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ABSTRACT 

In software engineering filed, regression testing can be 
described as one of important task to test the testcases. In 
regression testing, test cases from test suites are executed 
repeatedly such that modifications incorporated in 
software cannot lead to unpredictable outcomes. As, the 
functionality increases in software’s, the size of test suites 
also increased. In turn, regression testing becomes one of 
time consuming and costly task. So, to reduce cost and 
time, instead of complete test suite can run, a subset of 
test cases is selected. The selection of this subset is 
known as test case prioritization (TCP). TCP becomes the 
NP-hard problem when size of test suites and test cases 
increases. Hence, there is a need of prioritization 
algorithm that can select optimal subset of test cases to 
overcome the aforementioned problems.  Recent studies 
showed that artificial bee colony (ABC is one of effective 
technique that can be solved the diverse optimization 
problem. Hence, ABC based prioritization algorithm is 
proposed to choose optimal subset of test cases. The 
results of ABC based prioritization algorithm are 
compared with sequential and random ordering. Results 
confirmed that it can address the TCP problem in 
competent manner. 
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1. INTRODUCTION 

In present time, software’s become an essential part of 
everyday life and these software’s are tested prior to 
release such that the outcomes of software can be predict. 
To test the software’s, some test cases are designed in the 
form of test suites and software’s are tested against each 
test cases. This process is called regression testing. The 
aim of this testing is to identify the bugs in software’s.  
The bugs are presented in every module of software’s.  
So, the test cases can be so efficient such that these bugs 
can be identified during testing process. After releasing of 
software’s, new patches can be added into software’s 
time to time to enhance its capabilities. When, a patch is 
added into software, the software can be tested again. The 
entire software can be re-evaluated using test cases to 
predict its outcomes. As the size of software evolves, the 
test cases can be increased and the software should be 
executed against each test case. Due to this, cost, time 
and coverage parameters of testing process can be 
enhanced and overall cost of software is increased[1]. 
The solution of this situation is to choose a subset of test 
cases rather than whole test suites and software will be 

tested against this subset of test cases.But, task to 
determine the sequence of test casesfor testing the 
software can be considered as tough task and bugs can be 
identified successfully [2]. This process is also known as 
test case prioritization and it becomes NP-hard problem 
when size of test suites can increase.In TCP, test cases 
are arranged according to some priority. The priority is 
computed using some objective function [3, 4]. 
Furthermore, coverage and detection of faultscan be used 
to describe objective function and worked as a priority. 
This value is associated with each test cases and these are 
executed according to the priority value. High priority 
test cases executed first and so on. The advantage of 
prioritization is to collect earlier feedback and this 
feedback can make the debugging process easy for 
developers.  

Further, it is noticed that prioritization of testsare 
characterized on the statement of coverage and faults. 
Moreover, a fitness criterion is also defined for 
prioritization. On the basis of fitness criterion values, test 
cases are selected from test suites. In turn, the 
prioritization can be viewed as multivariable optimization 
problem [5].  

In literature, it is found that large numbers of meta-
heuristic techniques adopted foraddressing the 
prioritization problem. These meta-heuristic techniques 
obtain optimal and near optimal solution for TCP 
problem.  The several meta-heuristic techniques that can 
be successfully applied for prioritization of test case are 
Tabu Search [6], Hill climbing [7], and Genetic 
Algorithm (GA) [7]. But there is always a scope to 
enhance the results of optimization techniques and none 
of technique can solve a problem with hundred percent 
accuracy rates.   

 
1.1 Contribution of this work 

This works presents an efficient and effective 
prioritization algorithm for selecting the optimum set of 
test-cases. It is noticed that ABC algorithm provides 
optimum results for many optimization problems. So, an 
ABC based prioritization algorithm is proposed   for test 
case prioritization. Further, few improvements are also 
inculcated in ABC algorithm for improving its efficacy. 
The experimental results of ABC prioritization are 
compared with GA, K-Means, PSO based prioritization 
algorithms.  
The structure of paper is given as section 2 demonstrates 
the related works in the direction of prioritization 
algorithms. The basic ABC algorithm is described in 
section 3. Section 4 illustrates improvements in ABC 
algorithms as well as ABC based prioritization algorithm. 
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The experimental results of this paper are reported in 
section 5. The entire paper is concluded in section 6.  

