
Fajar Kusumaningayu et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5591 – 5600

5591

ABSTRACT

The huge demand for cloud computing, it creates several
problems such as makespan, energy consumption, and load
balancing. Task scheduling is one of the technologies that
have been applied to solve those objectivities. However, task
scheduling is one of the well-known NP-hard problems, and it
is difficult to find the optimum solution. To solve this
problem, previous studies have utilized a meta-heuristic
method to find the best solution based on the solution spaces.
This study aims to compare four meta-heuristic such as the
Genetic Algorithm (GA), Particle Swarm Optimization
(PSO), Clonal Selection Algorithm (CSA), and Bat
Algorithm (BA) to solve the multi-objective task scheduling
to achieve the optimum solution. This study converts three
objectivities into single objectivity optimization with each
objectivity act as variable assigned with the weight that
presents its priority and has implemented those
meta-heuristics. The simulation result from sixteen datasets
that have been grouped into three for a small dataset, medium
dataset, and large dataset. In small and medium dataset BA
able to outperforms others while in large dataset PSO shows
better performance.

Key words : Meta-heuristic, Multi-Objectivities,
Optimization, Task Scheduling

1. INTRODUCTION

Cloud computing spend high energy consumption, in 2016
for 289 data centers in Europe they reached 3,735,735 MWh
as total energy consumption [1]. Thus, it is inevitable for the
data center to explode in power consumption and in terms of
the number to meet high demand from users. This causes a
rising concern on the environment, since 66.8% of electricity
in the world in 2017 is powered by coal, gas, and oil [2], and
encourages the community to embrace green cloud computing
technology.

In Task scheduling, users send several computational jobs or
tasks to the data center to be executed. The data center will
collect those tasks and create a scheduling process. Tasks
scheduling will be assigned the task to a certain resource in
the data center based on the characteristics and requirements
of the tasks. Therefore, the tasks scheduling process holds an
important role to give efficient services to users[3]. Even
though energy consumption is an important aspect however
one cannot ignore the makespan and the load balancing of
each resource. This study defines makespan as the time
required to finish all the scheduled tasks, energy consumption
is the total energy used by the VM to execute all the tasks, and
the load balancing will contain the variance of tasks assigned
in one VM so that it can reach standard deviation near to zero.
This study will utilize fitness function where it will represent
makespan, energy consumption, and load balancing standard
deviation. Each of those objectives will be fuss into a single
objective function with constantan to represent the priority of
each objective. This study will put equally important for three
aspects. From the previous studies, task scheduling problems
tend to be solved using a meta-heuristic algorithm. The study
will aim to compare and the best algorithm to solve the
optimization of makespan, energy consumption, and load
balancing using four meta-heuristic such as Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), Clonal
Selection Algorithm (CSA), and Bat Algorithm (BA).

2. LITERATURE REVIEW

This section discuss about the related works regarding task
scheduling in cloud computing and their approach, and the
proposed algorithm used for the simulation.

2.1 Related Works

Table 1 contains the list of summaries from the previous
works. This study has highlight four promising algorithms to
solve task scheduling problem which are GA, PSO, CSA, and
BA, that has big potential to satisfy the task scheduling for the
data center to optimize the makespan, energy consumption,
and load balancing. Based on the previous studies have not

An Optimization on Task Scheduling for Makespan, Energy

Consumption, and Load Balancing in Cloud Computing
Using Meta-Heuristic

Fajar Kusumaningayu1, Antoni Wibowo2
1Binus Graduate Program - Master of Computer Science Bina Nusantara University Jakarta, Indonesia,

fajarkusumaningayu@binus.ac.id
2Binus Graduate Program - Master of Computer Science Bina Nusantara University Jakarta, Indonesia,

anwibowo@binus.edu

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse207942020.pdf

https://doi.org/10.30534/ijatcse/2020/207942020

Fajar Kusumaningayu et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5591 – 5600

5592

tried to find the best single meta-heuristic algorithm to solve
an optimizing makespan, energy consumption, and load
balancing.

Table 1: Summary of Related Works
No Author Approach Input Objective
1 [4] Hybrid

random and
greedy
algorithm

Current
resource data
and CPU

Load balancing

2 [5] DOTS Tasks and
resources

Makespan and
Load balancing

3 [6] Probabilisti
c

Tasks and VM Load Balancing

4 [7] PSO Tasks Makespan
5 [8] PSO Tasks Makespan
6 [9] Chaotic

symbiotic
organisms
search

Tasks Makespan and
Cost

7 [3] Intelligence
Water Drop

integer: time
and cost of the
task

decrease the
task execution
time

8. [10] Hybrid PSO
and HC.

