
Pallam Ravi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8325 - 8329

8325


ABSTRACT

To find insights in raw data, Need to extract knowledge from it.
knowledge represents with different patterns. These patterns are
used in business analysis and data analysis. Frequent item-set is one
kind of pattern in data mining. The frequent item-set is a set of
co-occurrence item-sets, it support value satisfies the user-specified
threshold value. