
Yuri Alexandrovich Kostikov et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3853 – 3865

3853

ISSN 2278-3091
Volume 9, No.3, May - June 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse204932020.pdf

https://doi.org/10.30534/ijatcse/2020/204932020

ABSTRACT

The paper proposes methods for designing and building
information systems for distributed processing of
streaming data and their application for organizing and
analyzing trade at financial sites. Typical approaches to
organizing scalable systems are considered.

Key words: Distributed systems, scalability, server load
estimation, load balancing, performance analysis.

1. INTRODUCTION

The paper considers the problem of saving, subsequent
processing and analysis of large volumes of data obtained
in real time from external data sources. Such data can be
generated by thousands of sources and is usually called
streaming. For example, they may include information
from sensors to monitor performance and prevent possible
problems, user actions on the website, information about
the state of the financial market, and so on.

The relevance of the work is determined primarily by the
fact that more and more serious requirements for
performance, scalability and fault tolerance are imposed
on large systems in the era of the development of the
Internet and information technology. Important ideas and
questions were considered in [1-3]. The focus is on the use
of cloud technologies for building and maintaining highly
loaded systems that operate with large volumes of real-
time information. Note that the work [4] shows approaches
to the development of a data processing application, which
is a monolithic system, a multicomponent system. The
purpose of this system implies the presence of moments of
peak loads, high requirements for stability and
performance. Satisfying all these requirements without
using load balancing and decentralized data warehouse
methods is a very difficult task. The approaches used in
this work can be applied to modernize the architecture of
the data processing system.

The aim of the work is the design and development of an
information system for distributed processing of streaming
data and its use for organizing and analyzing trade on
financial sites. The proposed solutions and approaches
provide a universal API and organize the receipt and

processing of large amounts of information from an
arbitrary set of financial trading platforms.

Methodology. This paper describes methods for
developing a system for automated processing of
streaming data. The concept of big data is used, which is
proposed architecture of a distributed information system.
The focus is on system availability and scalability. The
concept of micro-service architecture that is relevant in the
modern world is used for these purposes.

2. DESCRIPTION OF THE MAIN DIRECTIONS
DISTRIBUTED SYSTEMS

The problem of choosing between centralized and
distributed models for representing computing resources is
one of the key problems in the development of computer
systems. Today, large systems process millions of events
per day; and their number is growing all the time. These
systems are required to ensure high fault tolerance and
high performance. These limitations mean that almost
every major application should be a distributed system.

It is worth noting that one of the key features of distributed
systems is that parts of these systems usually consist of
various applications that are independent of each other, or
of several copies of the same application. The entire
system is physically dispersed between many different
servers, which can provide scalability and fault tolerance.
Interacting with each other, these parts implement a certain
service, for example, a highly visited website, various data
collection and analysis systems, applications that provide
the transmission of multimedia content, etc.

When developing software that requires the use of
distributed computing, it is necessary to choose which
problems will be solved with their application, and then
select the criteria that the system must satisfy.

High Availability is becoming one of the most important
tasks in the modern world to ensure the continued
availability of the service. The unavailability of the service
even for a couple of minutes can lead to missed financial
opportunities or even to significant economic losses for the
business. Therefore, the development of constantly
accessible and fail-safe systems is both a fundamental and

Development of an information system for distributed
processing of streaming data

Yuri Alexandrovich Kostikov1, Alexander Mikhailovich Romanenkov2

1Candidate of Physical and Mathematical Sciences, Head of Department 812, Moscow Aviation Institute
(National Research University), Russia, jkostikov@mail.ru

2 Candidate of Technical Sciences, Associate Professor of Department of 812, Moscow Aviation Institute
(National Research University), Russia, romanaleks@gmail.com

Yuri Alexandrovich Kostikov et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3853 – 3864

 3854

technological requirement. High availability in distributed
systems requires consideration of creating redundancy as a
reserve for key components, the possibility of quick
recovery after partial or complete failures, as well as their
minimization and correct processing. Nevertheless,
achieving 100% availability is a difficult and expensive
task today, so the availability of "four nines" (99.99%, or
about 50 minutes of downtime per year) is considered a
good level for most systems. However, even this level is
not easy to achieve.

Scalability is also one of the serious criteria for building
large systems. Scalability refers to increased throughput
for handling large volumes of load. It is characterized by
various values, for example: the amount of traffic that the
system can handle, the ability to increase the total amount
of data storage, the number of different operations within
the system.