Directed
Acyclic Graph
(DAG)

decrease the
makespan

9 [11] GWO Task and
resource

decrease the
makespan and
energy
optimization

10 [12] A hybrid of
GA and ILP

Resources,
storage, tasks

Minimize
energy usage

11 [13] Hybrid
Evolutionar
y Algorithm

execution
time and
shared
resources

decrease the
makespan

12 [14] CSA map
the resource
and tasks

Task and
resource

decrease the
makespan and
energy
optimization

13 [15] Stochastic-
HC

Tasks and VM decrease the
energy usage

14 [16] Multiple-W
orkflows-Sl
ack-Time-R
eclaiming

DAG decrease the
makespan and
energy
optimization

15 [17] Non-DVFS
and global
DVFS

DAG Energy
optimization

16 [18] GA Tasks Makespan and
energy
optimization

17 [19] Hybrid of
greedy and
PSO

integer: the
time required
to execute the
task

Reduce
execution time,
and resources
optimization

18 [20] The BA
with a
budget
constraint

task execution
time, task
cost, VM
reliability,
budget

Optimization of
cost, execution
time, and
reliability

19 [21] ACO CPU, task,
and budget

Faster
computation

cost within budget
cost

20 [22] Greedy Tasks Makespan
21 [23] GA Tasks Makespan
22 [24] Greedy Tasks and

resources with
dynamic
voltage
scaling

Makespan and
energy
consumption

2.2 Proposed Algorithms

This section will discuss four meta-heuristic such as the
Genetic Algorithm (GA), Particle Swarm Optimization
(PSO), Clonal Selection Algorithm (CSA), and Bat
Algorithm (BA) which has been used to solve task scheduling
optimization in the previous studies.

A. Genetic Algorithm (GA)

Genetic algorithm is one of the metaheuristic algorithms
inspired by Genom. The starting solution is generated
randomly, then count the fitness of the solution from the
fitness result the algorithm will determine the parent of the
solution, from the parent the crossover function will be
executed to generate the child solution, then the child will
undergo some mutation to be considered as the next solution
space and the process will be repeated until the condition is
satisfied [25]. Figure 1 shows the flowchart of Genetic
Algorithm.

Niteration= number of iteration
Initialize population

count fitness

Niteration=0 Finish

selection the parent

crossover parent

child mutation

decrease Niteration by one

yes

no

Figure 1: GA flowchart

Fajar Kusumaningayu et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5591 – 5600

5593

B. Particle Swarm Optimization (PSO)

PSO is one of the widely known algorithm to solve task
scheduling. PSO observe the movement of bird to find the
food source, the using their local information as well as
listening to global information produced by other population
to determine the best path they need to take to arrive at their
destination. The bird of continuously to update their velocity
and position to be closer to the food source [26]. The detail of
algorithm is presented in Figure 2. The mathematical model
for the next velocity equation and position are:

2

1
___][][][]1[

_
i

birdniiibirdnbirdn txtXrtwvtv
birdn

 (1)

]1[][]1[__ tvtxtx birdnbirdn (2)

 Where xn_bird[t] is the position of bird, vn_bird[t] is the speed of
the bird, 21,, w are coefficient assigned weight, r1, r2 are
random vectors, X1n_bird [t] is the local optimum solution and
X2n_bird [t] is the global optimum solution.

C. Clonal Selection Algorithm (CSA)
CSA is a meta-heuristic algorithm inspired by antibodies
system, using cell B and cell T for its cloning, selection, and
memory set. At the beginning of the clonal selection
algorithm (CLONALG) is used as machine learning and
pattern recognition proposed, where it empathizes on its
ability to store several solutions not all solutions that provided
the best outcome for other information rather than starting

from the start again. However, for its potential, the
CLONALG is implemented for optimization with three
adjustments which are first no explicit antigen thus antibody
population does not need to make separate memory. Second
select n antibodies rather than select the best individual and
third, assume all antibodies selected for cloning (N) will be
cloned in the same number. The number of cloned antibodies
will be counted with the equation [27][28]. Figure 3 shows the
flow of CSA.

1

AbN

i

AbCSA
c i

NroundN

(3)

Where Nc is the number of cloned antibodies, PAb is a list of
antibodies, NAbis the number of antibodies in Ab, CSA is
multiplying factor, D is constantan contain how many
antibodies need to be replaced, nbest is the best nbest number to
be selected, FAb is affinities of Ab.

