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ABSTRACT 
 
The huge demand for cloud computing, it creates several 
problems such as makespan, energy consumption, and load 
balancing. Task scheduling is one of the technologies that 
have been applied to solve those objectivities. However, task 
scheduling is one of the well-known NP-hard problems, and it 
is difficult to find the optimum solution. To solve this 
problem, previous studies have utilized a meta-heuristic 
method to find the best solution based on the solution spaces. 
This study aims to compare four meta-heuristic such as the 
Genetic Algorithm (GA), Particle Swarm Optimization 
(PSO), Clonal Selection Algorithm (CSA), and Bat 
Algorithm (BA) to solve the multi-objective task scheduling 
to achieve the optimum solution. This study converts three 
objectivities into single objectivity optimization with each 
objectivity act as variable assigned with the weight that 
presents its priority and has implemented those 
meta-heuristics. The simulation result from sixteen datasets 
that have been grouped into three for a small dataset, medium 
dataset, and large dataset. In small and medium dataset BA 
able to outperforms others while in large dataset PSO shows 
better performance. 
 
Key words : Meta-heuristic, Multi-Objectivities, 
Optimization, Task Scheduling 
 
1. INTRODUCTION 
 
Cloud computing spend high energy consumption, in 2016 
for 289 data centers in Europe they reached 3,735,735 MWh 
as total energy consumption [1]. Thus, it is inevitable for the 
data center to explode in power consumption and in terms of 
the number to meet high demand from users. This causes a 
rising concern on the environment, since 66.8% of electricity 
in the world in 2017 is powered by coal, gas, and oil [2], and 
encourages the community to embrace green cloud computing 
technology. 
 
 

 

In Task scheduling, users send several computational jobs or 
tasks to the data center to be executed. The data center will 
collect those tasks and create a scheduling process. Tasks 
scheduling will be assigned the task to a certain resource in 
the data center based on the characteristics and requirements 
of the tasks. Therefore, the tasks scheduling process holds an 
important role to give efficient services to users[3]. Even 
though energy consumption is an important aspect however 
one cannot ignore the makespan and the load balancing of 
each resource. This study defines makespan as the time 
required to finish all the scheduled tasks, energy consumption 
is the total energy used by the VM to execute all the tasks, and 
the load balancing will contain the variance of tasks assigned 
in one VM so that it can reach standard deviation near to zero. 
This study will utilize fitness function where it will represent 
makespan, energy consumption, and load balancing standard 
deviation. Each of those objectives will be fuss into a single 
objective function with constantan to represent the priority of 
each objective. This study will put equally important for three 
aspects. From the previous studies, task scheduling problems 
tend to be solved using a meta-heuristic algorithm. The study 
will aim to compare and the best algorithm to solve the 
optimization of makespan, energy consumption, and load 
balancing using four meta-heuristic such as Genetic 
Algorithm (GA), Particle Swarm Optimization (PSO), Clonal 
Selection Algorithm (CSA), and Bat Algorithm (BA). 
 
2. LITERATURE REVIEW 
 
This section discuss about the related works regarding task 
scheduling in cloud computing and their approach, and the 
proposed algorithm used for the simulation. 
 
2.1 Related Works 
 
Table 1 contains the list of summaries from the previous 
works. This study has highlight four promising algorithms to 
solve task scheduling problem which are GA, PSO, CSA, and 
BA, that has big potential to satisfy the task scheduling for the 
data center to optimize the makespan, energy consumption, 
and load balancing. Based on the previous studies have not 
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tried to find the best single meta-heuristic algorithm to solve 
an optimizing makespan, energy consumption, and load 
balancing. 

Table 1: Summary of Related Works 
No Author Approach Input Objective 
1 [4] Hybrid 

random and 
greedy 
algorithm 

Current 
resource data 
and CPU 

Load balancing 

2 [5] DOTS Tasks and 
resources 

Makespan and 
Load balancing 

3 [6] Probabilisti
c 

Tasks and VM Load Balancing 

4 [7] PSO Tasks Makespan 
5 [8] PSO Tasks Makespan 
6 [9] Chaotic 

symbiotic 
organisms 
search 

Tasks Makespan and 
Cost 

7 [3] Intelligence 
Water Drop 

integer: time 
and cost of the 
task 

decrease the 
task execution 
time 

8. [10] Hybrid PSO 
and HC. 