The cost of developing any system is one of the decisive
factors. It includes support costs and the infrastructure
required to operate. It is worth considering the amount of
time spent on development, as well as the level of skill of
the developers. In addition, the system should provide the
ability to easily diagnose emerging problems, ease of
updating, the ability to expand the development team. It
should be considered whether data loss or inaccuracy is
possible and what percentage is permissible and
acceptable.

2.1 Big data and streaming data

The term “big data” refers to various tools, approaches and
methods of processing both structured and unstructured
data in order to use them later for specific tasks and goals.

The basic principle of big data processing is horizontal
scalability. Data is distributed between different servers in
a single network, and their processing occurs without
performance degradation. The following traditional
defining characteristics for big data, developed during the
study of Meta Group in 2001, called “3D-V”, are
distinguished:
 Data Volume: The amount of physical data volume.
 Data Velocity: growth rate and the need for fast data
processing to obtain results.
 Data Variety: The ability to simultaneously process
various types of data.

“Streaming data” is information that is constantly
generated in real time by small volumes of thousands of
sources. The streaming data may include various types of
information, for example, statistics, telemetry data
received from various devices, user actions, information
from financial trading floors. This data should be
processed sequentially and incrementally, either for each
record, or using a sliding time window, after which it can
be used in various analytical tasks, including determining
correlation, performing aggregation, filtering, and
standardization.

Streaming processing requires the use of two levels: the
storage level and the processing level. The storage tier
should support write sequencing and strict consistency in
order to provide cost-effective, reproducible read and write
operations for large amounts of data without sacrificing
performance. The processing level is responsible for the
consumption of data located at the storage level and
notification of the storage level about which data can be
archived as currently unclaimed or deleted as unnecessary.
In addition, it is necessary to provide scalability, data
integrity and fault tolerance both at the storage level and at
the processing level.

2.2Cloud technologies

Cloud is a technology that allows convenient network
access on demand to some common fund of configurable
computing resources (for example, data networks, servers,
storage devices, applications and services - both together
and separately), which can be promptly provided and
released with minimal operating costs or calls to the
provider.

Cloud computing consumers can significantly reduce the
cost of information technology infrastructure (in the short
and medium term) and respond flexibly to changes in
computing needs by using the properties of cloud
computing elastic computing, that is, dynamically adapt
bandwidth by changing the amount of computing
resources used for meet the changing workload.

We can conclude from this that the use of resources and
solutions provided by cloud providers makes it possible to
simplify the development and further support of
distributed information systems that meet the requirements
for increased performance and fault tolerance.

2.3 Architectural Approaches in Software Development

When designing software designed for work in the cloud
infrastructure, the question inevitably arises of choosing
the main type of architecture. Due to the widespread
development of cloud technologies, several basic
approaches are distinguished today: the classic monolithic
architecture, building an application based on serverless
computing and sharing responsibility between different
microservices. In order to understand which approach is
most optimal for the task, it is necessary to analyze the
features, as well as the advantages and disadvantages of
each of them.

2.4Monolithic Architecture

At the moment, when building applications, the simplest
and most common approach is the use of a monolithic
architecture. Using this approach implies that all
application components are designed to work closely with
each other using shared resources. With horizontal scaling,
such an application is usually completely duplicated on
several servers, which imposes some restrictions and
increases the cost of operation with increasing load.
This approach is convenient to use for developing small
applications when the task is to get a finished product in a

Yuri Alexandrovich Kostikov et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3853 – 3864

 3855

short time. Such an organization of architecture makes it
easy to run, test the application on the developer's
computer before putting it into operation and apply the
standard deployment process. Another important plus is
the simplification of data integrity, since monolithic
applications often usually use a single database instance.
At the same time, complex infrastructure is not required.
Usually, either one server or several identical servers with
the same configuration are used, while, for example, the
database can be deployed in the same place as the
application. This also leads to simplified monitoring of the
entire system.

A strong connection between the modules is worth noting
from the significant disadvantages, respectively, changing
one of them can affect the logic of the others. After that,
each part of the application should be thoroughly tested,
since it is difficult to predict what consequences may be
caused even by small changes. In addition, any updates
lead to a complete reassembly and redeployment of the
entire application, which takes a long time with an
increase in the code base. Another serious drawback is that
monolithic applications become attached to the initially
selected set of technologies due to their nature.

