
Richa Vats et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8347 - 8354

8347

Artificial Bee Colony Based Prioritization Algorithm for Test
Case Prioritization Problem

Richa Vats1 Arvind Kumar1
1SRM University Delhi-NCR, Sonepat (Haryana), 131029, India

ritzi1606@gmail.com, k.arvind33@gmail.com

ABSTRACT

In software engineering filed, regression testing can be
described as one of important task to test the testcases. In
regression testing, test cases from test suites are executed
repeatedly such that modifications incorporated in
software cannot lead to unpredictable outcomes. As, the
functionality increases in software’s, the size of test suites
also increased. In turn, regression testing becomes one of
time consuming and costly task. So, to reduce cost and
time, instead of complete test suite can run, a subset of
test cases is selected. The selection of this subset is
known as test case prioritization (TCP). TCP becomes the
NP-hard problem when size of test suites and test cases
increases. Hence, there is a need of prioritization
algorithm that can select optimal subset of test cases to
overcome the aforementioned problems. Recent studies
showed that artificial bee colony (ABC is one of effective
technique that can be solved the diverse optimization
problem. Hence, ABC based prioritization algorithm is
proposed to choose optimal subset of test cases. The
results of ABC based prioritization algorithm are
compared with sequential and random ordering. Results
confirmed that it can address the TCP problem in
competent manner.

Key words: Regression Testing, Test Cases, Test Suites,
Artificial Bee Colony, Prioritization Algorithm

1. INTRODUCTION

In present time, software’s become an essential part of
everyday life and these software’s are tested prior to
release such that the outcomes of software can be predict.
To test the software’s, some test cases are designed in the
form of test suites and software’s are tested against each
test cases. This process is called regression testing. The
aim of this testing is to identify the bugs in software’s.
The bugs are presented in every module of software’s.
So, the test cases can be so efficient such that these bugs
can be identified during testing process. After releasing of
software’s, new patches can be added into software’s
time to time to enhance its capabilities. When, a patch is
added into software, the software can be tested again. The
entire software can be re-evaluated using test cases to
predict its outcomes. As the size of software evolves, the
test cases can be increased and the software should be
executed against each test case. Due to this, cost, time
and coverage parameters of testing process can be
enhanced and overall cost of software is increased[1].
The solution of this situation is to choose a subset of test
cases rather than whole test suites and software will be

tested against this subset of test cases.But, task to
determine the sequence of test casesfor testing the
software can be considered as tough task and bugs can be
identified successfully [2]. This process is also known as
test case prioritization and it becomes NP-hard problem
when size of test suites can increase.In TCP, test cases
are arranged according to some priority. The priority is
computed using some objective function [3, 4].
Furthermore, coverage and detection of faultscan be used
to describe objective function and worked as a priority.
This value is associated with each test cases and these are
executed according to the priority value. High priority
test cases executed first and so on. The advantage of
prioritization is to collect earlier feedback and this
feedback can make the debugging process easy for
developers.

Further, it is noticed that prioritization of testsare
characterized on the statement of coverage and faults.
Moreover, a fitness criterion is also defined for
prioritization. On the basis of fitness criterion values, test
cases are selected from test suites. In turn, the
prioritization can be viewed as multivariable optimization
problem [5].

In literature, it is found that large numbers of meta-
heuristic techniques adopted foraddressing the
prioritization problem. These meta-heuristic techniques
obtain optimal and near optimal solution for TCP
problem. The several meta-heuristic techniques that can
be successfully applied for prioritization of test case are
Tabu Search [6], Hill climbing [7], and Genetic
Algorithm (GA) [7]. But there is always a scope to
enhance the results of optimization techniques and none
of technique can solve a problem with hundred percent
accuracy rates.