Directed 
Acyclic Graph 
(DAG) 

decrease the 
makespan 

9 [11] GWO Task and 
resource 

decrease the 
makespan and 
energy 
optimization 

10 [12] A hybrid of 
GA and ILP 

Resources, 
storage, tasks 

Minimize 
energy usage 

11 [13] Hybrid 
Evolutionar
y Algorithm 

execution 
time and 
shared 
resources 

decrease the 
makespan 

12 [14] CSA map 
the resource 
and tasks 

Task and 
resource 

decrease the 
makespan and 
energy 
optimization 

13 [15] Stochastic-
HC 

Tasks and VM decrease the 
energy usage 

14 [16] Multiple-W
orkflows-Sl
ack-Time-R
eclaiming 

DAG decrease the 
makespan and 
energy 
optimization 

15 [17] Non-DVFS 
and global 
DVFS 

DAG Energy 
optimization 

16 [18] GA Tasks Makespan and 
energy 
optimization 

17 [19] Hybrid of 
greedy and 
PSO  

integer: the 
time required 
to execute the 
task 

Reduce 
execution time, 
and resources 
optimization 

18 [20] The BA 
with a 
budget 
constraint 

task execution 
time, task 
cost, VM 
reliability, 
budget 

Optimization of 
cost, execution 
time, and 
reliability 

19 [21] ACO  CPU, task, 
and budget 

Faster 
computation 

cost within budget 
cost 

20 [22] Greedy Tasks Makespan 
21 [23] GA Tasks Makespan 
22 [24] Greedy Tasks and 

resources with 
dynamic 
voltage 
scaling 

Makespan and 
energy 
consumption 

 

2.2 Proposed Algorithms 
 
This section will discuss four meta-heuristic such as the 
Genetic Algorithm (GA), Particle Swarm Optimization 
(PSO), Clonal Selection Algorithm (CSA), and Bat 
Algorithm (BA) which has been used to solve task scheduling 
optimization in the previous studies. 

 
A. Genetic Algorithm (GA) 

Genetic algorithm is one of the metaheuristic algorithms 
inspired by Genom. The starting solution is generated 
randomly, then count the fitness of the solution from the 
fitness result the algorithm will determine the parent of the 
solution, from the parent the crossover function will be 
executed to generate the child solution, then the child will 
undergo some mutation to be considered as the next solution 
space and the process will be repeated until the condition is 
satisfied [25]. Figure 1 shows the flowchart of Genetic 
Algorithm. 

Niteration= number of iteration 
Initialize population 

 

count fitness 

Niteration=0 Finish 

selection the parent 

crossover parent 

child mutation 

decrease Niteration by one 
 

yes 

no 

Figure 1: GA flowchart 
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B. Particle Swarm Optimization (PSO) 

 
 
 
PSO is one of the widely known algorithm to solve task 
scheduling. PSO observe the movement of bird to find the 
food source, the using their local information as well as 
listening to global information produced by other population 
to determine the best path they need to take to arrive at their 
destination. The bird of continuously to update their velocity 
and position to be closer to the food source [26]. The detail of 
algorithm is presented in Figure 2. The mathematical model 
for the next velocity equation and position are: 

 



2

1
___ ][][][]1[

_
i

birdniiibirdnbirdn txtXrtwvtv
birdn

  (1) 

]1[][]1[ __  tvtxtx birdnbirdn  (2) 

 Where xn_bird[t] is the position of bird, vn_bird[t] is the speed of 
the bird,  21,, w  are coefficient assigned weight, r1, r2 are 
random vectors, X1n_bird [t] is the local optimum solution and 
X2n_bird [t] is the global optimum solution. 

C. Clonal Selection Algorithm (CSA) 
CSA is a meta-heuristic algorithm inspired by antibodies 
system, using cell B and cell T for its cloning, selection, and 
memory set. At the beginning of the clonal selection 
algorithm (CLONALG) is used as machine learning and 
pattern recognition proposed, where it empathizes on its 
ability to store several solutions not all solutions that provided 
the best outcome for other information rather than starting 

from the start again. However, for its potential, the 
CLONALG is implemented for optimization with three 
adjustments which are first no explicit antigen thus antibody 
population does not need to make separate memory. Second 
select n antibodies rather than select the best individual and 
third, assume all antibodies selected for cloning (N) will be 
cloned in the same number. The number of cloned antibodies 
will be counted with the equation [27][28]. Figure 3 shows the 
flow of CSA. 
 