Niteration = number of iteration
Initialize population move randomly

evaluate the solution

update local and global optimum solution

update velocity and position

decrease Niteration by one

Niteration =0

Finish

Initialize: PAb, Nc, FAb, nbest, Nc, D, G=0

Evaluate FAb in P(G)

Cloning: Sort Ab in non-ascending order, select
nbest for Nc times cloning process

Hypermutation: CP(G) is mutated and calculate
FAb for each one

Selection: Put P(G) and CP(G) together and
select NAb from Ab into next P(G+1)

Reception editing: Remove worse D from
P(G+1)

G=Niteration

Finish

Figure 2: PSO Flowcharts

 Figure 3: CSA Flowcharts

Fajar Kusumaningayu et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5591 – 5600

5594

D. Bat Algorithm (BA)

As the name suggested, it is meta-heuristic that inspired by
bats who can travel to search for food even in the dark. Bat has
several senses like eye and smell to help them functionalize.
However, due to avoiding complex computational processes,
BA utilizes echolocation and associated behavior. There are
three assumptions while implemented BA which is: bats can
differentiate food and barrier, bats fly randomly and able to
adapt their wavelength, frequency, and rate of their pulse
based on the distance between bats and target, and range of
loudness are around large positive to a minimum constant

value [29] and capable to outperform PSO [30]. The
algorithm is presented in Figure 4.
Update velocity

 BAi FFFF minmaxmin (4)

 *
1

i
t
i

t
i

t
i Fxxvv (5)

Update the position/solution

 1 t
i

t
i

t
i vxx (6)

Update new solution
t

oldnew Axx (7)

Initialize: f(x), x=(x1,..., xd)T

t≤Niteration

Initialize: bat population xi (i=1,2,...,NBA), vi,
Fi at xi, ri, and Ai

i≤NBA

generate new solution by
adjusting F

update vi and xi

select solution and generate
local solution Generate new solution by fly

randomly

xi=x*, increase ri, and
reduce Ai

Increase i by one

rank bats and find
the best x*

increase t by one

finish

yes

yes

yes

yes

no

f(xi)< f(x*)

update x

yes

rand<ri rand<Ai &
f(xi)< f(x*)

no

no

Figure 4: BA Flowcharts

Fajar Kusumaningayu et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5591 – 5600

5595

Update the loudness and rate pulse emission
 exp1; 011

tBAi
t

i
t
iBA

t
i rrAA (8)

Where v is velocity, x is position or solution, F is frequency, f
is the objective function, A is loudness, R is rate pulse
emission, BA is random vector 1,0 , BABA , are

constants, 0
ir is initial emission rate, x* is the best solution.

3. METHODOLOGY

This study workflow is presented in Figure 5, it starts from the
mathematical model, algorithm implementation, evaluation
for each of parameters, and reporting.

3.1 Mathematical Models

Three objectivities of this study are makespan (MS), energy
consumption (Etotal), and load balancing (LB). The decision
variable for MS is Cij, where Cij defined as the computational
time required by ith VM to execute all tasks (jth) that assigned
to ith VM. Etotal will be influenced by the Ec and Eidle where
Ec is the energy used by ith VM to execute jth tasks, and Eidle
defined as the energy used by ith VM to maintain their idle
condition. Then, for LB the decision will determine by the
standard deviation of tasks assigned across all the VMs.

3.2 Algorithm Implementation

The simulation has been conducted on Java Netbean 8.2 The
detail of the experimental setting is listed in Table 2.

3.3 Evaluation

This study will implement four algorithms which are PSO,
GA, CSA, and BA. The testing process will be repeated ten
times for each dataset to determine each algorithm best,
average, and worst result. The parameters that will be
evaluated are fitness and algorithm running time. To find the
best condition for the four algorithms, each of the algorithms
is tested with different iterations to find the optimum iteration
then the chosen iteration for each meta-heuristic will be used

for comparison across the four algorithms.
Table 2: Experiment Settings

Parameters Value
Number of data center 5
Number of hosts 10
Number of VM 50
VM MIPS [500-2500]MIPS
VM core [1-5]
Number of tasks [100-3000]
Task Instruction Length [200-15000]M
Number of testing for each
dataset 10

Number of iteration 50-1000
GA parent 2 Chromosomes
Crossover Half point
Mutation type Swap Mutation
CSA number of cloning
and the number of
multiplication

[3-10]

CSA constantan cloning
and n best constantan 0.1

PSO weight 1
PSO p1, p2 0.8
BA frequency max 10
BA frequency min 0
BA Amplitude 1
Fitness α, β, γ 1/3

4. METHEMATICAL MODEL
This session discusses the objective function of this study and
the termination condition. Several constraints applied in this
system are all the tasks register by the user should be
scheduled does not matter which VM, for each of the tasks
can only be executed once and only in one single VM. This
condition is being applied during the solution generator.
Therefore, there is no checking on a fitness function. This
study assumes that each task is independent of the other task
and should be computed in a single VM. The breakdown of
each task called subtasks can only be done inside the assigned
VM and being distributed among the available core.
Therefore, the finish tasks in one VM consider having full
utilization of the core inside the assigned VM.