1.1 Contribution of this work

This works presents an efficient and effective
prioritization algorithm for selecting the optimum set of
test-cases. It is noticed that ABC algorithm provides
optimum results for many optimization problems. So, an
ABC based prioritization algorithm is proposed for test
case prioritization. Further, few improvements are also
inculcated in ABC algorithm for improving its efficacy.
The experimental results of ABC prioritization are
compared with GA, K-Means, PSO based prioritization
algorithms.
The structure of paper is given as section 2 demonstrates
the related works in the direction of prioritization
algorithms. The basic ABC algorithm is described in
section 3. Section 4 illustrates improvements in ABC
algorithms as well as ABC based prioritization algorithm.

ISSN 2278-3091
Volume 9, No.5, September - October 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse207952020.pdf

https://doi.org/10.30534/ijatcse/2020/207952020

Richa Vats et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8347 - 8354

8348

The experimental results of this paper are reported in
section 5. The entire paper is concluded in section 6.

2. RELATED WORKS

The related works on the prioritization algorithms are
highlighted as below.
Bajwa and Kaur developed an adaptive approach for test
cases prioritization based on the genetic algorithm [8]. It
can speed up the scheduling of test cases. To improve the
coverage of test cases prioritization, an immune based
genetic algorithm is reported in [9]. In the proposed
approach, an immune operator is incorporated in genetic
algorithm to overcome the low convergence problem. It is
noted that IGA give better results than genetic algorithm.
A hybrid approach based on genetic algorithm and
simulated annealing is reported for TCP [10]. This
approach can reduce cost as well as enhance fault rate.
Tulasiraman and Kalimuthu developed a cognizant cost
and history-based TCP approach [11]. The proposed
approach is used the historical information of the test
cases for identification of fault rate and cost. Moreover,
artificial immune system algorithm is also applied to find
the effective test cases. A multiobjective search-based
regression TCP approach is presented in [12]. The
proposed approach is the combination of the epistasis
theory and ant colony optimization algorithm (ACO). The
epistasis theory is used to update the pheromone strategy
of ACO algorithm. To enhance the effectiveness of TCP,
chen et al. [13], presented an adaptive random sequence
approach. The proposed approach consists of two
clustering algorithm such as K-means and K-medoid. The
simulation results stated that the proposed approach
enhances earlier detection of fault rate. To detect the
faults earlier, a fuzzy TPOSIS technique is reported for
prioritizing the test cases [14]. In this approach, fuzzy
principles are used for decision making. A risk-based
prioritization approach is reported for test cases [15]. In
this work, fuzzy expert system is developed to accurate
detection of risks or faults. Noguchi et al. [16] developed
a frame work for TCP using ant colony optimization
algorithm. Jiang and Chan presented local beam search-
based technique for effective TCP [17]. The proposed
approach is validated using four benchmarks test cases
datasets and gives better results than greedy and genetic
algorithms. Prioritizing the test cases based on total
coverage, Konsaard and Ramingwong applied a modified
genetic algorithm for TCP [18]. A greedy based
prioritization approach is reported for optimizing the TCP
problem [19]. The proposed approach consists of
exploration strategy and multi level coverage model to
capture the bugs. A multi-objective genetic algorithm is
reported for TCP for reducing the cost of regression
testing [20]. In this work, a mechanism based on
orthogonal design and evolution is incorporated in multi
objective GA. It is seen that DIV-GA is more capable
than other algorithms. To optimize the test cases in time
constrained environment, panwaret al. [21] presented a
hybrid approach by combining CS and modified ACO
algorithm for obtaining optimized test cases. A Bayesian
based clustering approach is presented to prioritize test
cases [22]. In this work, two java projects are considered
to identify the mutated faults. The performance of the
work is compared with greedy approach and BNA

