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ABSTRACT 
An ongoing challenge in machine learning is to advance 
general and biological inspired artificial models of neural 
networks which are compatible with the spatial and temporal 
constraints of the brain. For instance, deep neural networks 
represent the state-of-the-art for a wide spectrum of 
applications in machine learning inspired by deep 
hierarchies of biological cortex, conventional artificial 
neural networks are inspired by how the biological neuron 
fires action potentials, and spiking neural networks utilized 
the neural code that incorporates the concept of timing of 
individual action potentials. The proposed model in this 
work concerns the appropriate astrocyte abstractions that 
capture essential computational principles to advance a 
biologically inspired model. Therefore, we propose 
mathematical models based on kinetic model for tripartite 
synapse to advance a new artificial model for artificial 
neuron-astrocyte networks. The simulation results showed 
that such model could change the behavior of LIF and 
Izhikevich.  
 
Key words: Tripartite synapse, Artificial Neural Network, 
Mathematical Model Astrocyte. 
 
1. INTRODUCTION 
Artificial Neural Networks (ANNs) are powerful tools to 
perform modelling and to solve non-linear problems inspired 
by the biological neural networks that compose brains. 
Asrocytes, the predominant glial cell type in the brain, were 
traditionally considered as merely passive supportive cells 
without any important roles in synaptic information 
processing. In contrast, the contemporary view was given 
rise to show that astrocytes play active roles such as synaptic  
Processing [2] , [14] , [16] , [19]neurotransmission [8] , [9] , 
[16 ], Long Time Potentiation / Depression (LTP/LTD)  
[10], Short Term Potentiation/Depression (STDP) 
[21],[22],[23] and learning or synaptic plasticity [3], [5] , 

                                                
 
 
 
 

[15] , [18]. Therefore, two concepts have been come forth, 
the Artificial Neuron-Glial Networks (ANGNs) and Spiking 
Neuron-Astrocyte Network (SNAN) to incorporate astrocyte 
in conventional ANN and SNN, respectively. The 
mechanisms underlying the molecular basis of tripartite 
synapse and the bidirectional interaction between astrocytes 
and neurons should be considered[4].  Firstly, when 
presynaptic neurons release neurotransmitter, e.g. 
Glutamate, spill to the synaptic cleft to communicate with 
other neurons, some of such glutamate could also spill out of 
the cleft and bind to receptors on the neighboring astrocyte. 
In turn, this stimulates the release of second messenger 
inositol 1,4,5-trisphospate (IP3) into the astrocytic 
cytoplasm, then IP3 opens channels to trigger calcium (ca+2 

). When ca+2 levels increase above a threshold [20], the 
gliotransmitter (glutamate) is released from the astrocyte. In 
turn, the gliotransmitter glutamate can be released to 
synaptic cleft to modulate the synaptic activities by different 
mechanisms.However, in current study we propose 
mathematical models based on kinetic dynamics to mimic 
the communication between astrocytes-to-neurons (tripartite 
synapse). One of the pioneer researches in this context, a 
study by [1]whoimplemented different neuron-glia 
algorithms for multilayer ANGN to investigate the different 
astrocyte-neuron interactions by computational models for 
classification problem. Another study in context of learning 
algorithms to ANGN, [13] proposed a learning rule for 
ANGNs that fully automates the learning process based on 
coevolutionary Genetic Algorithms (GA) and can learn all 
parameters of the feed- forward, multilayer and fully 
connected ANGN without back propagation or lateral 
connections.In the current study, we propose mathematical 
modelbased on kinetic model for tripartite synapse to 
advance a new artificial model for artificial neuron-astrocyte 
networks 
 
2Tripartite Synapse Model (TSM) 
 
The proposed model based on the two-state kinetic models 
to create a coherent neuron-astrocyte model in which 
subcellular, cellular, and network properties are described 
within the same formalism. As illustrated in Figure  1, which 
represents the proposed three pathways in tripartite synapse,  
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Figure 1:Proposed Pathways for Artificial Tripartite Synapse 