 
 
 

 
1











AbN

i

AbCSA
c i

NroundN 
 

(3) 

 
 
Where Nc is the number of cloned antibodies, PAb is a list of 
antibodies, NAbis the number of antibodies in Ab, CSA is 
multiplying factor, D is constantan contain how many 
antibodies need to be replaced, nbest is the best nbest number to 
be selected, FAb is affinities of Ab. 
 

Niteration = number of iteration 
Initialize population move randomly 

 

evaluate the solution 

update local and global optimum solution 

update velocity and position 

decrease Niteration by one 

Niteration =0 

Finish 

Initialize: PAb, Nc, FAb, nbest, Nc, D, G=0 

Evaluate FAb in P(G) 

Cloning: Sort Ab in non-ascending order, select 
nbest for Nc times cloning process 

Hypermutation: CP(G) is mutated and calculate 
FAb for each one 

Selection: Put P(G) and CP(G) together and 
select NAb from Ab into next P(G+1) 

Reception editing: Remove worse D from 
P(G+1) 

G=Niteration 

Finish 

Figure 2: PSO Flowcharts 

                      Figure 3: CSA Flowcharts 



Fajar Kusumaningayu  et al.,  International Journal of Advanced Trends in Computer Science and  Engineering, 9(4),  July – August  2020, 5591  –  5600 

5594 
 

 

 
 

D. Bat Algorithm (BA) 
 
As the name suggested, it is meta-heuristic that inspired by 
bats who can travel to search for food even in the dark. Bat has 
several senses like eye and smell to help them functionalize. 
However, due to avoiding complex computational processes, 
BA utilizes echolocation and associated behavior. There are 
three assumptions while implemented BA which is: bats can 
differentiate food and barrier, bats fly randomly and able to 
adapt their wavelength, frequency, and rate of their pulse 
based on the distance between bats and target, and range of 
loudness are around large positive to a minimum constant 

value [29] and capable to outperform PSO [30]. The 
algorithm is presented in Figure 4. 
Update velocity 

  BAi FFFF minmaxmin   (4) 

   *
1

i
t
i

t
i

t
i Fxxvv    (5) 

 
Update the position/solution 

  1 t
i

t
i

t
i vxx    (6) 

Update new solution 
t

oldnew Axx   (7) 

Initialize: f(x), x=(x1,..., xd)T 

t≤Niteration 

Initialize: bat population xi (i=1,2,...,NBA), vi, 
Fi at xi, ri, and Ai 
 

i≤NBA 

generate new solution by 
adjusting F 

update vi and xi 

select solution and generate 
local solution Generate new solution by fly 

randomly 

xi=x*, increase ri, and 
reduce Ai 

Increase i by one 

rank bats and find 
the best x* 

increase t by one 

finish 

yes 

yes 

yes 

yes 

no 

f(xi)< f(x*) 

update x 

yes 

rand<ri rand<Ai & 
f(xi)< f(x*) 

no 

no 

Figure 4: BA Flowcharts 
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Update the loudness and rate pulse emission 
   exp1; 011

tBAi
t

i
t
iBA

t
i rrAA     (8) 

 
Where v is velocity, x is position or solution, F is frequency, f 
is the objective function, A is loudness, R is rate pulse 
emission, BA is random vector  1,0 , BABA  ,  are 

constants, 0
ir is initial emission rate, x* is the best solution. 

3.  METHODOLOGY 
 
This study workflow is presented in Figure 5, it starts from the 
mathematical model, algorithm implementation, evaluation 
for each of parameters, and reporting. 

 
 
 
3.1 Mathematical Models 
 
Three objectivities of this study are makespan (MS), energy 
consumption (Etotal), and load balancing (LB). The decision 
variable for MS is Cij, where Cij defined as the computational 
time required by ith VM to execute all tasks (jth) that assigned 
to ith VM. Etotal will be influenced by the Ec and Eidle where 
Ec is the energy used by ith VM to execute jth tasks, and Eidle 
defined as the energy used by ith VM to maintain their idle 
condition. Then, for LB the decision will determine by the 
standard deviation of tasks assigned across all the VMs. 
 
3.2 Algorithm Implementation 
 
The simulation has been conducted on Java Netbean 8.2 The 
detail of the experimental setting is listed in Table 2. 
 