4.1 Makespan

This study defines makespan as the total execution time of all
the tasks. The tasks are executed in VM for each of the
finished tasks, the next task in the queue will be executed thus
there is no delay time in the queue process and there is no
waiting time to be calculated. Moreover, each task is
independent of each other, therefore the task can be run at the
same time without predecessor tasks and one VM only
handles one task at the same time but more than one task can
be scheduled to one VM. The decision variable for the

Mathematical
model

Algorithms
Implementation

Evaluation Reporting

Figure 5: Research Workflow

Fajar Kusumaningayu et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5591 – 5600

5596

makespan function is Cij as computation time Cij≥0, while
makespan is the time required for all the tasks to be executed
[11][9]. By calculating the maximum time required by the
VM which runs at the same time, then it will represent the
overall time the tasks will finish.

 ,,max jiCMS ij (9)

Where MS is makespan, Cij is computation time to solve jth
as all tasks assigned to ith VM.

4.2 Energy Consumption

Assume that the power used by the host to stay up will be
equal to the VM register inside it. Furthermore, the power
consumption information used during idle will be count as
50% of peak power, this assumption based on the claim of the
previous study that during idle CPU still used power
consumption [31].
The previous study stated that in computing compared to the
energy used in another sector, most of the energy in the
computer is used to power up the CPU [32]. Therefore,
calculating the energy usage computing process can be
represented by CPU energy usage. Since the VM(s) have an
identical core, the energy will be represented for each core by
1J/s.
The previous study counts the energy consumption based on
the energy used in task execution, therefore when the VM is
idle, it is killed directly [14]. This study will count the energy
used during the VM idle time [16]. The mathematical model
for power idle can be eliminated depending on the policy
applied in the data center, for the type of datacenter who turns
off the VM and host when it no longer in services it can be
removed.
Decision variable for energy consumption are Ec and Eidle

iP iji CEc (10)

 iPidle iji CMSEidle (11)

1

m

i
iitotal EidleEcE

(12)

Where Etotal is the sum of energy needed during computation
and idle time, Ec is the energy consumption and Eidle is the
energy during idle time. Pidlei is the power used by VM index
i during idle time, Pi is core optimum power, MS is the
makespan, Cij is computation time needed by VM index i to
solve task j.
4.3 Load Balancing

This study will implement four algorithms which are PSO,
GA, CSA, and BA. The testing process will be repeated ten
times for each dataset to determine each algorithm best,
average, and worst result. The parameters that will be

evaluated are fitness and algorithm running time. To find the
best condition for the four algorithms, each of the algorithms
is tested with different iterations to find the optimum iteration
then the chosen iteration for each meta-heuristic will be used
for comparison across the four algorithms.
The goal of load balancing is to have every task distributed
equally across the existing resources. Assume that all tasks
are equally distributed then using standard deviation formula
should equal zero, therefore lowering the standard deviation
result means that the tasks are closer to be equally distributed.
The standard deviation function used in the study is

 n1,2,3...,j Task 1j

m

Task
n

j

(13)

 1

2#

m

TaskTask
LB

m

i
ij

(14)

 n1,2,3...,j ,,Task1,2,3..., ij mi

Where LB is the standard deviation of load balancing,

ijTask# is the sum of instruction length taskj in VM i.

4.4 Fitness Function

Reducing the makespan, energy consumption, and load
balancing using the task scheduling approach is the main goal
of this study. Therefore, function addressing three of these
objectives need to be delivered. One may found the other to be
more important than the other aspect. Therefore, the value of
α, β, and γ is used to determine to prioritize the fitness
function.

LBEtotalMSF min (15)

1

5. RESULT AND DISCUSSION
This section will discuss the optimum iteration for each
algorithm then the comparison of GA, PSO, CSA, and BA for
fitness, makespan, energy consumption, load balancing, and
running time.

5.1 Optimum Iteration

Average Fitness vs Iteration

0.74
0.76
0.78

0.8
0.82
0.84
0.86

50
150 25

0
350 450 550 65

0
750 850 950

Iterasi

Fi
tn

es
s

GA

PSO

CSA

BA

Figure 6: Four Meta-Heuristic Fitness for Each Iteration

Fajar Kusumaningayu et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5591 – 5600

5597

To have fair treatment conditions for comparison, one should
find the best optimum iteration used by each algorithm to
solve the task scheduling problem in one dataset. In this
section, the study uses 1000 datasets with ten times repeated
tests for 50-1000 iteration. From the data come in Figure 6
and Figure 7 the optimum iteration has been chosen for each
algorithm such as GA will have 200 iterations, PSO 300
iterations, CSA using 600 iterations and BA will run for 450
iterations.