2. RELATED WORKS 

The related works on the prioritization algorithms are 
highlighted as below.  
Bajwa and Kaur developed an adaptive approach for test 
cases prioritization based on the genetic algorithm [8]. It 
can speed up the scheduling of test cases. To improve the 
coverage of test cases prioritization, an immune based 
genetic algorithm is reported in [9]. In the proposed 
approach, an immune operator is incorporated in genetic 
algorithm to overcome the low convergence problem. It is 
noted that IGA give better results than genetic algorithm. 
A hybrid approach based on genetic algorithm and 
simulated annealing is reported for TCP [10]. This 
approach can reduce cost as well as enhance fault rate. 
Tulasiraman and Kalimuthu developed a cognizant cost 
and history-based TCP approach [11]. The proposed 
approach is used the historical information of the test 
cases for identification of fault rate and cost. Moreover, 
artificial immune system algorithm is also applied to find 
the effective test cases. A multiobjective search-based 
regression TCP approach is presented in [12]. The 
proposed approach is the combination of the epistasis 
theory and ant colony optimization algorithm (ACO). The 
epistasis theory is used to update the pheromone strategy 
of ACO algorithm. To enhance the effectiveness of TCP, 
chen et al. [13], presented an adaptive random sequence 
approach. The proposed approach consists of two 
clustering algorithm such as K-means and K-medoid. The 
simulation results stated that the proposed approach 
enhances earlier detection of fault rate. To detect the 
faults earlier, a fuzzy TPOSIS technique is reported for 
prioritizing the test cases [14]. In this approach, fuzzy 
principles are used for decision making. A risk-based 
prioritization approach is reported for test cases [15]. In 
this work, fuzzy expert system is developed to accurate 
detection of risks or faults. Noguchi et al. [16] developed 
a frame work for TCP using ant colony optimization 
algorithm. Jiang and Chan presented local beam search-
based technique for effective TCP [17]. The proposed 
approach is validated using four benchmarks test cases 
datasets and gives better results than greedy and genetic 
algorithms. Prioritizing the test cases based on total 
coverage, Konsaard and Ramingwong applied a modified 
genetic algorithm for TCP [18]. A greedy based 
prioritization approach is reported for optimizing the TCP 
problem [19]. The proposed approach consists of 
exploration strategy and multi level coverage model to 
capture the bugs. A multi-objective genetic algorithm is 
reported for TCP for reducing the cost of regression 
testing [20]. In this work, a mechanism based on 
orthogonal design and evolution is incorporated in multi 
objective GA. It is seen that DIV-GA is more capable 
than other algorithms. To optimize the test cases in time 
constrained environment, panwaret al. [21] presented a 
hybrid approach by combining CS and modified ACO 
algorithm for obtaining optimized test cases. A Bayesian 
based clustering approach is presented to prioritize test 
cases [22]. In this work, two java projects are considered 
to identify the mutated faults. The performance of the 
work is compared with greedy approach and BNA 

techniques. It is stated that Bayesian based clustering 
gives promising results. To detect faults with minimum 
time and earlier, Tulasiraman et al. [23] presented pareato 
and clonal selection algorithm based multi-objective 
approach for TCP. It is noticed that proposed multi 
objective approach scheduled the test cases optimally and 
earlier. Suri and Singhal presented ACO based technique 
for regression testing and prioritization [24]. Further, it is 
seen that a time bounded constraint is incorporated in 
proposed approach to determine optimal test cases. 
Results confirm that ACO based technique is one of 
effective technique for TCP. To maximize the fault 
coverage, Mann et al. [25] have applied PSO based 
prioritization algorithm to solve the TCP problem 
efficiently. The effectiveness of the PSO based 
prioritization algorithm is measured using small as well 
as large test suites. It is seen that the proposed 
prioritization algorithm can handle both of test suites 
effectively. To handle the prioritization task in High 
Configurable Systems, Parejo et al. [26] have developed a 
Drupal based framework. This framework consists of 
multi objective prioritization algorithm rather than single 
objective prioritization algorithm. It also noted that 
proposed framework can handle change in feature 
property of dataset in effective manner. Results indicated 
that the proposed multi objective prioritization algorithm 
gives effective results than single objective prioritization 
algorithm. Schwartz and DO [27] presented two cost 
effective prioritization techniques. These techniques are 
based on analytic hierarchy process and weighted sum 
model. The experimental results of these techniques are 
compared with existing cost-effective techniques. It is 
noticed that proposed techniques can improve the cost 
effectiveness of regression testing. Marchetto et al. 
[28]developed multi objective technique for addressing 
cost and coverage factors. Further, this method also 
prioritizes the test cases. The twenty-one java projects are 
adopted for evaluating the performance of proposed multi 
objective technique. It is observed that the proposed 
technique is one of competitive technique for 
prioritization of test cases.   