3.3 Evaluation 
 
This study will implement four algorithms which are PSO, 
GA, CSA, and BA. The testing process will be repeated ten 
times for each dataset to determine each algorithm best, 
average, and worst result. The parameters that will be 
evaluated are fitness and algorithm running time. To find the 
best condition for the four algorithms, each of the algorithms 
is tested with different iterations to find the optimum iteration 
then the chosen iteration for each meta-heuristic will be used 

for comparison across the four algorithms. 
Table 2: Experiment Settings 

Parameters Value 
Number of data center 5 
Number of hosts 10 
Number of VM 50 
VM MIPS  [500-2500]MIPS 
VM core [1-5] 
Number of tasks [100-3000] 
Task Instruction Length [200-15000]M 
Number of testing for each 
dataset 10 

Number of iteration 50-1000 
GA parent 2 Chromosomes 
Crossover Half point 
Mutation type Swap Mutation 
CSA number of cloning  
and the number of 
multiplication 

[3-10] 

CSA constantan cloning  
and n best constantan 0.1 

PSO weight 1 
PSO p1, p2 0.8 
BA frequency max 10 
BA frequency min 0 
BA Amplitude 1 
Fitness α, β, γ 1/3 
 

4. METHEMATICAL MODEL 
This session discusses the objective function of this study and 
the termination condition. Several constraints applied in this 
system are all the tasks register by the user should be 
scheduled does not matter which VM, for each of the tasks 
can only be executed once and only in one single VM. This 
condition is being applied during the solution generator. 
Therefore, there is no checking on a fitness function.  This 
study assumes that each task is independent of the other task 
and should be computed in a single VM. The breakdown of 
each task called subtasks can only be done inside the assigned 
VM and being distributed among the available core. 
Therefore, the finish tasks in one VM consider having full 
utilization of the core inside the assigned VM. 
 
4.1 Makespan 
 
This study defines makespan as the total execution time of all 
the tasks. The tasks are executed in VM for each of the 
finished tasks, the next task in the queue will be executed thus 
there is no delay time in the queue process and there is no 
waiting time to be calculated. Moreover, each task is 
independent of each other, therefore the task can be run at the 
same time without predecessor tasks and one VM only 
handles one task at the same time but more than one task can 
be scheduled to one VM. The decision variable for the 

Mathematical 
model 

Algorithms 
Implementation 

Evaluation Reporting 

Figure 5: Research Workflow 
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makespan function is Cij as computation time Cij≥0, while 
makespan is the time required for all the tasks to be executed 
[11][9]. By calculating the maximum time required by the 
VM which runs at the same time, then it will represent the 
overall time the tasks will finish. 
 

  ,,max jiCMS ij   (9) 

 
Where MS is makespan, Cij is computation time to solve jth 
as all tasks assigned to ith VM. 
 
4.2 Energy Consumption 
 
Assume that the power used by the host to stay up will be 
equal to the VM register inside it. Furthermore, the power 
consumption information used during idle will be count as 
50% of peak power, this assumption based on the claim of the 
previous study that during idle CPU still used power 
consumption [31].  
The previous study stated that in computing compared to the 
energy used in another sector, most of the energy in the 
computer is used to power up the CPU [32]. Therefore, 
calculating the energy usage computing process can be 
represented by CPU energy usage. Since the VM(s) have an 
identical core, the energy will be represented for each core by 
1J/s. 
The previous study counts the energy consumption based on 
the energy used in task execution, therefore when the VM is 
idle, it is killed directly [14]. This study will count the energy 
used during the VM idle time [16]. The mathematical model 
for power idle can be eliminated depending on the policy 
applied in the data center, for the type of datacenter who turns 
off the VM and host when it no longer in services it can be 
removed. 
Decision variable for energy consumption are Ec and Eidle 

iP iji CEc  (10) 

  iPidle iji CMSEidle  (11) 

  
1




m

i
iitotal EidleEcE  

(12) 

 
Where Etotal is the sum of energy needed during computation 
and idle time, Ec is the energy consumption and Eidle is the 
energy during idle time. Pidlei is the power used by VM index 
i during idle time, Pi is core optimum power, MS is the 
makespan, Cij is computation time needed by VM index i to 
solve task j. 
4.3 Load Balancing 
 