2.5 Using serverless computing

Serverless computing is a fairly new trend that has begun
to spread through the development of cloud technology.
This approach actually implies the use of a set of functions
unrelated to each other, which are executed in response to
some event, the call of which is actually carried out by the
cloud provider, for example, as a result of receiving an
HTTP request. There is no need to deal with infrastructure
management issues such as the allocation of the necessary
resources to scale and ensure fault tolerance, as well as
their maintenance.

The main disadvantage of this approach is that long chains
of functions must be built when implementing complex
business logic. This, in turn, leads to a more complex
architecture and infrastructure management, since it is
necessary to ensure the correct interaction between a large
number of modules. Also, due to the fact that the
execution time of functions is limited, there is no
possibility of a continuous subscription to data streams
received in real time.

2.6Microservice architecture

The use of microservice architecture has become more and
more common in the last few years. This is an approach in
which a single application is built as a set of small
services, each of which is responsible for a specific task
and works independently using its own resources, and, if
necessary, interacts with the rest through the API. These
services can be written in different languages and use
different data storage technologies (see, for example, [1-
3]).

The advantages of using microservice architecture when
building large systems include simplification of the

development and installation of updates, as well as a
simpler increase in the number of developers. This ensures
that each service is responsible for a limited area of tasks.
The main advantages are the possibility of virtually
unlimited horizontal scaling with increasing workloads. In
addition, the fault tolerance of the system increases overall
due to the ability to deploy resources with redundancy. It
is worth noting that failures that are not resolved by
resource redundancy affect only a small part of the
functionality of the entire system.

The disadvantages of this approach are discussed below.
Due to the fact that the system is divided into independent
parts, the complexity of the organization of interaction
between them increases. It also complicates infrastructure
management and maintenance. Another disadvantage is
the impossibility of ensuring data integrity by means of the
DBMS, when it must be controlled by several services at
once. However, this problem can be solved, for example,
by creating a separate service, which will be the
transaction orchestrator.

2.7 Organization of data storage and management

Today, one of the basic needs of business and industry is
high-speed data processing in the era of digital
transformation. The question of choosing a database
management system becomes one of the first steps in the
development of most software products. Usually there are
two most common areas: relational (SQL) and non-
relational (NoSQL). The selection criteria are differences
in such matters as flexibility, ensuring data integrity and,
importantly, scalability. This requires a fairly thorough
analysis of the internal structure of the systems. The
principles of operation, the pros and cons of each type, as
well as their features are discussed below.

2.8 Relational Database Management System (SQL)

A relational database management system is called a
DBMS that manages relational databases, the principle of
which is based on the relational model and set theory. The
data is an n-ary relation, which, in turn, is represented as a
subset of the n-ary Cartesian product of n sets. Each of
these relations, i.e., tables, consists of many tuples, i.e.,
records. The attributes of each record correspond to
columns.

The classical scheme of the application with a relational
database requires a single server. However, there is a need
for scaling with increasing load on it. The most common
strategies are discussed below.

The simplest and most common scaling strategy for
relational databases is master-slave replication, which
creates a complete copy of the database. Thus, there will
already be several instead of a single server:
 Master is the main server where all changes (add,
update, delete) data occur
 Slave is a secondary server that replicates, that is,
copies all data from the master server. It is used to read
data and there may be several such servers.

Yuri Alexandrovich Kostikov et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3853 – 3864

 3856

This strategy offloads the main server (master) and
transfer read operations to auxiliary ones. In addition, fault
tolerance is increased; the application may use another in
the event of a failure on one of the servers. If a failure of
the primary server is detected, its auxiliary role may take
over. Replication is usually supported by the DBMS, and
configuration and management are independent of the
application. However, it should be noted that this strategy
is not a convenient scaling mechanism. The reason lies in
the data out of sync and delays when copying from the
primary server to the secondary. It is also effective only if
the number of read operations prevails over the number of
write operations. Replication is most often used to provide
fault tolerance.

Another way to scale for relational databases is sharding.
Its essence lies in dividing (partitioning or partitioning) the
database into separate parts (shards) so that they can be
placed on different servers. This process depends on the
database schema and, unlike replication, is controlled by
the application itself. There are 2 main methods of
sharding:
1. Vertical sharding - a table or group of tables is
submitted to a separate server. In this case, when
developing the application, the corresponding connection
for each table must be used.
2. Horizontal sharding - the table is shared between
several servers. This approach is usually used if it is
necessary to store a very large number of records.
Separation occurs according to the following principle:
a. A table with the same data schema is created on
several servers;
b. The application defines the condition by which the
connection necessary for the operation will be selected;
c. Before each call to the table, the application determines
the desired connection and performs operations with the
corresponding server.

