which 
are required the identification of forest stand and its 
attributes. One of the impacts that can be affected the 
identification of treetop CHM are crown characteristics such 
as crown slope. There are only a few studies about the crown 
slope effect on treetop identification using CHM in tropical 
rainforest. This paper presents about assessing the impact of 
crown slope on treetops identification using LiDAR CHM and 
digital surface model (DSM) in a complex topography of 
tropical rainforest. The treetop and crown of trees are 
produced by a Forest tool developed in Rstudio programme 
which are the ALS surfaces such as CHM and DSM are the 
main input used in this processing step. The treetop 
displacements with the crown slope effect in tropical 
rainforest is quantified and these effect will be assessed using 
algorithm [DV = DH (tanϴ - tanψ)] in order to improve the 
previous algorithm [DV = R (secϴ - 1)]. Ground data at the 
field are observed to evaluate the quality of ALS surfaces in 
producing accurate information of the forest canopy height. 
The result shows a positive correlation between height of 
treetops CHM and DSM (r2 = 0.996, tstat<tcrit). Based on the 
previous algorithm that involved only terrain slope (ϴ), 
horizontal displacement (DH) between CHM and DSM 
treetops was highly correlated with vertical displacement, DV 
(r2=0.808). However, DV of treetops using ϴ and crown angle 
(ψ) shows better correlation (r2=0.924) compared to DV of 
treetops using ϴ alone (r2 = 0.720). Therefore, the error 
determined by involving the crown slope must be considered 
in CHM analysis before the height information derived by 
CHM can be used in a forestry application. 
 
Key words : CHM, DSM, LiDAR remote sensing, treetop 
LiDAR 

 
 

 
1. INTRODUCTION 
Tropical rainforest in Malaysia requires year round high 
temperature, plentiful rainfall, dense and lush known as 
dynamic storehouse of biodiversity on the planet and can be 
found near the equator [1], holds the most wide-ranging forest 
in the world with the huge diversity of tree with layered 
canopies [2]; and crucial role as a carbon sink, which absorbs 
carbon dioxide from the atmosphere [3]. To maintain the 
continuity of their useful advantages, an alternative to 
conduct a research is required for a better understanding 
about the preservation and conservation of tropical rainforest. 
Researchers have explored and studied the appropriate 
methods to find a solution. Remote sensing is a crucial tool 
offering information for an achievement of sustainable and 
efficient forest management. Factors such as low spatial 
resolution due to quality of data, a homogeneous and complex 
area become a big challenge to classify feature of images [4] 
and characterized object features on an image. In forestry 
application, Light Detection and Ranging (LiDAR) has found 
advantageous such as delineation of tree crown [1], analyses 
of vegetation cover [5], and deriving forest canopy structure 
[6]. 
  
The mapping of spatial distribution of canopy using LiDAR 
resulted in capability of this sensor to estimate accurately the 
tree dimension and canopy structural properties from local to 
regional and continental scales [7]. LiDAR from airborne and 
spaceborne gives non-destructive and fast tools for gaining 
wider coverage area, very useful for monitoring and 
inventories of vegetation at regional and global scale [8]. 
Estimating precise location and height of tree has been 
considered as an important part in providing an accurate data 
for further analysis such as estimating aboveground biomass 
(AGB) and carbon stock. LiDAR has their own capabilities in 
providing point cloud with its attributes (x, y, z) locations 
from the ground below forest canopy. LiDAR sensor from 
Airborne Laser Scanning (ALS) has been widely used in 
extracting structural attributes of forest canopies [9]. Canopy 
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height model (CHM) is required in extracting forest structural 
attributes such as basal area, stand volume and AGB. 
However, the impact of slope and crown characteristics on the 
estimation of tree locations and heights in tropical forests on 
complex terrain has not yet been investigated or modelled [9]. 
 