This study will implement four algorithms which are PSO, 
GA, CSA, and BA. The testing process will be repeated ten 
times for each dataset to determine each algorithm best, 
average, and worst result. The parameters that will be 

evaluated are fitness and algorithm running time. To find the 
best condition for the four algorithms, each of the algorithms 
is tested with different iterations to find the optimum iteration 
then the chosen iteration for each meta-heuristic will be used 
for comparison across the four algorithms. 
The goal of load balancing is to have every task distributed 
equally across the existing resources. Assume that all tasks 
are equally distributed then using standard deviation formula 
should equal zero, therefore lowering the standard deviation 
result means that the tasks are closer to be equally distributed. 
The standard deviation function used in the study is 

 
   n1,2,3...,j    Task 1j 




m

Task
n

j
 

(13) 

 
  1

2#

m

TaskTask
LB

m

i
ij




  

(14) 

   n1,2,3...,j ,,Task1,2,3..., ij mi   

 
Where LB is the standard deviation of load balancing, 

ijTask# is the sum of instruction length taskj in VM i. 

4.4 Fitness Function 
 
Reducing the makespan, energy consumption, and load 
balancing using the task scheduling approach is the main goal 
of this study. Therefore, function addressing three of these 
objectives need to be delivered. One may found the other to be 
more important than the other aspect. Therefore, the value of 
α, β, and γ is used to determine to prioritize the fitness 
function. 

LBEtotalMSF  min  (15) 

1    

5. RESULT AND DISCUSSION 
This section will discuss the optimum iteration for each 
algorithm then the comparison of GA, PSO, CSA, and BA for 
fitness, makespan, energy consumption, load balancing, and 
running time. 
 
5.1 Optimum Iteration 
 

Average Fitness vs Iteration
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Figure 6: Four Meta-Heuristic Fitness for Each Iteration 
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To have fair treatment conditions for comparison, one should 
find the best optimum iteration used by each algorithm to 
solve the task scheduling problem in one dataset. In this 
section, the study uses 1000 datasets with ten times repeated 
tests for 50-1000 iteration. From the data come in Figure 6 
and Figure 7 the optimum iteration has been chosen for each 
algorithm such as GA will have 200 iterations, PSO 300 
iterations, CSA using 600 iterations and BA will run for 450 
iterations. 
 

Average  Running Time vs Iteration
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Figure 7: Four Meta-Heuristic Running Time for Each Iteration 
 
5.2 Result 
 
The experiment conducted by divided the dataset into three 
groups which are small dataset, medium dataset, and large 
dataset for 100-3000 tasks. 
 
Table 3: Fitness Comparison between Four Meta-Heuristic for 
Small Dataset. 
Tasks Aggregate GA PSO CSA BA 

100 min 0.8774 0.8731 0.9559 0.8719 
avg 0.9019 0.8997 0.9828 0.8917 
max 0.9325 0.9269 1.0419 0.9054 

150 min 0.8259 0.8327 0.9372 0.8244 
avg 0.8691 0.8613 0.9779 0.8667 
max 0.9064 0.8949 1.0151 0.8862 

200 min 0.7925 0.7908 0.8651 0.7892 
avg 0.8327 0.831 0.9125 0.8303 
max 0.8829 0.8734 0.9625 0.8505 

250 min 0.8147 0.7921 0.8492 0.7914 
avg 0.8344 0.8306 0.8924 0.8151 
max 0.8616 0.8503 0.9292 0.8345 

300 min 0.818 0.7949 0.8712 0.8095 
avg 0.8336 0.8181 0.8912 0.8213 
max 0.8455 0.8428 0.9244 0.8367 

A. Small Dataset 
The small dataset made up of 100-300 tasks with 50 tasks 
different for each dataset. Therefore in a small dataset, there 
are five datasets. From the fitness average result, BA gives the 
best performance for three datasets, followed by PSO with two 
datasets. However, for the best maximum and minimum BA 
shows the best performance in almost all of the dataset. In 

average running time GA gives the fastest running time for 
four datasets, and all of the datasets for best maximum and 
minimum. The detail result for small dataset is presented in 
Table 3. 