Sharding is the most effective tool for scaling relational
databases, but its use greatly increases the complexity of
application development and imposes additional
restrictions.
1. The JOIN operator can be used between tables only if
they are placed on the same shard.
2. Transactions containing write operations must be
performed within the same shard.

2.9Non-relational Database Management System
(NoSQL)

The problem of complex organization of effective scaling
and maintaining high throughput has led to the use of non-
relational database management systems NoSQL (“Not
only SQL). NoSQL databases are optimized for
applications that require large data operations, which are
required to provide high throughput, low latency and
flexible data models. All this is achieved by reducing the
stringent requirements for data consistency, which are
typical, for example, of relational databases. Because of
this, most NoSQL systems do not fully meet the ACID
criteria, but satisfy the BASE requirements:

1. Basic Availability — Each request is guaranteed to
complete.
2. Soft state — the state of the system can change over
time, even without entering new data, to achieve data
consistency.
3. Eventual consistency - data may not be consistent for
some time but come to agreement after some time.

In more detail, various types of non-relational databases,
as well as examples and various scenarios of their use are
considered. Databases based on the “key value” model
support high separability, which allows easy and efficient
horizontal scaling. Amazon DynamoDB is an example.
This DBMS can provide high throughput for read and
write operations of any scale with a delay of not more than
a few milliseconds. This performance is ensured by
partitioning. The value of the primary key of the record is
passed to the internal hash function as input, after which
the result determines the section (physical location) in
which the record is stored.

Document-oriented databases are a subspecies of a
database based on a key-value model. The information in
them is usually presented as an object or document in a
format similar to JSON or XML. The work is based on
document storages, which inside have a tree structure, the
leaf nodes of which contain data. When a document is
added to the database, information about these nodes is
entered into indexes, which makes it possible to efficiently
find a data storage location even for a complex
organization. An example of such a DBMS is CouchDB,
MongoDB, DocumentDB, OrientDB.

Graph databases are based on the use of graph structures
as the main data model, which makes it possible to
efficiently search and select complex information. An
example of a DBMS of this type is JanusGraph. Apache
Cassandra, Apache HBase, Google Cloud Bigtable, Oracle
BerkeleyDB can serve as a data warehouse for it. For
example, using Cassandra, scalability to multiple data
centers can be achieved without the need for additional
configuration.

Databases that use random access memory as a storage
allow processing workloads with low latency, which
cannot be achieved using the classical approach with disk
storage. The most common DBMS are Redis and
Memcached. Amazon DynamoDB Accelerator (DAX)
also belongs to this category, which provides up to a
tenfold increase in database performance — from
milliseconds to microseconds — even when processing
several million queries per second.

2. 10 Load balancing

The issue of load planning should be considered at the
design stage of any major project. The base here was two
works [2, 3]. Initially, the problems of insufficient server
performance due to increased workloads can be solved by
increasing the server capacity or by optimizing the
algorithms used, program code, etc., but there comes a
time sooner or later when these measures are insufficient,

Yuri Alexandrovich Kostikov et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3853 – 3864

 3857

and this approach cannot provide increased system fault
tolerance. Combining several servers into a single cluster
and distributing the load between them using a set of
special methods called balancing is one of the methods for
solving this problem.

Cluster efficiency directly depends on how the load is
distributed between its elements. Such distribution can be
carried out using hardware and software tools. The main
tool for load balancing in distributed systems is balancing
at the network level using algorithms and methods
corresponding to the network, transport and application
levels of the OSI model. The principles of its work are
considered on the example of Amazon AWS Elastic Load
Balancing (ELB).

It should be noted that ELB is a distributed system. The
balancer is not assigned a specific public IP address at the
time of creation. The domain name is allocated instead, for
example, MyDomainELB-918273645.us-east-
1.elb.amazonaws.com. After which it is necessary to
configure a DNS record of the CNAME type indicating
that the application domain refers to the domain name
allocated for the balancer for the application domain name.
The following is an example of request processing using
this approach:
1. The client contacts the DNS server to resolve the
domain example.com. The DNS server will respond with
the name ELB MyDomainELB-918273645.us-east-
1.elb.amazonaws.com due to the fact that it is specified as
an alias for the domain.
2. The client accesses the DNS server to resolve the name
MyDomainELB-918273645.us-east-
1.elb.amazonaws.com. DNS records for this domain are
controlled by Amazon, because it is located in the
amazonaws.com domain. Let the DNS server return, for
example, 1.2.3.4.
3. The client opens a connection to the server at the
provided IP address 1.2.3.4, which is part of the ELB
cluster.
4. The server at 1.2.3.4 proxies a request to one of the
EC2 instances from the balancing pool.