techniques. It is stated that Bayesian based clustering
gives promising results. To detect faults with minimum
time and earlier, Tulasiraman et al. [23] presented pareato
and clonal selection algorithm based multi-objective
approach for TCP. It is noticed that proposed multi
objective approach scheduled the test cases optimally and
earlier. Suri and Singhal presented ACO based technique
for regression testing and prioritization [24]. Further, it is
seen that a time bounded constraint is incorporated in
proposed approach to determine optimal test cases.
Results confirm that ACO based technique is one of
effective technique for TCP. To maximize the fault
coverage, Mann et al. [25] have applied PSO based
prioritization algorithm to solve the TCP problem
efficiently. The effectiveness of the PSO based
prioritization algorithm is measured using small as well
as large test suites. It is seen that the proposed
prioritization algorithm can handle both of test suites
effectively. To handle the prioritization task in High
Configurable Systems, Parejo et al. [26] have developed a
Drupal based framework. This framework consists of
multi objective prioritization algorithm rather than single
objective prioritization algorithm. It also noted that
proposed framework can handle change in feature
property of dataset in effective manner. Results indicated
that the proposed multi objective prioritization algorithm
gives effective results than single objective prioritization
algorithm. Schwartz and DO [27] presented two cost
effective prioritization techniques. These techniques are
based on analytic hierarchy process and weighted sum
model. The experimental results of these techniques are
compared with existing cost-effective techniques. It is
noticed that proposed techniques can improve the cost
effectiveness of regression testing. Marchetto et al.
[28]developed multi objective technique for addressing
cost and coverage factors. Further, this method also
prioritizes the test cases. The twenty-one java projects are
adopted for evaluating the performance of proposed multi
objective technique. It is observed that the proposed
technique is one of competitive technique for
prioritization of test cases.

3. ARTIFICIAL BEE COLONY ALGORITHM

ABC is a meta-heuristc technique inspied through bee
behaviour [29]. Initially, this technique can be used for
solving the function optimization problems. The working
this technque can be described through EB Phase, OB
Phase and SB Phase. In ABC alorithm, the optimum
solution can be denoted using food source. The aim of
bees is to locate the position of food source. Thus, each
bee have unique ability to locate the food source position.
The algorithm starts with Employed bee phase. In this
phase, bee search the location of food source, collects the
information regarding food and send it to next pahse. The
nest phase of algorithm is Onlooker bee phase. This
phase measure the quality of information collected in
previous phase. If information quality is not good, then,
bee search the new location of food in nearby area. The
Scout bee phase is invoked, when onlooker bee is not
able to improve the quality of food in using a limit
operator and the location of food abandoned. The work of
this phase is to determine the new location of abandoned
food. The working of ABC is mentioed in Algorithm 1.

Richa Vats et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8347 - 8354

8349

Algorithm 1: Algorithmic Steps of ABC
1. Initialization Phase

 Initialize the different user defined parameter of ABC algorithm like population, food source,
maximum iteration, limit, colony size, lower bound and upper bound.
 iteration = 0;

2. EB Phase

 for beei = 1: FS
 Update the location of food using equation 1 for employed bee phase

X୧,୬ୣ୵ = X୧ + ∅൫X୨ − X୩൯.																																																																																																														(1)

 Evaluate the fitness of newly generated food source using equation 2.

ϐit୧ =
1

1 + f୧
	.																																																																																																																																			(2)

 Perform greedy selection between location foods.

3. OB Phase

 Evaluate the probability of each food source
for each beei = 1: food source
if (rand () < Pi)
 Determine new food source location using equation 3.

X୧,୬ୣ୵ = X୧ + ∅൫X୨ − X୩൯.																																																																																																									(3)

 Evaluate the fitness of food through equation 2.
 Apply greedy selection between location of foods.
else
 beei=beei+1;

4. SB Phase

 IF (Is quality of food improved using limit operator)
 Determine location of food through scout bee in random order.
end if

 Memorize best solution
 Iteration = iteration + 1
 Obtain final results

4. PROPOSED IMPROVED ABC

In literature, ABC is one of popular algorithm for solving
wide variety of optimization problems. Further, it is
noticed that exploration and exploitation processes are
key concept of meta-heuristic algorithms [30]. The
balance between these two processes can be
maintainedfor obtaining optimum results. It is observed
that exploration process of ABC algorithm is good, but
lack with exploitation process [31]. Due to this, algorithm
suffers with slow convergence. Moreover, the same
search equation is used in EB phase andOB phase. In
turn, ABC algorithm suffers with population diversity in
last iterations. Hence, to make the ABC algorithm more
robust and efficient, few modifications are proposed to
avoid abovementioned problems.