To detect single tree from LiDAR accurately needs a high 
resolution of Digital Surface Model (DSM) that appears as the 
uppermost layer of the forest canopy [10]. LiDAR are capable 
to characterize horizontal and and vertical structures of forest 
[11]. A challenge in producing an accurate Digital Terrain 
Model (DTM) as well as detecting an individual trees and its 
height occurred due to steep slopes condition in a very dense 
forest. Appearance of height normalization from DSM and 
DTM point clouds provide study of errors based on terrain 
slope cases [12]. The estimation of tree locations before 
normalization may be a better alternative [9]. LiDAR Surface 
model is a common method to derive CHM from the upper 
maximum height above ground obtained from all laser 
returns of raster cell and identify tree tops as local maxima in 
the surface model [13]. Crown of each tree can be delineated 
using watershed segmentation [14]-[15]. However, some 
information from CHM at lower vegetation is excluded. 
Therefore, there are  approach involved in delineating trees in 
the most upper canopy layer of CHM or another surface model 
to analyze all point cloud by k-means clustering, normalized 
cut, mean shift algorithm or region growing technique 
[16]-[17].  
 
There is only a few studies related with an effect of slope and 
crown attributes in estimation of tree locations and heights on 
complex terrain [9]-[18]-[19]. A study from [18] indicates 
that there is a decreasing in accuracy of treetop identification 
during height normalization takes place due to a location of 
the trees which is on sloping terrain surface. On steep slopes 
surface, the raw elevation values situated either on the 
downward or the upward level of a tree crown are 
height-normalized with parts of the DTM that may be much 
lower or higher than the tree stem base respectively [20]. The 
impact of slope-distorted CHMs on treetop identification 
strongly relies on the tree’s crown shape which is mostly 
specified by its species [18]-[20]. The impact of height 
normalization on numerous other non-conical crown shapes 
such as flat or ellipsoidal shapes situated on terrain with a 
more complex topography must be considered in treetops 
identification [18]. In addition, an algorithm developed by [9] 
can be applied to the tree having wider crown radii in tropical 
forests on slope terrain. [9] found that the error to estimate 
tree height having a conical crown was effected by the crown 
angle, crown radius, slope of terrain, while [19] added the 
factor of crown shape and offset distance to the slope surface. 
However, more studies are required to determine whether the 
established models can be used to correct for slope in complex 
topography since the study [19] was conducted at linear 
terrain slope of forest terrains. 
 

Programming model is very crucial and useful that 
incorporate scale and suitable for big data on a machine [21]. 
To develop the model of CHM analysis, the process having a 
big data such as LiDAR point clouds must be well handled 
and improve the decision-making in forestry application. 
Besides, many of the algorithms for deriving forest 
information from ALS have been developed in boreal or 
temperate forests [9]. Therefore, this study aiming the 
complex topography at tropical rainforest area to study the 
impact of crown slope on treetops identification managed by 
programming the input ALS data to estimate the tree height  
using ALS data in tropical rainforest. The objectives are 1) 
identifying treetops from CHM and DSM in a complex terrain 
within  a slope terrain factor; 2) estimating difference in 
height and position of trees from CHM, DSM and ground 
data; and 3) evaluate the effect of slope on the horizontal and 
vertical displacements of treetops. 
  
2. MATERIALS AND METHODS 
 
2.1  Study Area 

 
Airborne LiDAR (ALS) represents a small 3 hectare of 
Berkelah forest located at the central part of Peninsular 
Malaysia, Pahang at 3°44’25.73” N, 102°57’35.71” E. This 
tropical rainforest is mixed dipterocarp lowland forests and a 
type of evergreen tropical moist forest. Berkelah provide the 
main production of forest where the most areas have been 
managed for timber production by selective felling. This 
tropical rainforest is known as a red Meranti forest 
characterized by a high proportion Shorea species which is 
categorized under red Meranti group. During 1986 to 1987, 
this forest was disturbed with tractor-logged activities. 
Therefore, the vegetation can be classified as a mixed hill 
dipterocarp forest controlled by Dipterocarpaceae which is 
the main timber producing tree family [22]. 
 

 
Figure 1: Field plot at Berkelah Forest Pahang. 