The above example uses two stages of scaling. The first of
these is performed in step 2, when Amazon’s DNS server
resolves the ELB domain name to an IP address. At this
point, Amazon can distribute traffic across multiple ELB
servers by varying the IP addresses assigned to the client.
The second stage occurs at step 4, where the selected ELB
server proxies a request to one of the EC2 instances
located in the ELB pool, after which it is already
processed by the application. By changing the size of the
balancing pool, it is possible to control the scalability of
the application.

Both of these steps are necessary to balance the load with
a very large amount of traffic. The second stage allows the
application to process a larger number of requests per unit
of time than can be achieved using a single instance of
EC2: connections are distributed across several servers
from the balancing pool, and each of these servers
processes only part of their total number. The first stage is

necessary in order not to limit the application to the
maximum throughput for network traffic, which can be
processed by a single server from the ELB.

The load balancing performed in step 2 is implemented
using the Round-Robin algorithm to select a specific
server from the pool where the code is processed to
process the request. The rules specified for the balancer for
redirection are taken into account, for example, one group
of servers can be used for requests on the path / route1 / *,
and another for requests on the / route2 / * path. Also,
periodically, the ELB performs a health-check operation to
detect server failures in order to ensure that requests are
redirected only to those that work correctly. In addition,
when using the application balancing type, redirection can
be performed based on the contents of the request.

3. GENERAL SYSTEM REQUIREMENTS

During the analysis of various ways of organizing the
architecture, it was decided to use a hybrid approach that
combines the use of microservices and serverless
computing in order to provide maximum flexibility in the
development and combine the advantages of each
approach.

The final system should be fault-tolerant and well scalable,
consist of a set of microservices and serverless functions
and provide universal REST and Websocket APIs for
receiving data on various currency pairs from financial
trading floors, as well as provide the ability to place
trading orders and track the status of their execution.
Another requirement for the system is that all the
necessary parameters for operation must be transferred to
microservices and serverless functions using environment
variables.

Trading floors do not have a standardized API for working
with them and may have differences in the designations of
currency pairs; and this is one of the main problems.
Based on these requirements, the following groups of
microservices were allocated:
 market-key-service is a microservice responsible for
adding and storing API keys for authentication on
financial sites.
 master-data-service is a microservice that provides
storage and editing of the list of available currency pairs,
as well as information about conversions between the pair
designation in the system and on the trading floor.
 market-data-collector-service is a microservice that
collects and provides storage of information about
available currency pairs. This information should include
the state of the market glass, current quotes and OHLCV
data for various time periods, and also provide emulation
for filling in the missing.
 market-data-viewer-service is a microservice that
makes it possible to receive notifications in a universal
format about changes in data on available currency pairs in
real time, which are collected by the market-data-
collector-service.

Yuri Alexandrovich Kostikov et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3853 – 3864

 3858

 trading-service is a microservice that provides
placement and management of trading orders through a
universal API. In addition, it should be responsible for
recording changes in their status and provide notifications
in a universal format.

3.1Selection of core technologies

To reduce the cost of maintaining the system, it was
decided to use the Amazon AWS commercial public cloud
as a well-proven and proven solution for large technology
companies in the infrastructure and platform services
market. This cloud is located in several geographically
dispersed data centers, which are combined into groups by
geographic proximity, called "regions". Several
availablilityzone is implemented within each of these
regions, which provides increased fault tolerance of hosted
services.

Node.js. was chosen as the main platform for
implementing the business logic of the system. Due to the
wide interest of developers in this platform, its package
manager, called NPM, has more than 750,000 modules
that can be used in development.

It was decided to use TypeScript as the main programming
language for implementing logic inside the system. This
language was introduced by Microsoft in 2012 and is
positioned as a web application development tool that
extends the capabilities of JavaScript. TypeScript is
backward compatible with JavaScript and translates to the
latter.