1. A concept of pbest measure is added into food search
equation of employed bee phase.

2. A concept of gbest measure is included in the food
search equation of onlooker bee phase.

3. A cost-effective strategy is developed to reduce cost.

4.1 pbest and gbest Measures

These measures are taken from the PSO algorithm. The
pbest measure computes the personal best position of
individual bee. While, the gbest measure can determines
global best position of bees. In employed bee phase, a bee
searches the food location in random order using equation
1. So, in equation 1, there is no guidance about the best
position of individual bee. Here, the concept of pbest is
added to guide the search mechanism of individual bee.
The updated food search equation for employed bee
phase is

X୧,୬ୣ୵ = X୧ + ∅(X୧ − X୩) + ∅(pbest୧ − X୩).					(4)

The gbest measure computes the global best position
among all individuals. Moreover, this measure can
compute the direction of optimal solution. In OB phase,
food quality is evaluated and food denotes the possible
solution of problem. In original ABC, same equation is
adopted to search the food in both phases. In this work,
the concept of gbest measure is added into food search
equation of onlooker bees to direct the optimal solution.

Richa Vats et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8347 - 8354

8350

X୧,୬ୣ୵ = X୧ + ∅(X୧ − X୩) + ∅(gbest − X୩).				(5)

4.2 Cost Effective Strategy

A cost-effective strategy based on weights is
developed in this work. A test suits contains numbers of
test cases and these test cases are derived using some
criteria. Suppose, test cases are represented as T =
{t1, t2, t3, … … , tn} and the criteria are denoted as

C = {	c1, c2, c3, … … 	 , cn	}. After, test cases are executed,
some values are assigned to test cases regarding its
effectiveness. On other hand, some values are also
assigned to criteria’s that are used to design the test cases.
A decision matrix is performed using test cases and
design criteria.It can prioritize test-cases using decision
matrix.

Algorithm 2: ABC based Prioritization Algorithm

1 Randomly selects Ktest cases from test suite with M sequences.
2 Initialized other algorithmic parameters like number of food sources, limit operator=5, no. of faults,

maximum iteration=100, iteration=0.
3 While(iteration <= maximum iteration)
4 EB strats

 for employed_beei = 1: FS
 Send employed bee to locate the position of food through equation 1.
 Evaluate fitness of food source through equation 6.

ϐit୧ =
1

1 + f୧
.																																																																																							(6)

 Determine the pbest position of each employed bee and put it pbest_pool.
 Apply Greedy selection to determine best location of food.
 Determine the gbest position.

5 OB Phase
 Evaluate probability of each food using equation 7.

for each onlooker_beei = 1: food source
 if (rand () < Pi)
 Determine new food location through equation 3.
 Evaluate fitness of food through equation 2.
 Apply greedy selection for determining best food location.
 else
 beei=beei+1;

6 SB Phase
 IF (Is quality of food improved through limit operator)

 Determine the new location of food through scout bee in random order.
end if

7 Memorize best solution and put in candidate pool C.
8 Iteration = iteration + 1

10 Termination condition is not reached, repeat steps 4-
11 Obtain the prioritized test cases as output.

4.3 ABC based Prioritization Algorithm

The basic steps of ABC based prioritization algorithm are
described in Algorithm 2.

4.4 Complexity of Proposed Algorithm

The algorithm starts with the randomly defined
population in terms of test cases. Further, the nest step is
to initialize the user defined parameters of prioritization
algorithm such as food source, colony size, limit operator,
pbest, no. of faults and maximum iteration. In this work,
APFD is considered as fitness function that can be used
to evaluate the quality of food source positions. Initially,
employed bees explore the food location in search area
i.e. subset of test cases using equation 4. The next step is

to determine the fitness of food. It is computed through
equation 1. The onlooker bee phase collects the
information from the previous phase. Moreover, a
probability function is measured for each food and also
computes the food quality i.e. set of test cases. If food
quality not updated, then, an onlooker bee is sent to
discover new location of foods and can be determined
through equation 6. Again, fitness of recently discovered
food is computed. Otherwise, onlooker bee is
incremented by one. Further, make the greedy selection
between the previous food and current food; and put best
into a candidate pool. Is quality of food improved through
limit operator, then it is abandoned. A new location of
food is discovered in random manner. The algorithm
stops its working, after reaching maximum iterations and
the optimal set of test cases is obtained. Otherwise, above