Average Running Time vs Iteration

0
1000
2000
3000
4000
5000

50 15
0

25
0

35
0

45
0

55
0

65
0

75
0

85
0

95
0

Iteration

R
un

ni
ng

 T
im

e
(s

)

GA
PSO
CSA
BA

Figure 7: Four Meta-Heuristic Running Time for Each Iteration

5.2 Result

The experiment conducted by divided the dataset into three
groups which are small dataset, medium dataset, and large
dataset for 100-3000 tasks.

Table 3: Fitness Comparison between Four Meta-Heuristic for
Small Dataset.
Tasks Aggregate GA PSO CSA BA

100 min 0.8774 0.8731 0.9559 0.8719
avg 0.9019 0.8997 0.9828 0.8917
max 0.9325 0.9269 1.0419 0.9054

150 min 0.8259 0.8327 0.9372 0.8244
avg 0.8691 0.8613 0.9779 0.8667
max 0.9064 0.8949 1.0151 0.8862

200 min 0.7925 0.7908 0.8651 0.7892
avg 0.8327 0.831 0.9125 0.8303
max 0.8829 0.8734 0.9625 0.8505

250 min 0.8147 0.7921 0.8492 0.7914
avg 0.8344 0.8306 0.8924 0.8151
max 0.8616 0.8503 0.9292 0.8345

300 min 0.818 0.7949 0.8712 0.8095
avg 0.8336 0.8181 0.8912 0.8213
max 0.8455 0.8428 0.9244 0.8367

A. Small Dataset
The small dataset made up of 100-300 tasks with 50 tasks
different for each dataset. Therefore in a small dataset, there
are five datasets. From the fitness average result, BA gives the
best performance for three datasets, followed by PSO with two
datasets. However, for the best maximum and minimum BA
shows the best performance in almost all of the dataset. In

average running time GA gives the fastest running time for
four datasets, and all of the datasets for best maximum and
minimum. The detail result for small dataset is presented in
Table 3.

Table 4: Fitness Comparison between Four Meta-Heuristic for

Medium Dataset.
Tasks Aggregate GA PSO CSA BA

400 min 0.7912 0.8141 0.8291 0.7899
avg 0.8176 0.8229 0.8714 0.8039
max 0.8352 0.8295 0.9004 0.8211

500 min 0.7867 0.7966 0.8518 0.8043
avg 0.8114 0.805 0.8654 0.8129
max 0.8249 0.8145 0.8755 0.8253

600 min 0.789 0.7846 0.8142 0.7879
avg 0.8022 0.8014 0.8432 0.802
max 0.8166 0.8166 0.8725 0.8089

700 min 0.7845 0.7899 0.8219 0.793
avg 0.8006 0.8009 0.8393 0.8003
max 0.8121 0.8087 0.8501 0.8116

800 min 0.7912 0.7917 0.8143 0.7798
avg 0.8024 0.7984 0.8385 0.7948
max 0.8124 0.8057 0.8469 0.8047

900
min 0.7883 0.7894 0.8178 0.7777
avg 0.8007 0.7997 0.835 0.7916
max 0.8118 0.8052 0.8519 0.8041

Table 5: Fitness Comparison between Four Meta-Heuristic for

Large Dataset.
Tasks Aggregate GA PSO CSA BA
1000 min 0.7807 0.7789 0.8105 0.7818

avg 0.7926 0.7903 0.8292 0.7911
max 0.8008 0.8059 0.8476 0.8022

1500 min 0.7794 0.7834 0.8155 0.7881
avg 0.7917 0.7913 0.8229 0.7922
max 0.8032 0.8019 0.8286 0.7975

2000 min 0.7819 0.7751 0.7974 0.7762
avg 0.7902 0.7868 0.8142 0.7862
max 0.8015 0.7953 0.8215 0.7892

2500 min 0.7787 0.782 0.7956 0.7782
avg 0.7897 0.788 0.8126 0.787
max 0.8034 0.793 0.8207 0.7909

3000 min 0.7838 0.7752 0.799 0.7814
avg 0.7911 0.7836 0.8062 0.7866
max 0.7986 0.7898 0.8135 0.7913

B. Medium Dataset
The medium dataset made up of 400-900 tasks with 100 tasks
different for each dataset. Therefore in the medium dataset,
there are six datasets. From the average fitness, result BA
yields the best result in four datasets followed by PSO, then
for best maximum and minimum BA give the best result
almost in all of the datasets. For average running time,
maximum, and minimum BA gives the smallest running time
for all of the datasets in a medium dataset. The detail result for
medium dataset is presented in Table 4.

Fajar Kusumaningayu et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5591 – 5600

5598

C. Large Dataset
The large dataset made up of 1000-3000 tasks with 500 tasks
different for each dataset. Therefore in a large dataset, there
are five datasets. Average fitness results from a large dataset,
PSO gives the best result for three datasets then BA for two
datasets. While for the best maximum and minimum PSO and

BA yield the best result for four datasets while GA for two
datasets. For average running time, maximum, and minimum
BA gives the smallest running time for all of the datasets in
large datasets. The detail result for large dataset is presented
in Table 5.