To simplify the development process and improve the
quality, NestJS progressive Node.js framework was
chosen, which makes it possible to create efficient
enterprise-level server applications. Using a dependency
injection pattern is one of the key concepts in NestJS. This
is ensured by the fact that classes such as services,
repositories, factories, etc. can be considered as providers.
The basic idea is that using them makes it possible to
inject dependencies. This means that objects can create
different relationships with each other, and the function of
constructing and implementing class instances can be
largely delegated to the NestJS dependency injection
system. Swagger technology was used to document the
HTTP structure of the API part, for which NestJS provides
a separate module @ nestjs / swagger for automatic
generation based on data provided by the developer in the
code using decorators.

Ideas for implementing a web server, as well as methods
for developing distributed systems and approaches to load
balancing are used from sources [1, 3].

3.2 Choosing the best web server

HTTP servers supported by the NestJS framework by
default are discussed below. The most common among
them in the Node.js ecosystem is Express. Fastify is
positioned as one of the fastest web servers for Node.js
and was conceptually inspired by the ideas behind
Express. To choose the most optimal of them, we
compared their performance by benchmarking.

2 EC2 c5.large servers in the Amazon AWS cloud
platform were leased for testing. Ubuntu Server 18.04 LTS
is installed on each of these servers. The first server is
used as a host to load, Node.js 10.15.3 LTS is additionally
installed on it. Express 4.16.4 and Fastify 1.13.3 packages
are used for testing. The wrk benchmarking tool is used
for the server that provides the load.

For testing, we prepared data in JSON format, consisting
of 10 elements, to emulate the operation of an HTTP
server in real mode, and also developed a program using
the Express web server and a program using the Fastify
web server. 2 preliminary runs without recording the data
obtained are performed before each stage of testing to
increase reliability. During testing, 3 endpoints of different
types (GET, POST) with different payload sizes were
used. Each of these tests was carried out using 10, 100,
500, 1000, 2000 and 4000 parallel open connections. The
duration of each test was 2 minutes. Listing 1 shows an
example query for testing the Express web server.

const express = require("express");
constbodyParser = require("body-parser");
const DATA = require("./data");
const app = express();
app.use(bodyParser.json());
app.get("/data", (req, res, next) =>res.send(DATA));
app.get("/data/one", (req, res, next)
=>res.send(DATA[0]));
app.post("/data", (req, res, next) =>
res.send({ success: true, title: req.body.title })
);
app.listen(80, () => console.info(`Express server
running`));
Listing 1.Testing Express.

To test the Fastify web server, we used almost the same
code as in Listing 1, so we did not list it here.
The test results are presented in tables 1 - 3 and in figures
1 - 3.

Yuri Alexandrovich Kostikov et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3853 – 3864

 3859

Table 1:Test results for a GET request (1 element)
Numberofconcurrentconne

ctions
Express

(requests/ s)
Fastify

(requests/ s) Difference(%)

10 1211.23 1493.6 18.9
100 1701.91 2537.89 32.94
500 2270.75 2589.23 12.3

1000 1892.02 2241.74 15.6
2000 1811.45 2084.52 13.1
4000 1798 2162.25 16.8

Table 2:Test results for a GET request (10 elements)

Numberofconcurrentconne
ctions

Express
(requests/ s)

Fastify
(requests/ s) Difference (%)

10 2257.35 2356.32 4.2
100 2318.66 2843.24 18.45
500 2486.4 3021.14 17.7

1000 1818.55 2281.74 20.3
2000 1689.6 2114.64 20.1
4000 1714.9 2152.78 20.34

Table 3:Test results for POST request (1 element)

Numberofconcurrentconne
ctions

Express
(requests/ s)

Fastify
(requests/ s) Difference(%)

10 3190.73 3905.42 18.3
100 3035.94 3862.52 21.4
500 2576.21 3794.12 32.1

1000 1569.66 1952.31 19.6
2000 1413.93 1785.27 20.8
4000 1789.97 1896.15 5.6

Figure 1:Graph of test results for a GET request (1 element)

0

1000

2000

3000

4000

5000

10 100 500 1000 2000 4000

Th
ro

ug
hp

ut
 (r

eq
ue

st
s /

 s)

Number of concurrent connections

Express

Fastify

Yuri Alexandrovich Kostikov et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3853 – 3864

 3860

Figure 2: Graph of test results for POST request (1 element)

Based on the data obtained, it can be concluded that
Fastify exceeds Express in terms of the number of
simultaneously processed requests by about 20%. The use
of such specific packages as Passport, which are
incompatible with Fastify, was not required during
operation; therefore, preference is given to him as the main
HTTP web server in order to increase the overall system
performance.