3. ARTIFICIAL BEE COLONY ALGORITHM  

ABC is a meta-heuristc technique inspied through bee 
behaviour [29]. Initially, this technique can be used for 
solving the function optimization problems. The working 
this technque can be described through EB Phase, OB 
Phase and SB Phase.  In ABC alorithm, the optimum 
solution can be denoted using food source. The aim of 
bees is to locate the position of food source. Thus, each 
bee have unique ability to locate the food source position. 
The algorithm starts with Employed bee phase. In this 
phase, bee search the location of food source, collects the 
information regarding food and send it to next pahse. The 
nest phase of algorithm is Onlooker bee phase. This 
phase measure the quality of information collected in 
previous phase. If information quality is not good, then, 
bee search the new location of food in nearby area. The 
Scout bee phase is invoked, when onlooker bee is not 
able to improve the quality of food in using a limit 
operator and the location of food abandoned. The work of 
this phase is to determine the new location of abandoned 
food. The working of ABC is mentioed in Algorithm 1. 
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Algorithm 1: Algorithmic Steps of ABC 
1. Initialization Phase 

  Initialize the different user defined parameter of ABC algorithm like population, food source,  
maximum iteration, limit, colony size, lower bound and upper bound. 
 iteration = 0; 

2. EB Phase 

 for beei = 1: FS 
 Update the location of food using equation 1 for employed bee phase 

X୧,୬ୣ୵ = X୧ + ∅൫X୨ − X୩൯.																																																																																																														(1) 

 Evaluate the fitness of newly generated food source using equation 2. 

ϐit୧ =
1

1 + f୧
	.																																																																																																																																			(2) 

 Perform greedy selection between location foods. 
 

3. OB Phase 

  Evaluate the probability of each food source 
for each beei = 1: food source  
if (rand () < Pi)  
 Determine new food source location using equation 3. 

X୧,୬ୣ୵ = X୧ + ∅൫X୨ − X୩൯.																																																																																																									(3) 

 Evaluate the fitness of food through equation 2. 
 Apply greedy selection between location of foods. 
else 
 beei=beei+1; 
 

4. SB Phase 

 IF (Is quality of food improved using limit operator)   
 Determine location of food through scout bee in random order. 
end if 

  Memorize best solution  
 Iteration = iteration + 1 
 Obtain final results 

 

4. PROPOSED IMPROVED ABC 

In literature, ABC is one of popular algorithm for solving 
wide variety of optimization problems. Further, it is 
noticed that exploration and exploitation processes are 
key concept of meta-heuristic algorithms [30]. The 
balance between these two processes can be 
maintainedfor obtaining optimum results. It is observed 
that exploration process of ABC algorithm is good, but 
lack with exploitation process [31]. Due to this, algorithm 
suffers with slow convergence. Moreover, the same 
search equation is used in EB phase andOB phase. In 
turn, ABC algorithm suffers with population diversity in 
last iterations. Hence, to make the ABC algorithm more 
robust and efficient, few modifications are proposed to 
avoid abovementioned problems.  

1. A concept of pbest measure is added into food search 
equation of employed bee phase. 

2. A concept of gbest measure is included in the food 
search equation of onlooker bee phase. 

3. A cost-effective strategy is developed to reduce cost. 

4.1 pbest and gbest Measures 

These measures are taken from the PSO algorithm. The 
pbest measure computes the personal best position of 
individual bee. While, the gbest measure can determines 
global best position of bees. In employed bee phase, a bee 
searches the food location in random order using equation 
1. So, in equation 1, there is no guidance about the best 
position of individual bee. Here, the concept of pbest is 
added to guide the search mechanism of individual bee. 
The updated food search equation for employed bee 
phase is 