Richa Vats et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8347 - 8354

8351

mentioned process will be continued. The complexity of
the proposed algorithm depends on test cases (N),
selected test cases(K)and sequence of test cases sequence
(M). After analyzing the pseudo code of proposed
algorithm, the complexity can be O(N × K × M).

5. SIMULATION ENVIRONMENT

ABC prioritization algorithm is validated using an ATM
system cases study is used. The ATM application consists
of five modules such as Log_In module, Pin_Change
module, Balance_Enquiry module, Cash_Withdrawal

module, Cash_Deposit module. The program is written in
C++ language and having 140 line of code. A test suite is
designed to test the five modules of ATM application.
The faults and execution time are taken as performance
parameter or cost of test cases. The test suite consists of
ten test cases in sequential order and can be represented
as T = {tଵ, ଶݐ , tଷ, tସ, tହ, t, t, t଼, tଽ, tଵ}.The faults are
represented using	F = {uଵ, uଶ, uଷ, uସ, uହ, u, u, u଼}. The
experimental results of ABC prioritization algorithm are
given Table 1. Moreover, in this work, random and
original ordering to test cases is also considered for
determining optimal sequence of test-cases.

Table 1:illustrates faults detection and execution time of ABC prioritization algorithm

Test
Case (T)

Faults (F) No.
of Faults
Detected

Execut
ion Time uଵ uଶ uଷ uସ uହ u u u଼

tଵ - - - - - - 2 9.30

tଶ - - - - - 3 10.45

tଷ - - - - - - 2 8..25

tସ -

 - - 4 9.48

tହ -

 -

- 3 11.05

t - - - - - - 2 7.28

t

 - - - 3 8.46

t଼ - - - 5 10.56

tଽ - - - - - 3 9.08

tଵ - - - - - - 2 10.15

Further, to measure the optimal sequence of test cases,
a priority is assigned with each test case. The priority can
be defined as total faults divide by execution time of each
test case. Table 2 illustrates the priority values for each
test case. These priorities are computed using table 1. The
priority is set to test cases in accordance to decreasing
values.

Table 2: Illustrates the priority assigned to different
test cases

Test
Cases

No. of
Faults

Execution
Time

Prior
ity

t1 2 9.3 0.22

t2 3 10.45 0.29

t3 2 8..25 0.24

t4 4 9.48 0.42

t5 3 11.05 0.27

t6 2 7.28 0.27

t7 3 8.46 0.35

t8 5 10.56 0.47

t9 3 9.08 0.33

t10 2 10.15 0.20

Hence, the prioritized order computed for ABC
prioritization algorithm is highlighted as below.

T = {t଼, tସ, t, tଽ, tଶ, t, tହ, tଷ, tଵ, tଵ}.

Now, APFD is computed for each approach using
following equation

APFD(T, P) = 〈1 −
∑ reval(i, T)
ଵ

nf
〉+

1
2n 		.													(7)

So, the APFD value for ABC prioritized test cases is

ABC Prioritized Algorithm (APFD)=

൭ቆ1−
(5 + 2 + 3 + 4)

80
ቇ +

1
20
൱ = 0.87

The original ordering of test cases is
T = {tଵ, tଶ, tଷ, tସ, tହ, t, t, t଼, tଽ, tଵ}and APFD value
computed for original ordering is

Original Ordering (APFD) =

൭ቆ1 −
(2 + 4 + 3 + 4 + 5 + 7)

80
ቇ +

1
20
൱ = 0.73

The random ordering of test cases is
T = ଶݐ} , ,ସݐ ,ݐ ଽݐ , ,ଷݐ ,ଵݐ ,ݐ ,ଵݐ ,଼ݐ ହ} and APFD value forݐ
random is