3.3 DBMS selection

Based on the information received, an assumption is made
that it is preferable to use NoSQL to ensure high
throughput and fault tolerance at the DBMS level. We
tested this assumption using the Yahoo Cloud System
Benchmark Testing System (YCSB). This system makes it
possible to test the DBMS for simple operations, such as
reading, writing and updating, and to obtain indicators of
throughput and response time on various system loadings
to study its performance. PostgreSQL relational DBMS as
the easiest to scale and 2 non-relational: Apache Cassandra
and Amazon DynamoDB was chosen for testing.

We rented 3 EC2 c5.2xlarge servers in the Amazon AWS
cloud platform for testing. The Ubuntu Server 18.04 LTS
operating system is installed on each of these servers.
PostgreSQL 11.2 DBMS is installed on the first server,
Apache Cassandra 3.11.4 is installed on the second server.
The third server is used as providing load, it runs YCSB.
A configuration with 100 units of read resources and 100
units of write resources was chosen for testing Amazon

DynamoDB, which roughly corresponds to the price of 1
EC2 c5.2xlarge server. The results obtained during testing
are shown in Figures 5-10.

Analyzing the test results, we can conclude that the
assumption of higher performance for read and write
operations for NoSQL DBMS is correct. Among the tested
NoSQL solutions, Amazon DynamoDB is the most
productive, which is also confirmed by testing conducted
as part of the Gagarin Readings XLV scientific
conference. As a result, Amazon DynamoDB was chosen
as the main database for data that requires long-term
storage.

4. SYSTEM ARCHITECTURE DEVELOPMENT

It was decided to use Docker containerization technology
in order to automate the assembly process, simplify
deployment and increase its reliability due to
reproducibility of the environment. This technology
“packs” the application with all its environment and
dependencies into a container, which can be ported to any
Linux system with cgroups support in the kernel, and also
provides an environment for managing containers.

A special script file called the Dockerfile is used to
describe containerization rules. Note that starting with
version 17.05, Docker began to support multi-stage builds,
which allow maintaining the minimum size of output
containers.

0

800

1600

2400

3200

10 100 500 1000 2000 4000

Th
ro

ug
hp

ut
 (r

eq
ue

st
s /

 s)

Number of concurrent connections

Express

Fastify

Yuri Alexandrovich Kostikov et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3853 – 3865

3861

Figure 3: Scheme of the overall system architecture

The universal Dockerfile (shown in Listing 2) for
microservices with support for multi-stage assembly,
which was obtained during the work, is discussed below.
Each of the stages in it is based on the basic Linux Alpine
image, which makes it possible to reduce the time required
to download the dependencies, complete the assembly and
the size of the final container due to the fact that this
image contains only the minimum necessary set of tools.
The following is an overview of each of the steps:

1. The builder_dependencies stage is the loading of the
dependencies that are required to complete the assembly
and operation of the application.
2. The production_dependencies stage is similar to stage
1, but only those dependencies that are directly needed for
the application to work are loaded.
3. Stage builder copies the dependencies from stage 1 and
builds the application.

Yuri Alexandrovich Kostikov et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3853 – 3864

 3862

It is worth noting that for stages 1 - 2, a private key is
additionally transferred to access repositories with
dependencies if some of the required for the application
are located in the git repository, and not in the NPM
registry.
After performing steps 1 - 3, the dependencies necessary
for the application to work from stage 2 are copied and the
assembled application is copied from stage 3, after which
the run rules are set. This approach ensures the smallest
possible size of the resulting container and does not
reinstall dependencies if their list has not changed.
FROM node:10-alpine asbuilder_dependencies
ENV NODE_ENV build
RUNapk update &&apk upgrade && \
apk add --no-cache gitopenssh-client
USER node
WORKDIR /home/node
ARGssh_private_key
RUNmkdir .ssh&& \
echo"$ssh_private_key"> ~/.ssh/id_rsa&& \
chmod 600 ~/.ssh/id_rsa&& \
echo"Host *">> ~/.ssh/config&& \
echo" StrictHostKeyChecking no">> ~/.ssh/config&& \
echo" UserKnownHostsFile=/dev/null">> ~/.ssh/config
COPY ./package.json /home/node/
COPY ./yarn.lock /home/node/
RUNyarn install --pure-lockfile