 
The research area in Figure 1 covered forest reserve which 
require a very detailed information of an object due to its 
condition, e.g. complex structure and difficult to reach. 
Technique approached (Figure 2) that will be conducted in 
this study is widely used in previous forest application as well. 
53 plots have been conducted around 12.6 meter radius for 
each plot. The sample plots have designed using Landsat OLI 
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satellite image of 26 June 2016 and Google Earth. Sample 
plot of coordinate location will be taken. Locations of each 
tree and the center of each plot was recorded using Garmin 
GPS, this will be used in matching tree ALS data. 
 
Figure 2 represents the overall framework to conduct the 
objectives of this study. The ALS data is used to generate the 
DTM and DSM and a difference between two surfaces is 
computed in order to produce CHM. The slope terrain is 
computed in ArcMap software to obtain the value of each cell 
that are represents the slope angle. Treetop identification and 
canopy segmentation is generated using variable window 
filter algorithm while the canopy segmentation is produced by 
watershed algorithm. DH and DV of the treetop; and crown 
angle is calculated to examine the error in height existing 
between CHM and DSM, the correlation between DV with ψ 
and ϴ; and the relationship of DTM with ground data. 
 

Figure 2: Overall framework represents the objectives of this 
study. 

 
2.2 Airborne LiDAR (ALS) Data 

 
Airborne LiDAR (ALS) was acquired in 12 November 2014 
using Dornier Do228-101 G-ENVR. Leica ALS50-II is used 
for capturing ALS data. This site captured about 20 lines plus 
cross in 3 hours 10 minutes duration. ALS data are provided 
from Airborne Research and Survey Facility (ARSF). The 
data consists of ALS data with total of 20 flight lines and 
supplied as Las 1.2 point cloud. In this paper, all the flight 
lines were combined into one LAS dataset in ArCCatalog 
tools [23]-[24]. Automatic statistics were calculated for all 
LAS files to identify the returns, attributes and classification 
codes provided. The attributes from the statistics indicate the 

minimum and maximum of return values which is the last 
return is 4. Therefore, the last return values will be used for 
generating digital terrain model (DTM) represent the ground 
or bare earth elevation model which is excluded vegetation, 
buildings or non-ground objects and the first return values 
will be used for generating digital surface model (DSM) 
represents the non-ground objects or forest cover above the 
ground layer.  

 
2.3. Canopy Height Model 

 
Digital surface model (DSM) and digital terrain model 
(DTM) are the raster format data and the difference between 
this two raster will derive the canopy height model [9]. The 
R-statistic computational is used to explore CHM value for 
decision making and presentation of the data by producing the 
boxplot and histogram graph. The cell values in CHM plot are 
equal to the canopy’s height above ground. All outliers will be 
identified and removed for determining the actual treetops of 
tree from canopy height model. Therefore, the equation (1) is 
used to establish CHM: 

       
CHM = DSM – DTM                       

(1) 
 

Then, the slope terrain is computed using CHM raster using 
Surface Analyst tool in ArcMap software. ENVI LiDAR is 
used to generate a 3D viewer in Figure 3 and a cross section 
(Figure 4); represents the complex terrain of the ALS 
elevation surfaces. The slope will be categorizes into 5 classes 
based on the classification terrain complexity [25].  
 

 
Figure 3: Three dimensional (3D) viewer of ALS elevation in 

ENVI LiDAR software. 

 
Figure 4: A cross section of ALS elevation terrain. 
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2.4 Treetops identification 
 

Variable window filter algorithm developed by [9]-[26]-[30] 
was used to detect treetops in CHM and DSM. This process 
will be carried out using Forest tools in R-statistic. Any cell 
that is found to be the highest within the moving window 
scans from CHM will be tagged as a treetop. The size of the 
window will change based on the height of the centered cell 
due to different sizes of crowns. Therefore, dynamic window 
size will be defined from a simple linear equation involving 
the height of canopy above ground at the location and return 
the radius of the search window. The tree with a minimum 
height of 6 meter and above will be selected in the treetops 
detection of CHM and DSM. This method will produce 
treetops with its attribute (spatial coordinates of each treetops, 
height and radius of window). 
2.5  Canopy Segmentation 