Richa Vats et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8347 - 8354

8352

Random (APFD) = ൬ቀ1− (ଷାଶାଷାାଵା)
଼

ቁ+ ଵ
ଶ
൰ =

0.75

Reverse ordering cane be described as
T = {tଵ, tଽ, t଼, t, t, tହ, tସ, tଷ, tଶ, tଵ} and APFD value for
reverse ordering is

Random (APFD) = ൬ቀ1− (ଶାାାସ)
଼

ቁ + ଵ
ଶ
൰ = 0.82

It is observed that ABC prioritization technique achieves
maximum APFD value i.e. 87 as compared to random,
reverse and original ordering of test cases. Further, the
original ordering of test cases obtains minimum values.
So, it can be said that proposed ABC prioritization
algorithm provides optimum ordering of test cases.

Figure 1: APFD graph using proposed ABC

prioritization algorithm

Figure 2: APFD graph using random ordering

Figure 3: APFD graph using original ordering

Figure 4: APFD graph using reverse ordering

The comparison between faults detection of proposed
ABC prioritization algorithm, randomly prioritized,
reverse ordering and original sequence are illustrated in
Figures 1-4. Further, the APFD values are used to
demonstrate the code coverage. It is seen that the
proposed ABC prioritized algorithm having more code
coverage than random, reverse and original sequence of
test cases. Table 3 shows the APFD values and ranking of
ABC prioritized algorithm, random, reverse and original
orderingof test cases. It is revealed that the proposed
ABC prioritized algorithm obtains first rank; whereas,
original sequence of test cases obtains worst rank i.e. 4.

Table 3: APFD values and rank of prioritization
algorithms

Paramete
rs

Prioritization Algorithms
AB
C

Rand
om

Rever
se

Origin
al

APFD 0.87 0.75 0.82 0.73

RANK 1 3 2 4

The results of ABC prioritization techniqueis also
compared with several other meta-heuristic prioritization
algorithms. These prioritization algorithms are GA, PSO
and K-means approaches. Table 4 presents simulation
results of ABC based prioritization algorithm and other
algorithms in terms of APFD metric. It is seen that
proposed ABC based prioritization algorithm achieves
more accurate results. Hence, it is stated that proposed
algorithm efficiently prioritized the test cases for
regression testing.

Table 4: APFD values and rank of prioritization
algorithms

Parameters
Prioritization Algorithms

AB
C GA PS

O K-Means

APFD 0.87 0.7
8

0.8
4 0.76

RANK 1 3 2 4

Further, results of ABC based prioritization algorithm
is also tested on several sorting algorithms. These
algorithms are merge sort, selection sort, quick sort, heap

Richa Vats et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8347 - 8354

8353

sort and insertion sort. The simulation results of proposed
algorithm are illustrated in Table 5. Each sorting
algorithm is seeded with several faults. Moreover, test
cases are also designed for each sorting algorithm. The
APFD values and rank of ABC based prioritization
algorithm and other prioritization algorithms are
mentioned in Table 6. It is observed that ABC
prioritization algorithm also provides better results for
sorting programs as compared to other prioritization
algorithms.