FROM node:10-alpine asproduction_dependencies
ENV NODE_ENV production
RUNapk update &&apk upgrade && \
apk add --no-cache gitopenssh-client
USER node

WORKDIR /home/node
ARGssh_private_key
RUNmkdir .ssh&& \
echo"$ssh_private_key"> ~/.ssh/id_rsa&& \
chmod 600 ~/.ssh/id_rsa&& \
echo"Host *">> ~/.ssh/config&& \
echo" StrictHostKeyChecking no">> ~/.ssh/config&& \
echo" UserKnownHostsFile=/dev/null">> ~/.ssh/config
COPY ./package.json /home/node/
COPY ./yarn.lock /home/node/
RUNyarn install --pure-lockfile

FROM node:10-alpine as builder
ENV NODE_ENV build
USER node
WORKDIR /home/node
COPY --from=builder_dependencies
/home/node/node_modules/ /home/node/node_modules/
COPY . /home/node
RUN yarn run tsc:build

FROM node:10-alpine
ENV NODE_ENV production
USER node
WORKDIR /home/node
COPY --from=builder /home/node/.env.example
/home/node/
COPY --from=builder /home/node/dist/ /home/node/dist/
COPY --from=production_dependencies
/home/node/node_modules/ /home/node/node_modules/
CMD ["node", "dist/main.js"]

Listing 2. Generic Dockerfile code

Figure 5: Graph of average response time for a small amount of data

0

200

400

600

800

Record Update Reading

Av
er

ag
e

re
sp

on
se

 ti
m

e
(μ

s)

Type of transaction

PostgreSQL Apache Cassandra Amazon DynamoDB

Yuri Alexandrovich Kostikov et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3853 – 3864

 3863

Figure 6: Bandwidth graph for small data volumes

Figure 7: Average response time graph for average data volume

Figure 8:Bandwidth graph for average data volume

0

200

400

600

800

Record Update Reading

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

n
/ s

)

Type of transaction

PostgreSQL Apache Cassandra Amazon DynamoDB

0

150

300

450

600

750

900

1050

1200

Record Update Reading

A
ve

ra
ge

 re
sp

on
se

 ti
m

e (
μs

)

Type of transaction

PostgreSQL Apache Cassandra Amazon DynamoDB

0

175

350

525

700

Record Update Reading

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

 /
s)

Type of transaction

PostgreSQL Apache Cassandra Amazon DynamoDB

Yuri Alexandrovich Kostikov et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3853 – 3864

 3864

Figure 9:Graph of average response time for a large amount of data

Figure 10:Bandwidth graph for a large amount of data

5. CONCLUSION

The paper considers the task of designing information
systems for processing streaming data. A comparative
analysis of the methods and approaches that are used to
build such systems is carried out. The architecture of a
distributed system that provides horizontal scaling is
proposed, the results of test launches are shown, and time
diagrams of the average response time and throughput of
the medium and large data arrays are presented. The
results determine the most effective data processing
strategy and technology, depending on its size.

REFERENCES
1. V. Cardellini. A performance study of distributed

architectures for the quality of web services,
inProceedings of the 34th Conference on System
Sciences, 2001, Vol.10, pp. 213-217.

2. E. Casalicchio,and M.Colajanni. A client aware
dispatching algorithm for web clusters providing

multiple services, inProceeding of the 10th
International Conference on WWW,2001,pp. 535-544.
https://doi.org/10.1145/371920.372155

3. Valeria Cardellini, Michele Colajanni, and Philip S.Yu.
Dynamic Load Balancing on Web-server Systems,
inIEEE Internet Computing, 1999, Vol.3, No. 3, pp.
28-39.
https://doi.org/10.1109/4236.769420

4. Yu.A. Kostikov, V.Yu. Pavlov, A.M. Romanenkov,
and V.B. Ternovskov. Adaptive architecture of a
hardware-software complex for data storage and
processing,in Economics: yesterday, today, tomorrow,
2017, Vol. 7,No. 9A,pp. 192-207.

0

175

350

525

700

Record Update Reading

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

 /
s)

Type of transaction

PostgreSQL Apache Cassandra Amazon DynamoDB

0

200

400

600

800

Record Update Reading

A
ve

ra
ge

 re
sp

on
se

 ti
m

e (
μs

)

Type of transaction

PostgreSQL Apache Cassandra Amazon DynamoDB