Crown outline from segmentation process will represent the 
crown of each tree. Watershed algorithm is applied in DSM 
and the error will be reduced with marker-controlled 
segmentation algorithm [13]-[27]-[28]. The result will 
represent the raster image and will be converted into polygon 
for further analysis. Crown polygon extracted from DSM is 
used to mark and manual select the treetop of CHM and DSM 
that fall into that crown’s boundary as shown in Figure 5. 
Spatial statistics is generated the summarized statistics of tree 
attributes such as tree count, mean, median, standard 
deviation, minimum and maximum value of crown area and 
height of tree. 

Figure 5: Treetops from CHM are selected within the 
crown shape and treetops from DSM. 

 
2.6 Horizontal and Vertical Displacement of Treetops 

 
Horizontal and vertical displacement between CHM and 
DSM treetops were analyzed to determine their relationship 
with terrain slope and tree crown using correlation 
coefficient.  DH represent horizontal displacement, vertical 
displacement (DV), radius (R), terrain slope (ϴ), and crown 
angle (ψ) [9]-[29]. 

 
DH = R sin ϴ                                     (2) 

 
DV = R (secϴ - 1)                             (3) 

 
DV = DH (tanϴ - tanψ)                      (4) 

 
tanψ = (R - √R2 - √DH

2 ) / DH                (5) 
 
The algorithm of equation 2 to 4 is applied to quantify the 
possible errors in the estimation of tree positions and heights 
from a CHM on sloped terrain. Equation 5 is used to compute 
the crown angle from DSM. The tree having conical shape of 
the crown is capable in establishing the correlation between 
ϴ, crown attributes and displacements in the positions and 
heights of trees. Statistical analysis such as correlation and 
t-Test assuming unequal variance (α: 0.05) are applied to 
study the DH and DV of treetops are correlated between each 
other and ϴ. 
 
3. RESULT AND DISCUSSION 

The ALS terrain elevation ranged from 44.92 to 79.769 
meter. The maximum ALS terrain slope was 75.8° and the 
mean slope within a 0.6 meter radius of cells ranged from 2.4° 
to 64.1°. There were 146 detected trees in DSM that was taller 
than 6 meter and 76 trees in CHM detected within DSM 
crown polygon and its treetop. The range for mean height of 
treetop DSM after terrain normalization was 6.387- 40.969 
meter, while the mean height of treetop CHM was 
6.435-41.835 meter.  
 
X and Y coordinate of treetop established between CHM and 
ground control points at the field shows higher correlation 
coefficient of 0.99 (see Table 1 and Table 2). Then, the height 
of tree between DSM and CHM is tested and; a positive 
correlation has found and there was no different between 
DSM and CHM height (r2 = 0.996, tstat<tcrit). The estimated 
height of tree in DSM and CHM would be the same with a 
terrain slope (ϴ) and a crown angle (ψ) of less than 10°. An 
error between treetop of CHM and DSM occurred when the 
angle of slope terrain is bigger than the angle of crown slope. 
Based on the result obtained after the displacement is 
performed, the tree height from CHM could be overestimated 
by approximately 4 meter for a tree having a crown radius of 7 
meter, at the terrain slope of 37° and crown angle of 18°.  
 
Table 1: Correlation coefficient for X coordinates point 
between ground data and ALS data. 

  Column 1 Column 2 
Column 1 1 
Column 2 0.99999478 1 
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Table 2: Correlation coefficient for Y coordinates point 
between ground data and ALS data. 