Table 6: Average Fitness and Running Time(s) from Four Meta-Heuristic for Each Dataset Group

Tasks Aggregate
GA PSO CSA BA

Fitness Running
Time Fitness Running

Time Fitness Running
Time Fitness Running

Time

Avg small
dataset

min 0.826 1.316 0.817 28.313 0.896 32.222 0.817 1.968

avg 0.854 1.59 0.848 31.082 0.931 35.17 0.845 2.145

max 0.886 1.826 0.878 35.77 0.975 38.668 0.863 2.566
Percentage

from
optimum

result

min 1.09% 0.00% 0.00% 95.35% 8.82% 95.92% 0.07% 33.13%

avg 1.09% 0.00% 0.37% 94.88% 9.27% 95.48% 0.00% 25.86%

max 2.61% 0.00% 1.71% 94.90% 11.49% 95.28% 0.00% 28.87%

Avg medium
dataset

min 0.788 31.732 0.794 96.306 0.825 100.857 0.789 11.622
avg 0.806 34.452 0.805 101.763 0.849 106.344 0.801 13.622
max 0.819 37.181 0.813 109.697 0.866 112.063 0.813 16.131

Percentage
from

optimum
result

min 0.00% 63.38% 0.74% 87.93% 4.41% 88.48% 0.04% 0.00%

avg 0.61% 60.46% 0.47% 86.61% 5.64% 87.19% 0.00% 0.00%

max 0.76% 56.61% 0.09% 85.29% 6.19% 85.61% 0.00% 0.00%

Avg large
dataset

min 0.781 958.049 0.779 339.405 0.804 287.486 0.781 98.813
avg 0.791 1010.441 0.788 354.992 0.817 300.82 0.789 118.094
max 0.802 1042.02 0.797 377.742 0.826 309.298 0.794 141.999

Percentage
from

optimum
result

min 0.25% 89.69% 0.00% 70.89% 3.07% 65.63% 0.28% 0.00%

avg 0.39% 88.31% 0.00% 66.73% 3.55% 60.74% 0.08% 0.00%

max 0.91% 86.37% 0.37% 62.41% 3.89% 54.09% 0.00% 0.00%

5.3 Discussion

To ensure that meta-heuristic give their optimum solution the
number of iteration is tested for each algorithm so that
increasing the number of iterations will not give huge
influence on the result. Combining the fitness result and
running time needed to solve the task scheduling. The study
used 200 iterations for GA, PSO 300, CSA 600, and BA use
450 iterations.
Some information can be derived from the result such as
optimum makespan results that resemble energy
consumption. This is caused by the fact of energy
consumption using Makespan in the calculation process,
especially during idle time. While load balancing has an
opposite behavior, this is caused by load-balancing goal is
having equally distributed tasks across the VM however since
the VM which have different core as its specification making
them have different speed. Therefore, load balancing has an

inverse relationship with makespan. The table shows the
conclusion of the fitness result from the four meta-heuristics.
Genetic Algorithm (GA) in this study using a half-point
crossover with the swap position. GA required fast running
time for small datasets. However, if the number of tasks is
increasing the time required will expand. In its best condition
GA able to outperform other algorithms in makespan, energy
consumption, and load balancing but not for fitness.
PSO using its velocity and position to determine how many
times the swap position is required to be done to the previous
solutions to yield a better result. During PSO best
performance it able to yield fitness best results for small and
medium datasets, while for large dataset PSO able to beat BA
in three datasets. In this simulation, PSO shows its
competitive side however PSO required a quite large running
time compared to other algorithms.
During simulation, CSA require large memory usage for
cloning process, therefore this study limit the cloning number
three to ten times to avoid large memory usage for the

Fajar Kusumaningayu et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5591 – 5600

5599

scheduling process. Even though CSA does not give the
closest result to the best solution and CSA required longer
running time for small and medium datasets. Nevertheless,
since there is cloning limitation in CSA the running time
required for larger datasets much more stable, that why CSA
has faster running time compare to GA in large datasets.
Bat Algorithm (BA) shows competitive performance
especially in small and medium datasets, and for large dataset
BA just loses once to PSO. BA is known for fast convergent
rate and it is shown in this simulation especially for medium
and large datasets since BA gives the fastest running time,
and come in second place after GA in running time for small
dataset.
In several occurrences BA yield the best maximum and
minimum in almost all of dataset, this is caused by BA
behavior which does not only rely on fitness result to
determine the next solution. BA adopts a random flying
technique to give a larger solution space. It makes BA able to
give the optimum solution during maximum and minimum.
The detail performance of fitness and running time
comparison can be seen in Table 6.