X୧,୬ୣ୵ = X୧ + ∅(X୧ − X୩) + ∅(pbest୧ − X୩).					(4) 

The gbest measure computes the global best position 
among all individuals. Moreover, this measure can 
compute the direction of optimal solution. In OB phase, 
food quality is evaluated and food denotes the possible 
solution of problem. In original ABC, same equation is 
adopted to search the food in both phases. In this work, 
the concept of gbest measure is added into food search 
equation of onlooker bees to direct the optimal solution. 
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X୧,୬ୣ୵ = X୧ + ∅(X୧ − X୩) + ∅(	gbest − X୩).				(5) 

4.2 Cost Effective Strategy 

A cost-effective strategy based on weights is 
developed in this work. A test suits contains numbers of 
test cases and these test cases are derived using some 
criteria. Suppose, test cases are represented as T =
{t1, t2, t3, … … , tn} and the criteria are denoted as 

C = {	c1, c2, c3, … … 	 , cn	}. After, test cases are executed, 
some values are assigned to test cases regarding its 
effectiveness. On other hand, some values are also 
assigned to criteria’s that are used to design the test cases. 
A decision matrix is performed using test cases and 
design criteria.It can prioritize test-cases using decision 
matrix.  

 

Algorithm 2:  ABC based Prioritization Algorithm 

1 Randomly selects Ktest cases from test suite with M sequences. 
2 Initialized other algorithmic parameters like number of food sources, limit operator=5, no. of faults, 

maximum iteration=100, iteration=0. 
3 While(iteration <= maximum iteration) 
4 EB strats  

 for employed_beei = 1: FS 
 Send employed bee to locate the position of food through equation 1.  
 Evaluate fitness of food source through equation 6. 

ϐit୧ =
1

1 + f୧
.																																																																																							(6) 

 Determine the pbest position of each employed bee and put it pbest_pool. 
 Apply Greedy selection to determine best location of food. 
 Determine the gbest position.  

5 OB Phase 
  Evaluate probability of each food using equation 7. 

for each onlooker_beei = 1: food source  
  if (rand () < Pi)  
 Determine new food location through equation 3. 
 Evaluate fitness of food through equation 2. 
 Apply greedy selection for determining best food location. 
  else 
 beei=beei+1; 
 

6 SB Phase 
 IF (Is quality of food improved through limit operator)   

 Determine the new location of food through scout bee in random order. 
end if 

7 Memorize best solution and put in candidate pool C. 
8 Iteration = iteration + 1 

10 Termination condition is not reached, repeat steps 4- 
11 Obtain the prioritized test cases as output. 

 

4.3 ABC based Prioritization Algorithm 

The basic steps of ABC based prioritization algorithm are 
described in Algorithm 2. 

4.4 Complexity of Proposed Algorithm 

The algorithm starts with the randomly defined 
population in terms of test cases. Further, the nest step is 
to initialize the user defined parameters of prioritization 
algorithm such as food source, colony size, limit operator, 
pbest, no. of faults and maximum iteration. In this work, 
APFD is considered as fitness function that can be used 
to evaluate the quality of food source positions. Initially, 
employed bees explore the food location in search area 
i.e. subset of test cases using equation 4. The next step is 

to determine the fitness of food. It is computed through 
equation 1. The onlooker bee phase collects the 
information from the previous phase. Moreover, a 
probability function is measured for each food and also 
computes the food quality i.e. set of test cases. If food 
quality not updated, then, an onlooker bee is sent to 
discover new location of foods and can be determined 
through equation 6. Again, fitness of recently discovered 
food is computed. Otherwise, onlooker bee is 
incremented by one. Further, make the greedy selection 
between the previous food and current food; and put best 
into a candidate pool. Is quality of food improved through 
limit operator, then it is abandoned. A new location of 
food is discovered in random manner. The algorithm 
stops its working, after reaching maximum iterations and 
the optimal set of test cases is obtained. Otherwise, above 
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mentioned process will be continued. The complexity of 
the proposed algorithm depends on test cases (N), 
selected test cases(K)and sequence of test cases sequence 
(M). After analyzing the pseudo code of proposed 
algorithm, the complexity can be O(N × K × M). 