Table 5: Simulation results of ABC algorithm with
sorting algorithm

Program
Name

Number
of

Test
Cases

No. of
Faults

Avg.
Execution

Time

Optimal
Sequence

Merge sort 9 4 16.48 t8, t4, t2, t6,
t3¸ t7

Selection
Sort 5 3 5.32 t2, t3, t1¸ t5

Quick Sort 8 5 13..52 t5, t1, t7, t4,
t2, t8,

Heap sort 10 3 11.26 t4, t2, t1, t5,
t8, t9, t3

Insertion
sort 4 4 5.08 t1, t3, t4, t2

Table 6: APFD values and rank of prioritization
algorithms for sorting programs

Parameters
Prioritization Algorithms

ABC GA PSO K-Means
APFD 0.83 0.74 0.79 0.72
RANK 1 3 2 4

6. CONCLUSION

This paper presents an ABC prioritization algorithm to
prioritize the test cases. To overcome the performance
issues of ABC algorithm, some modifications are
proposed in original ABC algorithm. The pbest and gbest
measures are included in ABC algorithm to improve its
convergence rate. The improved ABC algorithm is
applied to solve the test suite prioritization problem. The
aim of the ABC prioritization algorithm is to compute
optimum order of test cases for reducing cost and time of
regression testing. The results of ABC prioritization
algorithm are compared with random, reverse and
original sequence of test cases. The APFD and rank
parameters are used to evaluate the performance of
abovementioned approaches. It is observed that proposed
ABC prioritization algorithm obtains maximum APFD
value and having first rank. It is stated that ABC
prioritization can reduce the cost and time effectively.

REFERENCES
[1] Beizerm B. Software Testing Techniques, Van Nostrand

Reinhold. New York, 1990.
[2] Rothermel G, Untch RH, Chu C, Harrold MJ. Test case

prioritization: An empirical study. In: Proceedings IEEE

international conference on software maintenance,
(ICSM’99),pp 179–188, 1999.

[3] Do H, Rothermel G. On the use of mutation faults in
empirical assessments of test case prioritization
techniques. IEEE Transaction of Software Engineering,
Vol. 32, pp. 733–752, 2006.

[4] Elbaum S., Malishevsky A.G., Rothermel G. Test case
prioritization: A family of empirical studies. IEEE Trans
SoftwEng, Vol. 28, pp. 159–182, 2002.

[5] Glover F. and Kochenberger G. Handbook of Meta
Heuristics, Springer, Berlin, Germany.

[6] Srivastava P., Vijay A., Barukha B., and Sengar P.,
Sharma R. An Optimized Technique for Test Case
Generation and Prioritization Using Tabu Search and
Data Clustering,” in Proceedings of the 4th Indian
International Conference on Artificial Intelligence, pp.
pp. 30-46,2009.

[7] Li Z., Harman M., and Hierons R. Search Algorithms for
Regression Test Case Prioritization,” IEEE Transaction
on Software Engineering, vol. 33, no. 4, pp. 225-237,
2007.

[8] Bajwa, J. K., & Kaur, R. An Adaptive Approach For Test
Case Prioritization In Regression Testing Using Improved
Genetic Algorithm, 2017.

[9] Gladston, A., Nehemiah, K., Narayanasamy, P., &
Kannan, A. Test case prioritization for regression testing
using immune operator. The International Arab Journal of
Information Technology, Vol. 13, No. 6, pp. 686-692,
2016.

[10] Maheswari, R. U., & Mala, D. J. Combined genetic and
simulated annealing approach for test case prioritization.
Indian Journal of Science and Technology, Vol. 8, No.
35, 2015.

[11] Tulasiraman, M., & Kalimuthu, V. (2018). Cost
Cognizant history based prioritization of test case for
regression testing using immune algorithm. Journal of
Intelligent Engineering Systems, Vol. 11, No. 1, pp. 221-
228, 2018.

[12] Bian, Y., Li, Z., Zhao, R., & Gong, D. Epistasis based aco
for regression test case prioritization. IEEE Transactions
on Emerging Topics in Computational Intelligence, Vol.
1, No. 3, pp. 213-223, 2017.

[13] Chen, J., Zhu, L., Chen, T. Y., Towey, D., Kuo, F. C.,
Huang, R., & Guo, Y. (2018). Test case prioritization for
object-oriented software: An adaptive random sequence
approach based on clustering. Journal of Systems and
Software, Vol. 135, pp. 107-125, 2018.

[14] Tahvili, S., Afzal, W., Saadatmand, M., Bohlin, M.,
Sundmark, D., & Larsson, S. Towards earlier fault
detection by value-driven prioritization of test cases using
fuzzy TOPSIS. In Information Technology: New
Generations (pp. 745-759). Springer, Cham, 2016.

[15] Hettiarachchi, C., Do, H., & Choi, B. Risk-based test case
prioritization using a fuzzy expert system. Information
and Software Technology, Vol. 69, pp. 1-15, 2016.