Model 
 

In this simple model where N1 for presyanptic neurons and 
N2 postsynaptic neuron, the interaction between astrocyte 
A1 and the presynaptic neurons N1 and N2 has three 
pathways: pathway NT with blue dots arrow which 
represents the pathway between the neurontransmitter NT 
and the astrocytic second messanger IP3, pathway IP3 with 
red bold arrowwhich represents the pathway between IP3 
and calcium 푐푎  and the pathway GT is represented by 
green arrow between 푐푎 and GT. At the intersections of 
pathway IP3 and pathway GT, there are two channels R1 
and R2, respectively. And at the intersection between 
pathway IP3  and calcium there is a threshold symbole to 
indicate that calcium has threshold to activate the pathway 
GT. We first consider that the relationship between the 
elements of the interaction: the neurotransmitter 푁푇, the 
second messenger 퐼푃 , the calcium 	푐푎  and the 
gliotranmitter 퐺푇 across the two channels (푅  and 푅 ) is 
stimulus-response relationship.  
 
TSMdemonstrate how this relationship will elicit the channels 
considering that each channel has two states either close or 
open and the response of the channel changes its state 
depending on the stimulus. In the description of the model, 
there are three componants of tripartite synapse (푇 ):	an 
astrocyte 퐴, population of presynaptic neurons 푁 , and one 
postsynaptic neuron 푁 .	We propose to define the three 
pathways by the following terms: the pathway between 
neurotranmitter (푁푇) and the second messenger (퐼푃 ) is 
termed 푃 , the pathway between 퐼푃  and the 
calcium(	푐푎 ) is called 푃 	and the pathway between 
	푐푎 and gliotranmitter (퐺푇) is named 푃 . The model 
has two channels: channel 1 (푅 ) between pathways 푃  
and 푃 	, and the channel 2 (푅 ) between pathways 
푃 	 and 푃 .  
However, to explain the model more clearly and in detail, we 
break the equations of the proposed astrocyte modelinto 
three steps based on the interactive pathways and they will 
be the focus of this section: 
 
2.1 Neurotransmitter Pathway (푷푵푻 푰푷ퟑ):  The initiation 
of 퐼푃 is dependent on the amount of the neurotransmitter 
released to astrocyte which considered as the quanta of total 
amount of the neurotransmitter released into the synaptic 
cleft. The synaptic efficacy has been typically defined as the 
distinctive feature of synapse determined by relevant factors 

such as the transmitter amount released to synaptic cleftor its 
simple definition as synaptic weight (single scalar,푤 ) to 
present the strength of the connection between neuron 푗and 
neuron 푖. One of the most important subtleties is to quantify 
the synaptic efficacy. Hence, we propose to utilize any 
synaptic input equation to calculate the quanta of the 
neurotranmitter released to astrocyte by modifying the 
synaptic efficacy term, let assume the synaptic efficacy 
denoted as 	푇 .  Apparently, this proposed model of ATSM 
is not confined to SNN, it can be applied to any ANN 
architecture by calculating the amount of neurotransmitter 
released into synapse through any term represents the 
synaptic strength or the efficacy. However, [7] proposed the 
relationship between the neurotransmitter concentration and 
the presynaptic voltage by kinetic models. Hence, we 
generalize this relationship to be applicable to astrocyte, and 
we propose the following equation to calculate the quanta of 
neurotransmitter concentration to stimulate astrocyte: 

푁푇	 = 	 ∗	
( ( ) / )(1) 

 
Where 푟  is the rate at which neurotransmitter interacts 
with astrocyte in order to control the quanta of the 
neurotransmitter, 푣(푡) is the presynaptic voltage,푘  
represent the steepness of the sigmoid function, and 푣  is the 
half activation voltage. Mainly, the effective rate of 퐼푃  
production depends on the quanta of neurotransmitter 푁푇 
that is being released to astrocytes. The neurotransmitter 푁푇 
governs the state across the respective channel, The first-
order kinetic scheme was introduced by [6]. The notation has 
been modified and simplified by [7]. We propose the kinetic 
model to represent the probability of the response 
(퐼푃 )	given the stimulus of neurotransmitter (NT), can be 
written as: 