5. SIMULATION ENVIRONMENT 

ABC prioritization algorithm is validated using an ATM 
system cases study is used. The ATM application consists 
of five modules such as Log_In module, Pin_Change 
module, Balance_Enquiry module, Cash_Withdrawal 

module, Cash_Deposit module. The program is written in 
C++ language and having 140 line of code. A test suite is 
designed to test the five modules of ATM application. 
The faults and execution time are taken as performance 
parameter or cost of test cases. The test suite consists of 
ten test cases in sequential order and can be represented 
as T = {tଵ, ଶݐ , tଷ, tସ, tହ, t, t, t଼, tଽ, tଵ}.The faults are 
represented using	F = {uଵ, uଶ, uଷ, uସ, uହ, u, u, u଼}. The 
experimental results of ABC prioritization algorithm are 
given Table 1. Moreover, in this work, random and 
original ordering to test cases is also considered for 
determining optimal sequence of test-cases. 

Table 1:illustrates faults detection and execution time of ABC prioritization algorithm 

Test 
Case (T) 

Faults (F) No. 
of Faults  
Detected 

Execut
ion Time uଵ uଶ uଷ uସ uହ u u u଼ 

tଵ - - -  - -  - 2 9.30 

tଶ - - -  -  -  3 10.45 

tଷ - -  - - -  - 2 8..25 

tସ  - 
 

 -  -  4 9.48 

tହ - 
 

 - 
 

-  3 11.05 

t - - - -   - - 2 7.28 

t 
 


 

 - -  - 3 8.46 

t଼    - -  -  5 10.56 

tଽ  - - -  - -  3 9.08 

tଵ -  - - - -  - 2 10.15 
 

Further, to measure the optimal sequence of test cases, 
a priority is assigned with each test case. The priority can 
be defined as total faults divide by execution time of each 
test case. Table 2 illustrates the priority values for each 
test case. These priorities are computed using table 1. The 
priority is set to test cases in accordance to decreasing 
values.  

 

Table 2: Illustrates the priority assigned to different 
test cases 

Test 
Cases 

No. of 
Faults 

Execution 
Time 

Prior
ity 

t1 2 9.3 0.22 

t2 3 10.45 0.29 

t3 2 8..25 0.24 

t4 4 9.48 0.42 

t5 3 11.05 0.27 

t6 2 7.28 0.27 

t7 3 8.46 0.35 

t8 5 10.56 0.47 

t9 3 9.08 0.33 

t10 2 10.15 0.20 

Hence, the prioritized order computed for ABC 
prioritization algorithm is highlighted as below. 

T = {t଼, tସ, t, tଽ, tଶ, t, tହ, tଷ, tଵ, tଵ}. 

Now, APFD is computed for each approach using 
following equation 

APFD(T, P) = 〈1 −
∑ reval(i, T)
ଵ

nf
〉+

1
2n 		.													(7) 

So, the APFD value for ABC prioritized test cases is  

ABC Prioritized Algorithm (APFD)=  

൭ቆ1−
(5 + 2 + 3 + 4)

80
ቇ +

1
20
൱ = 0.87 

The original ordering of test cases is 
T = {tଵ, tଶ, tଷ, tସ, tହ, t, t, t଼, tଽ, tଵ}and APFD value 
computed for original ordering is  

Original Ordering (APFD) = 

൭ቆ1 −
(2 + 4 + 3 + 4 + 5 + 7)

80
ቇ +

1
20
൱ = 0.73 

The random ordering of test cases is 
T = ଶݐ} , ,ସݐ ,ݐ ଽݐ , ,ଷݐ ,ଵݐ ,ݐ ,ଵݐ ,଼ݐ  ହ} and APFD value forݐ
random is  
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Random (APFD) = ൬ቀ1− (ଷାଶାଷାାଵା)
଼

ቁ+ ଵ
ଶ
൰ =

0.75 

Reverse ordering cane be described as 
T = {tଵ, tଽ, t଼, t, t, tହ, tସ, tଷ, tଶ, tଵ} and APFD value for 
reverse ordering is  

Random (APFD) = ൬ቀ1− (ଶାାାସ)
଼

ቁ + ଵ
ଶ
൰ = 0.82 

It is observed that ABC prioritization technique achieves 
maximum APFD value i.e. 87 as compared to random, 
reverse and original ordering of test cases. Further, the 
original ordering of test cases obtains minimum values. 
So, it can be said that proposed ABC prioritization 
algorithm provides optimum ordering of test cases.   