6. CONCLUSION
Meta-heuristic algorithms have been implemented to solve
NP-hard problems like task scheduling whether it is for
computation process, industry, and employee scheduling.
Based on the previous studies there are four potential
meta-heuristic algorithms to solve the scheduling process
which are GA, PSO, CSA, and BA. Besides, the latest task
scheduling takes interest in multi-objectivities. Based on the
study that has been conducted BA and PSO show good
performance to solve makespan, energy consumption, and
load balancing.
For future references, several points might be used for future
work in task scheduling in data center cloud computing such
as:

1) For task scheduling which required fast running time,
GA will become a suitable choice for small datasets
while for larger dataset BA is a better option.

2) The optimum result for task scheduling one can use
GA with 200 iterations, PSO with 300 iterations,
CSA with 600 iterations, and BA with 450
iterations.

3) PSO and BA is promising algorithms for hybrid
4) Find the objectivity which has not been used before or

find the combination of two or more objectivities for
task scheduling optimization.

REFERENCES
[1] M. Avgerinou, P. Bertoldi, and L. Castellazzi,

“Trends in Data Centre Energy Consumption under
the Energy Efficiency,” Energies, vol. 10, no. 1470,
pp. 1–18, 2017.

[2] IAE, “Electricity Statistics,” 2017. [Online].
Available: https://www.iea.org/statistics/electricity/.
[Accessed: 03-Oct-2019].

[3] S. Elsherbiny, E. Eldaydamony, M. Alrahmawy, and
A. E. Reyad, “An extended Intelligent Water Drops
algorithm for workflow scheduling in cloud
computing environment,” Egypt. Informatics J., vol.
19, pp. 33–55, 2018.
https://doi.org/10.1016/j.eij.2017.07.001

[4] M. N. Prasadhu and M. Mehfooza, “An Efficient
Hybrid Load Balancing Algorithm for Heterogeneous
Data Centers in Cloud Computing,” Int. J. Adv.
Trends Comput. Sci. Eng., vol. 9, no. 3, pp.
3078–3085, 2020.
https://doi.org/10.30534/ijatcse/2020/89932020

[5] A. Qadir and G. Ravi, “Dual Objective Task
Scheduling Algorithm in Cloud Environment,” Int. J.
Adv. Trends Comput. Sci. Eng., vol. 9, no. 3, pp.
2527–2534, 2020.
https://doi.org/10.30534/ijatcse/2020/07932020

[6] S. K. Panda and P. K. Jana, “Load balanced task
scheduling for cloud computing : a probabilistic
approach,” Knowl Inf Syst, 2019.

[7] J. A. Jennifa, S. T. Revathi, and T. S. S. Priya, “Smart
PSO-based secured scheduling approaches for
scientific workflows in cloud computing,” Soft
Comput, vol. 23, no. 5, pp. 1745–1765, 2019.

[8] H. Saleh, H. Nashaat, W. Saber, and H. M. Harb,
“IPSO Task Scheduling Algorithm for Large Scale
Data in Cloud Computing Environment,” IEEE
Access, vol. 7, pp. 5412–5420, 2019.

[9] M. Abdullahi, M. A. Ngadi, S. I. Dishing, S. M.
Abdulhamid, and B. I. Ahmad, “An efficient
symbiotic organisms search algorithm with chaotic
optimization strategy for multi-objective task
scheduling problems in cloud computing
environment,” J. Netw. Comput. Appl., vol. 133, no. 1
May 2019, pp. 60–74, 2019.

[10] N. Dordaie and N. J. Navimipour, “A hybrid particle
swarm optimization and hill climbing algorithm for
task scheduling in the cloud environments,” ICT
Express, vol. 4, no. 4, pp. 199–202, 2018.
https://doi.org/10.1016/j.icte.2017.08.001

[11] G. Natesan and A. Chokkalingam, “Task scheduling
in heterogeneous cloud environment using mean grey
wolf optimization algorithm,” ICT Express, vol. 5,
2018.

[12] H. Ibrahim, R. O. Aburukba, and K. El-Fakih, “An
Integer Linear Programming model and Adaptive
Genetic Algorithm approach to minimize energy
consumption of Cloud computing data centers,”
Comput. Electr. Eng., vol. 67, pp. 551–565, 2018.

[13] L. Teylo, U. de Paula, Y. Frota, D. de Oliveira, and L.
M. M. A. Drummond, “A hybrid evolutionary
algorithm for task scheduling and data assignment of
data-intensive scientific workflows on clouds,” Futur.
Gener. Comput. Syst., vol. 76, pp. 1–17, 2017.

Fajar Kusumaningayu et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5591 – 5600

5600

[14] R. K. Jena, “Energy Efficient Task Scheduling in
Cloud Environment,” Energy Procedia, vol. 141, pp.
222–227, 2017.