퐼푃3 + 	푁푇
훼
⇌
훽
퐼푃  (2) 

When spike is ON because 푁푇 > 0, The fraction of open 
gate IP3 for each time step ∆푡  is proposed as the following 
equation: 

퐼푃3 = 푟 + (퐼푃3− 푟)exp	(
−∆푡
휏 ) (3) 

Where ∆푡 is time step, 휏  and r, are control variables where 
훼,훽,훽 , 푎푛푑	푇  are constants. To calculate the change of 
the second messenger we propose the following equation: 

푑퐼푃3
푑푡

= 	훼	[푁푇](1− 	퐼푃3) − 	훽	퐼푃3 (4) 

The variables 푟 and 휏  are defined as follows: 

푟 =
훼	푇

훼푇 + 훽	,					휏 =
1

훼푇 + 훽  (5) 

 
When spike is off and 푆 = 0 

퐼푃3 = 퐼푃3 ∗ exp	[−훽	(∆푡)] (6) 

퐼푃  will be maintained whenever there is an input stimulus 
to the synapse. On the other hand of this spectrum, 퐼푃  
depend on the stimulus frequency proportionally, i.e. the 
higher the input stimulus frequency, the higher the level of 
퐼푃  [20]. 
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2.2 Second Messenger Pathway (푷푰푷ퟑ 풄풂): The channel 
푅 has the stimulus input of 퐼푃  (output of 푅 ) and the 
response output is calcium. The state diagram that represents 
the gating of calcium ion channel can be expressed as: 

퐶푎2 + 퐼푃3
훼
⇌	
훽
퐶푎2  (7) 

To compute the change of the calcium in which the 
increased 퐼푃  concentration triggers the calcium release from 
the ER and can, thus, evoke Calcium (Ca2+) oscillations, 
hence, we propose the following equation: 

푑	[퐶푎2]
푑푡 = 	훼	[IP3](1− 	퐶푎2) − 	훽	퐶푎2 (8) 

The fraction of open gate ca2+ for each time step ∆푡  is 
proposed as the following equation: 

[푐푎2] = 푠 + ([푐푎2] − 푠)exp	(
−∆푡
휏푐 ) (9) 

Where 

푠 =
훼퐼푃3

훼퐼푃3 + 훽 (10) 

 
 
2.3 Gliotransmitter Pathway (푷풄풂 푮푻):  Increasing calcium 
concentration in the astrocyte cytoplasm triggers the 
production of astrocyte gliotransmitter (Glutamate) when 
푐푎  crosses a threshold value 푐푎 [20]. We assume that 
gliotransmitter 퐺푇 is some amount of calcium 푐푎  is 
defined as: 

퐺푇 = 		훾 ∗
1

1 + exp	[(−[푐푎2] − 휃)/휎)]
, 푖푓				푐푎

≥ 		 푐푎 ,	 
0	표푡ℎ푒푟푤푖푠푒 

(11) 

Here, 훾	is a control variable, 휃is the value at which the 
function is half activated, 휎 is the steepness. the calcium 
diffused from gap junction channels. Finally, to calculate the 
term 퐼 , the astrocyte will release the gliotransmitter 
glutamate to the synapse as given in: 

퐼 (푡) = 	σ	GT (12) 
Here, σ	is a control parameter to control the strength of 
astrocyte. 
 
3. SIMULATIONS AND RESULTS 

The simulations have been performed for ATSM in 
MATLAB. We have used two neuron models,leaky integrate 
and fire (LIF) and Izhikevich model. Leaky Integrate and 
Fire (LIF) neuron model usually takes the form of the 
voltage when the current injection is constant over time as 
given: 

푉(푡) = 퐸 + 푅 퐼 + (푉(푡°) − 퐸 − 푅 퐼 ) exp −
푡 − 푡°

휏
 (13) 