  Column 1 Column 2 
Column 1 1 
Column 2 0.999982723 1 

 
The mean horizontal displacement (DH) was 0.219-5.157 
meter and the mean vertical displacement (Dv) was 
0.005-7.371 with 25% of trees in DSM are taller or equal in 
height to CHM trees. DH between treetops was highly 
correlated with their vertical displacement (r2=0.808). DH 
(Figure 6) and DV (Figure 7 and Figure 8) of treetops were 
also correlated with terrain slope when its value increasing 
with terrain slope. Figure 7 shows DV start to increase 
significantly at 15° of terrain slope. DV (ϴ) and DV (ϴ and ψ) 
shows no significance difference between each other 
(tstat<tcrit). However, Figure 8 indicates that the DV of 
treetops using both ϴ and ψ shows better correlation 
(r2=0.924) compared to DV of treetops using ϴ alone (r2 = 
0.720). 
The potential impact of CHM distortion on treetop 
identification over various terrains has been investigated by 
[19] and found that the treetop displacement may vary 
significantly among cases with different terrains. However, 
the area of study conducted in a linear terrain surface. In this 
paper, the study is applied in a complex terrain surfaces. [25] 
has established the classification of terrain complexity factor 
into 5 classes such as very low (0-5.2), low (5.2-10.6), 
medium (10.6-16.6), high (16.6-24.1) and very high 
(24.1-53) complexity of terrain surfaces. In this study, during 
the selection of treetop between CHM and DSM in canopy 
segmentation process, the number of treetop detected in ‘very 
low’ terrain slope classes is small (5%) compared to ‘very 
high’  classes having more (34%) treetops that are match the 
selection criteria. Another three slope classes shows similar 
number of treetop detected (20%, 22%, 19%) respectively. It 
is because the height of tree is set to more than 6 meter for this 
study area during the treetop extracted process to remove the 
unwanted grassland and shrubland. Therefore, there are more 
trees existing at the higher slope terrain indicates that forest 
structure for this area are compact and difficult to measure 
height on the ground. These factors give an advantage to 
crown angle and radius which is capable to establish useful 
algorithm to model displacement of horizontal and vertical 
between treetops in order to estimate height of tree. 
 
An error (vertical displacement) occurs when the slope of 
terrain is more than crown slope. It shows that the tree was 
located on the steep slope where the angle is wider. Therefore, 
there is an error and overestimated in height from CHM 
treetop. Previous study stated that the treetops from DSM 
were considered to be more accurate compared to treetops 
extract from CHM due to crown shape of that tree and their 
position would be maintained in the DSM [9]-[12]-[29]. 
Therefore, the tree positions and heights from DSM can be 
represented as the actual values when there are no data from 

field observation. Hence, DSM can be used to compare the 
CHM data with the condition where the slope of terrain is 
lower than crown slope in order to estimate an accurate height 
of trees. The treetop displacements are closely connected with 
the terrain slope and crown attributes such as radius, shape 
and angle. The existence of treetops error relied on the 
difference between the terrain slope angle and crown angle. 
Displacement of treetop only appear due to the situation 
which is crown angle is smaller than the slope angle. 
 

 
Figure 6: Horizontal displacement between treetops detected 
in CHM and DSM within the crown of DSM in relation to 

slope terrain. 

 
Figure 7: Vertical displacement between treetops detected in 
CHM and DSM within the crown of DSM in relation to slope 

terrain using equation (3). 
 

 
Figure 8: Vertical displacement between treetops detected in 
CHM and DSM within the crown of DSM in relation to slope 

terrain using equation (4). 
 

4. CONCLUSION 
 
In this paper, crown slope has found to be one of the angle 
variables that affected the treetop identification in a complex 
forest terrain. The variable such as crown radius, slope terrain 
and crown angle are very useful in quantifying the error of 
displacement between treetops CHM and DSM. Height and 
positions of treetop with slope terrain between CHM and 
DSM are correlated and started to divert when the slope 
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increased but rise again after the crown angle is included in 
the algorithm. Displacement of error only occurred when the 
value of angle from terrain slope is larger than the angle of 
tree crown. Estimation of ALS height comparing to the high 
quality of ground survey data is considered as a crucial step in 
order to obtain an accurate observation. In this study, it was 
hard to measure the height of a single tree. Then, DSM 
provides an acceptable condition for estimating height due to 
its ability to detect treetop accurately compared to CHM. The 
ground data in this study is used to examine the quality of 
ALS point data using the elevation point on the ground and its 
coordinates. However, further study of a complex terrain 
effect on treetop identification is required since this paper 
only focusing on crown angle impact.  
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