[16] Noguchi, T., Washizaki, H., Fukazawa, Y., Sato, A., &
Ota, K. History-based test case prioritization for black
box testing using ant colony optimization. In 2015 IEEE
8th International Conference on Software Testing,
Verification and Validation (ICST) pp. 1-2, April 2015.

[17] Jiang, B., & Chan, W. K. Input-based adaptive
randomized test case prioritization: A local beam search
approach. Journal of Systems and Software, Vol. 105, pp.
91-106, 2015.

[18] Konsaard, P., & Ramingwong, L. Total coverage based
regression test case prioritization using genetic algorithm.
In 12th international conference on Electrical
engineering/electronics, computer, telecommunications
and information technology (ECTI-CON), pp. 1-6, June
2015..

Richa Vats et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8347 - 8354

8354

[19] Mei, L., Cai, Y., Jia, C., Jiang, B., Chan, W. K., Zhang,
Z., &Tse, T. H. A subsumption hierarchy of test case
prioritization for composite services. IEEE Transactions
on Services Computing, Vol. 8, No. 5, pp. 658-673, 2015.

[20] Panichella, A., Oliveto, R., Di Penta, M., & De Lucia, A.
Improving multi-objective test case selection by injecting
diversity in genetic algorithms. IEEE Transactions on
Software Engineering, Vol. 41, No. 4, pp. 358-383, 2015.

[21] Panwar, D., Tomar, P., & Singh, V. Hybridization of
Cuckoo-ACO algorithm for test case prioritization.
Journal of Statistics and Management Systems, Vol. 21,
No. 4, pp. 539-546, 2018.

[22] Zhao, X., Wang, Z., Fan, X., & Wang, Z. A Clustering-
Bayesian network based approach for test case
prioritization. In IEEE 39th Annual Conference on
Computer Software and Applications (COMPSAC), Vol.
3, pp. 542-547, July 2015.

[23] Tulasiraman, M., Vivekanandan, N., & Kalimuthu, V.
Multi-objective Test Case Prioritization Using Improved
Pareto-Optimal Clonal Selection Algorithm. 3D
Research, Vol. 9, No. 3, pp. 1-13, 2018.

[24] Suri, B., & Singhal, S. Understanding the effect of time-
constraint bounded novel technique for regression test
selection and prioritization. International Journal of
System Assurance Engineering and Management, Vol. 6,
No. 1, pp. 71-77, 2015.

[25] Mann, M., Tomar, P., & Sangwan, O. P. Bio-inspired
metaheuristics: evolving and prioritizing software test
data. Applied Intelligence, Vol. 48, No. 3, pp. 687-702,
2018.

[26] Parejo, J. A., Sánchez, A. B., Segura, S., Ruiz-Cortés, A.,
Lopez-Herrejon, R. E., &Egyed, A. Multi-objective test
case prioritization in highly configurable systems: A case
study. Journal of Systems and Software, Vol. 122, pp.
287-310, 2016.

[27] Schwartz, A., & Do, H. Cost-effective regression testing
through Adaptive Test Prioritization strategies. Journal of
Systems and Software, 115, 61-81.

[28] Marchetto, A., Islam, M. M., Asghar, W., Susi, A.,
&Scanniello, G. A multi-objective technique to prioritize
test cases. IEEE Transactions on Software Engineering,
Vol. 42, No. 10, pp. 918-940, 2016.

[29] Karaboga, D., & Basturk, B. A powerful and efficient
algorithm for numerical function optimization: artificial
bee colony (ABC) algorithm. Journal of global
optimization, Vol. 39, No. 3, pp. 459-471, 2007.

[30] Gao W.F., Liu S.Y., Huang L. L. A novel artificial bee
colony algorithm based on modified search equation and
orthogonal learning. IEEE Trans Syst Man Cybern Part B
Vol. 43, pp. 1011–1024, 2013.

[31] Kumar Y. and Sahoo, G. A two-step artificial bee colony
algorithm for clustering. Neural Computing and
Applications, Vol. 28, No. 3, pp. 537-551, 2017.