 
Figure 1: APFD graph using proposed ABC 

prioritization algorithm 

 
Figure 2: APFD graph using random ordering  

 
Figure 3: APFD graph using original ordering  

 
Figure 4: APFD graph using reverse ordering  

 

The comparison between faults detection of proposed 
ABC prioritization algorithm, randomly prioritized, 
reverse ordering and original sequence are illustrated in 
Figures 1-4. Further, the APFD values are used to 
demonstrate the code coverage. It is seen that the 
proposed ABC prioritized algorithm having more code 
coverage than random, reverse and original sequence of 
test cases. Table 3 shows the APFD values and ranking of 
ABC prioritized algorithm, random, reverse and original 
orderingof test cases. It is revealed that the proposed 
ABC prioritized algorithm obtains first rank; whereas, 
original sequence of test cases obtains worst rank i.e. 4. 

Table 3: APFD values and rank of prioritization 
algorithms 

Paramete
rs 

Prioritization Algorithms 
AB
C 

Rand
om 

Rever
se 

Origin
al 

APFD 0.87 0.75 0.82 0.73 

RANK 1 3 2 4 

The results of ABC prioritization techniqueis also 
compared with several other meta-heuristic prioritization 
algorithms. These prioritization algorithms are GA, PSO 
and K-means approaches. Table 4 presents simulation 
results of ABC based prioritization algorithm and other 
algorithms in terms of APFD metric. It is seen that 
proposed ABC based prioritization algorithm achieves 
more accurate results. Hence, it is stated that proposed 
algorithm efficiently prioritized the test cases for 
regression testing. 

Table 4: APFD values and rank of prioritization 
algorithms 

Parameters 
Prioritization Algorithms 

AB
C GA PS

O K-Means 

APFD 0.87 0.7
8 

0.8
4 0.76 

RANK 1 3 2 4 

 

Further, results of ABC based prioritization algorithm 
is also tested on several sorting algorithms. These 
algorithms are merge sort, selection sort, quick sort, heap 
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sort and insertion sort. The simulation results of proposed 
algorithm are illustrated in Table 5. Each sorting 
algorithm is seeded with several faults. Moreover, test 
cases are also designed for each sorting algorithm. The 
APFD values and rank of ABC based prioritization 
algorithm and other prioritization algorithms are 
mentioned in Table 6. It is observed that ABC 
prioritization algorithm also provides better results for 
sorting programs as compared to other prioritization 
algorithms. 

 

Table 5: Simulation results of ABC algorithm with 
sorting algorithm 

Program  
Name 

Number 
of  

Test 
Cases 

No. of 
Faults 

Avg. 
Execution 

Time 

Optimal 
Sequence  

Merge sort 9 4 16.48 t8, t4, t2, t6, 
t3¸ t7  

Selection 
Sort 5 3 5.32 t2, t3, t1¸ t5  

Quick Sort 8 5 13..52 t5, t1, t7, t4, 
t2, t8,   

Heap sort 10 3 11.26 t4,  t2, t1, t5, 
t8, t9, t3   

Insertion 
sort 4 4 5.08 t1, t3, t4, t2  

Table 6: APFD values and rank of prioritization 
algorithms for sorting programs 

Parameters 
Prioritization Algorithms 

ABC GA PSO K-Means 
APFD 0.83 0.74 0.79 0.72 
RANK 1 3 2 4 

6. CONCLUSION 

This paper presents an ABC prioritization algorithm to 
prioritize the test cases. To overcome the performance 
issues of ABC algorithm, some modifications are 
proposed in original ABC algorithm. The pbest and gbest 
measures are included in ABC algorithm to improve its 
convergence rate. The improved ABC algorithm is 
applied to solve the test suite prioritization problem. The 
aim of the ABC prioritization algorithm is to compute 
optimum order of test cases for reducing cost and time of 
regression testing. The results of ABC prioritization 
algorithm are compared with random, reverse and 
original sequence of test cases.  The APFD and rank 
parameters are used to evaluate the performance of 
abovementioned approaches. It is observed that proposed 
ABC prioritization algorithm obtains maximum APFD 
value and having first rank. It is stated that ABC 
prioritization can reduce the cost and time effectively. 
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