 
Table 4: Fitness Comparison between Four Meta-Heuristic for 

Medium Dataset. 
Tasks Aggregate GA PSO CSA BA 

400 min 0.7912 0.8141 0.8291 0.7899 
avg 0.8176 0.8229 0.8714 0.8039 
max 0.8352 0.8295 0.9004 0.8211 

500 min 0.7867 0.7966 0.8518 0.8043 
avg 0.8114 0.805 0.8654 0.8129 
max 0.8249 0.8145 0.8755 0.8253 

600 min 0.789 0.7846 0.8142 0.7879 
avg 0.8022 0.8014 0.8432 0.802 
max 0.8166 0.8166 0.8725 0.8089 

700 min 0.7845 0.7899 0.8219 0.793 
avg 0.8006 0.8009 0.8393 0.8003 
max 0.8121 0.8087 0.8501 0.8116 

800 min 0.7912 0.7917 0.8143 0.7798 
avg 0.8024 0.7984 0.8385 0.7948 
max 0.8124 0.8057 0.8469 0.8047 

900 
min 0.7883 0.7894 0.8178 0.7777 
avg 0.8007 0.7997 0.835 0.7916 
max 0.8118 0.8052 0.8519 0.8041 

 
Table 5: Fitness Comparison between Four Meta-Heuristic for 

Large Dataset. 
Tasks Aggregate GA PSO CSA BA 
1000 min 0.7807 0.7789 0.8105 0.7818 

avg 0.7926 0.7903 0.8292 0.7911 
max 0.8008 0.8059 0.8476 0.8022 

1500 min 0.7794 0.7834 0.8155 0.7881 
avg 0.7917 0.7913 0.8229 0.7922 
max 0.8032 0.8019 0.8286 0.7975 

2000 min 0.7819 0.7751 0.7974 0.7762 
avg 0.7902 0.7868 0.8142 0.7862 
max 0.8015 0.7953 0.8215 0.7892 

2500 min 0.7787 0.782 0.7956 0.7782 
avg 0.7897 0.788 0.8126 0.787 
max 0.8034 0.793 0.8207 0.7909 

3000 min 0.7838 0.7752 0.799 0.7814 
avg 0.7911 0.7836 0.8062 0.7866 
max 0.7986 0.7898 0.8135 0.7913 

B. Medium Dataset 
The medium dataset made up of 400-900 tasks with 100 tasks 
different for each dataset. Therefore in the medium dataset, 
there are six datasets. From the average fitness, result BA 
yields the best result in four datasets followed by PSO, then 
for best maximum and minimum BA give the best result 
almost in all of the datasets. For average running time, 
maximum, and minimum BA gives the smallest running time 
for all of the datasets in a medium dataset. The detail result for 
medium dataset is presented in Table 4. 
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C. Large Dataset 
The large dataset made up of 1000-3000 tasks with 500 tasks 
different for each dataset. Therefore in a large dataset, there 
are five datasets. Average fitness results from a large dataset, 
PSO gives the best result for three datasets then BA for two 
datasets. While for the best maximum and minimum PSO and 

BA yield the best result for four datasets while GA for two 
datasets. For average running time, maximum, and minimum 
BA gives the smallest running time for all of the datasets in 
large datasets. The detail result for large dataset is presented 
in Table 5. 

 
Table 6: Average Fitness and Running Time(s) from Four Meta-Heuristic for Each Dataset Group 

Tasks Aggregate 
GA PSO CSA BA 

Fitness Running 
Time Fitness Running 

Time Fitness Running 
Time Fitness Running 

Time 

Avg small 
dataset 

min 0.826 1.316 0.817 28.313 0.896 32.222 0.817 1.968 

avg 0.854 1.59 0.848 31.082 0.931 35.17 0.845 2.145 

max 0.886 1.826 0.878 35.77 0.975 38.668 0.863 2.566 
Percentage 

from 
optimum 

result 

min 1.09% 0.00% 0.00% 95.35% 8.82% 95.92% 0.07% 33.13% 

avg 1.09% 0.00% 0.37% 94.88% 9.27% 95.48% 0.00% 25.86% 

max 2.61% 0.00% 1.71% 94.90% 11.49% 95.28% 0.00% 28.87% 

Avg medium 
dataset 

min 0.788 31.732 0.794 96.306 0.825 100.857 0.789 11.622 
avg 0.806 34.452 0.805 101.763 0.849 106.344 0.801 13.622 
max 0.819 37.181 0.813 109.697 0.866 112.063 0.813 16.131 