[15] S. Rashmi and A. Basu, “Resource optimised
workflow scheduling in Hadoop using stochastic hill
climbing technique,” IET Softw., vol. 11, no. 5, pp.
239–244, 2017.

[16] J. Jiang, Y. Lin, G. Xie, and L. Fu, “Time and Energy
Optimization Algorithms for the Static Scheduling of
Multiple Workflows in Heterogeneous Computing
System,” J Grid Comput., vol. 15, no. 4, pp. 435–456,
2017.
https://doi.org/10.1007/s10723-017-9391-5

[17] G. Xie, G. Zeng, X. Xiao, and R. Li,
“Energy-efficient Scheduling Algorithms for
Real-time Parallel Applications on Heterogeneous
Distributed Embedded Systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 28, no. 12, pp.
3426–3442, 2017.

[18] Y. Shen, Z. Bao, X. Qin, and J. Shen, “Adaptive task
scheduling strategy in cloud : when energy
consumption meets performance guarantee,” World
Wide Web, vol. 20, no. 2, pp. 155–173, 2017.

[19] Z. Zhong, K. Chen, X. Zhai, and S. Zhou, “Virtual
machine-based task scheduling algorithm in a cloud
computing environment,” Tsinghua Sci. Technol.,
vol. 21, no. 6, pp. 660–667, 2016.

[20] N. Kaur and S. Singh, “A Budget-constrained Time
and Reliability Optimization BAT Algorithm for
Scheduling Workflow Applications in Clouds,”
Procedia Comput. Sci., vol. 98, pp. 199–204, 2016.

[21] L. Zuo, L. Shu, S. Dong, C. Zhu, and T. Hara, “A
multi-objective optimization scheduling method
based on the ant colony algorithm in cloud
computing,” IEEE Access, vol. 3, pp. 2687–2699,
2015.

[22] Z. Dong, N. Liu, and R. Rojas-cessa, “Greedy
scheduling of tasks with time constraints for
energy-efficient cloud-computing data centers,” J.
Cloud Comput., vol. 8, no. 8, pp. 1–14, 2015.
https://doi.org/10.1186/s13677-015-0031-y

[23] Y. Xu, K. Li, J. Hu, and K. Li, “A genetic algorithm
for task scheduling on heterogeneous computing
systems using multiple priority queues,” Inf. Sci.
(Ny)., vol. 270, pp. 255–287, 2014.

[24] P. Lindberg, J. Leingang, D. Lysaker, S. U. Khan,
and J. Li, “Comparison and analysis of eight
scheduling heuristics for the optimization of energy
consumption and makespan in large-scale distributed
systems,” J Supercomput, vol. 59, no. 1, pp. 323–360,
2012.

[25] O. Kramer, Genetic Algorithm Essentials. Springer
International Publishing AG, 2017.

[26] M. Couceiro and P. Ghamisi, Fractional Order
Darwinian Particle Swarm Optimization:
Applications and Evaluation of an Evolutionary
Algorithm. Springer, 2016.

[27] W. Luo, X. Lin, T. Zhu, and P. Xu, “A clonal
selection algorithm for dynamic multimodal function
optimization,” Swarm Evol. Comput. BASE DATA,
2018.
https://doi.org/10.1016/j.swevo.2018.10.010

[28] L. N. De Castro and F. J. Von Zuben, “Learning and
Optimization Using the Clonal Selection Principle,”
IEEE Trans. Evol. Comput. Spec. Issue Artif. Immune
Syst., vol. 6, no. 3, pp. 239–251, 2002.

[29] X.-S. Yang, “A New Metaheuristic Bat-Inspired
Algorithm,” in Nature Inspired Cooperative
Strategies for Optimization Nature Inspired
Cooperative Strategies for Optimization (NICSO
2010), J. R. Gonz, D. A. Pelta, C. Cruz, G. Terrazas,
and N. Krasnogor, Eds. 2010, pp. 65–74.

[30] X.-S. Yang, “Bat algorithm : literature review and
applications Xingshi He,” Int. J. Bio-Inspired
Comput., vol. 5, no. 3, p. 2013, 2013.

[31] C. Yang, K. Wang, H. Cheng, C. Kuo, and W. C. C.
Chu, “Green Power Management with Dynamic
Resource Allocation for Cloud Virtual Machines,” in
IEEE International Conference on High
Performance Computing and Communications
Green, 2011, pp. 726–733.

[32] A. Beloglazov, J. Abawajy, and R. Buyya,
“Energy-aware resource allocation heuristics for
efficient management of data centers for Cloud
computing,” Futur. Gener. Comput. Syst., vol. 28, no.
5, pp. 755–768, 2012.
https://doi.org/10.1016/j.future.2011.04.017