We simulate the following parameters values: membrane 
resistance 푅 = 10	푀Ω, time constant 휏 = 10	푚푠, the 
current injection 퐼 	 was 1.55, 푡°is any reference time, 푡	 is a 
single time-step ∆푡	 = 	0.1	푚푠. When the cell receives 

current injection, the membrane voltage increases with time 
until it reaches the AP threshold 푉 = −55, the voltage 
spikes and then immediately reset to its resting potential 
level 푉 = −75	푚푉, where 푉 = 퐸 	= −70	푚푉	푎푡	푡 =
0.  We run our simulations for 1000	푚푠	total (the initial 
current pulse of 퐼 =0 starts at time 푡 = 0 to  푡 =
200	푚푠 , the period of 600	푚푠 with 퐼푒 = 1.55 and the last 
200	푚푠 with 퐼 = 0), the firing rates between 1 and 
	100	퐻푧. Firstly, we ran the LIF alone without astrocyte 
given the parameters above, the average firing rate was 25 
(number of spikes per second) and the number of spikes 
fired was 16.  Secondly, we run the LIF with the proposed 
TSM based on the assumption that the input of the injected 
current (퐼 = 1.55) is equal the term 푇  in Equation 1and 
then we run our model with three pathways equations with 
the following parameters (fine tuning): 푟 =0.1, 푡 − 푡 ∆푡	 =
	0.1, 휏 = 0.2, 푆 = 푁푇, 푆° = 0, 퐼 = 퐼푃 , 퐼° = 0.3, 
퐼푃 = 0.3, 푐푎 = 0.6,	푐푎 = 0.2,훾 = 1,휎 = 1. 
 
 

 
 
 
 
 
 
 
 
 

Figure 2: Number of spikes with two simulations: LIF with 
TSM (left) and without TSM (right) 

 
The results showed that astrocyte has changed the average 
rate of firing to 30 and the number of the fired spikes to 18 
as depicted in Error! Reference source not found.: 
LIF without TSM (right), LIF with TSM (left).  
 
The second neuron model we have used in our simulation is 
Izhikevich model [11] , [12] , which is based on the 
following two-dimensional system of ordinary differential 
equations of the form: 푣 = 0.04푣 + 5푣 + 140− 푢 + 퐼 and 
푢 = 푎(푏푣 − 푢), 푖푓	푣 ≥ 30	푚푉, 푡ℎ푒푛	 푣 ← 푐

푢 ← 푢 + 푑.  
 
The variable 푣 refers to the membrane potential and 푢 refers 
to the membrane recovery (푣 and 푢 will be reset when the 
spike reaches its highest value with +30 mV), the variable 퐼 
refers to synaptic currents, the resting potential is between 
−70 and −60	푚푉 depending on 푏, the threshold potential 
can be between −55	푚푉or and -40	푚푉, the parameter 푎 
represents the time scale of the recovery variable 푢 and the 
parameter 푏 represents the sensitivity of 푢 to the 
subthreshold fluctuations of  푣, the parameter 푐 represents 
the after-spike reset value of 푣, and the parameter 푑 
represents after-spike reset of 푢.	 (the following parameters 
values were chosen (fine tuning): 푎 = 0.02, 푏 = 0.2, 푐 =
−65	푚푉,푎푛푑	푑 = 2). Simulation has been done on sparse 
network of 10 000 spiking neurons with 1 000 000 synaptic 
connections in real time (resolution 1 ms). The synaptic 
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connection weights between the neurons are given by the 
matrix 푆	 = 	 (푠 ), so that firing of the 푗푡ℎ	neuron 
instantaneously changes variable 푣  by 푠  as shown in 
Figure 3 (left panel). Here we assumed that term 푇  in 
Equation 3.1is equal to the matrix 푆	 = 	 (푠 ) term in 
Izhikevich model which is represented by a random number 
between 0 and 1 multiplied by 0.5 for excitatory neurons and 
by -1 for inhibitory neurons. The following parameters have 
been chosen for the TSM (fine tuning): 푟 =0.1, 푡 − 푡 =
∆푡	 = 	0.1, 휏 = 0.2, 푆 = 푁푇, 푆° = 0, 퐼 = 퐼푃 , 퐼° = 0.3, 
퐼푃 = 0.9, 푐푎 = 0.18, 푐푎 = 0.2,훾 = 1,휎 = 1. 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: represents spiking activity (blue dots for Izhikevich 

model in left panel, red dots for TSM in right panel). 
 