Percentage 
from 

optimum 
result 

min 0.00% 63.38% 0.74% 87.93% 4.41% 88.48% 0.04% 0.00% 

avg 0.61% 60.46% 0.47% 86.61% 5.64% 87.19% 0.00% 0.00% 

max 0.76% 56.61% 0.09% 85.29% 6.19% 85.61% 0.00% 0.00% 

Avg large 
dataset 

min 0.781 958.049 0.779 339.405 0.804 287.486 0.781 98.813 
avg 0.791 1010.441 0.788 354.992 0.817 300.82 0.789 118.094 
max 0.802 1042.02 0.797 377.742 0.826 309.298 0.794 141.999 

Percentage 
from 

optimum 
result 

min 0.25% 89.69% 0.00% 70.89% 3.07% 65.63% 0.28% 0.00% 

avg 0.39% 88.31% 0.00% 66.73% 3.55% 60.74% 0.08% 0.00% 

max 0.91% 86.37% 0.37% 62.41% 3.89% 54.09% 0.00% 0.00% 
 
5.3 Discussion 
 
To ensure that meta-heuristic give their optimum solution the 
number of iteration is tested for each algorithm so that 
increasing the number of iterations will not give huge 
influence on the result. Combining the fitness result and 
running time needed to solve the task scheduling. The study 
used 200 iterations for GA, PSO 300, CSA 600, and BA use 
450 iterations.  
Some information can be derived from the result such as 
optimum makespan results that resemble energy 
consumption. This is caused by the fact of energy 
consumption using Makespan in the calculation process, 
especially during idle time. While load balancing has an 
opposite behavior, this is caused by load-balancing goal is 
having equally distributed tasks across the VM however since 
the VM which have different core as its specification making 
them have different speed. Therefore, load balancing has an 

inverse relationship with makespan. The table shows the 
conclusion of the fitness result from the four meta-heuristics. 
Genetic Algorithm (GA) in this study using a half-point 
crossover with the swap position. GA required fast running 
time for small datasets. However, if the number of tasks is 
increasing the time required will expand. In its best condition 
GA able to outperform other algorithms in makespan, energy 
consumption, and load balancing but not for fitness. 
PSO using its velocity and position to determine how many 
times the swap position is required to be done to the previous 
solutions to yield a better result. During PSO best 
performance it able to yield fitness best results for small and 
medium datasets, while for large dataset PSO able to beat BA 
in three datasets. In this simulation, PSO shows its 
competitive side however PSO required a quite large running 
time compared to other algorithms. 
During simulation, CSA require large memory usage for 
cloning process, therefore this study limit the cloning number 
three to ten times to avoid large memory usage for the 
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scheduling process. Even though CSA does not give the 
closest result to the best solution and CSA required longer 
running time for small and medium datasets. Nevertheless, 
since there is cloning limitation in CSA the running time 
required for larger datasets much more stable, that why CSA 
has faster running time compare to GA in large datasets. 
Bat Algorithm (BA) shows competitive performance 
especially in small and medium datasets, and for large dataset 
BA just loses once to PSO. BA is known for fast convergent 
rate and it is shown in this simulation especially for medium 
and large datasets since BA gives the fastest running time, 
and come in second place after GA in running time for small 
dataset.  
In several occurrences BA yield the best maximum and 
minimum in almost all of dataset, this is caused by BA 
behavior which does not only rely on fitness result to 
determine the next solution. BA adopts a random flying 
technique to give a larger solution space. It makes BA able to 
give the optimum solution during maximum and minimum. 
The detail performance of fitness and running time 
comparison can be seen in Table 6. 

6. CONCLUSION 
Meta-heuristic algorithms have been implemented to solve 
NP-hard problems like task scheduling whether it is for 
computation process, industry, and employee scheduling. 
Based on the previous studies there are four potential 
meta-heuristic algorithms to solve the scheduling process 
which are GA, PSO, CSA, and BA. Besides, the latest task 
scheduling takes interest in multi-objectivities. Based on the 
study that has been conducted BA and PSO show good 
performance to solve makespan, energy consumption, and 
load balancing. 
For future references, several points might be used for future 
work in task scheduling in data center cloud computing such 
as: 

1) For task scheduling which required fast running time, 
GA will become a suitable choice for small datasets 
while for larger dataset BA is a better option. 

2) The optimum result for task scheduling one can use 
GA with 200 iterations, PSO with 300 iterations, 
CSA with 600 iterations, and BA with 450 
iterations. 

3) PSO and BA is promising algorithms for hybrid 
4) Find the objectivity which has not been used before or 

find the combination of two or more objectivities for 
task scheduling optimization. 
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