 
Figure 4:Spiking activity with Izhikevich model, red line for TSM 
 
The simulation results showed that using of TSM has 
changed the spike behavior (rate and firing pattern) of 
Izhikevich model as shown in Figure 3 and Figure 4.  
 
4. DISCUSSION  
The simulations have been performed for TSM in two 
neuron models,leaky integrate and fire (LIF) as and 
Izhikevich model. The performance of the TSM was 
compared to standard LIF and Izhikevich model. We run our 
simulations for 1000	푚푠	total and the results showed that 
using astrocyte (TSM) in the spiking neural network models 
such as LIF and Izhikevich has changed the average rate of 
firing (greater) and the number of the fired spikes (greater) 
or changed the spike behavior (rate and firing pattern) of the 
SNN models. Consequently, astrocytes increase the 
postsynaptic potential, in other words, astrocytes may help 
PSPs to reach the activation threshold to evoke the 
postsynaptic neuron to fire a spike and this indicates that the 
results of the simulation of real time astrocyte is matching 
the biological property related to the relationship between 

the amount of neuron stimuli (neurotransmitter) and the 
degree of astrocytic response: the greater the stimuli, the 
higher the level of functionality by astrocytes or the 
versatility of astrocytic functions.   
Furthermore, the results matched the biological property 
related to the contribution of gliotransmission in the 
regulation of the release probability and their influence on 
the synaptic efficacy (weights) as illustration of the increase 
in the mean amplitude of excitatory postsynaptic activities. 
Moreover, the results matched the biological property which 
states that astrocytes represent an additional neuro-
modulatory system that acts in complement to the neuronal 
ones but with its own time and space domains. Finally, the 
results matched the biological properties which state that the 
astrocyte Ca2+ signal is not a stereotyped ‘‘on-off’’ 
response and can results in large, slow inward currents 
(SICs) able to significantly depolarize the cells and even to 
trigger their firing which has been proposed to induce their 
synchronous firing and enhance the frequency of 
spontaneous and evoked synaptic currents. In summary, the 
influence is typically changes in either (1) the frequencies of 
Excitatory Post Synaptic Potential (EPSP) or Inhibitory PSP 
(IPSP), (2) SICs, (3) rate of synaptic failure. 
 
5. CONCLUSION  
 
We proposed a model for the interaction between astrocyte 
and neurons in tripartite synapse to construct the tripartite 
synapse model (TSM) based on two- state kinetic model. We 
proposed three pathways to represent the interactions in 
tripartite synapse and label them as follows: firstly, the 
pathway from presynaptic neuron to astrocyte called 
neurotransmitter-second messenger pathway. Secondly, the 
pathway inside astrocyte at which the second messenger 퐼푃  
elicits calcium 푐푎  named the second messenger-calcium 
pathway. Finally, the pathway at which calcium reaches the 
threshold and elicits the gliotransmitter to be released to 
synaptic cleft called calcium-gliotransmitter pathway. 
However, for the first two pathways, there are channels with 
gate probability to be opened subject to stimuli of the 
channel. For instance, second messenger (퐼푃 ) and calcium 
(푐푎 ) are two channels for the pathways: neurotransmitter-
second messenger pathway and second messenger-calcium 
pathway, respectively. Whereas for the calcium-
gliotransmitter pathway, the probability of releasing 
gliotransmitter is subject to calcium threshold, if calcium 
crossed the threshold, amount of gliotransmitter will be 
released to synaptic cleft, presynaptic neuron, or 
postsynaptic neuron. Therefore, we proposed mathematical 
model for the tripartite synapse to mimic the channel gating 
mechanism based on the two-state kinetic model for 
neurotransmission proposed by [6] , [7]. Furthermore, we 
simulated the TSM with two neurons model: leaky integrate 
and fire (LIF) and Izhikevich model. We concluded that 
TSM model is biological inspired model by matching the 
results of the simulation with the biological properties 
presented in section 3. 2. Moreover, we concleded that TSM 
changed the behaviour of neuron models such as LIF and 
Izhikevich.  
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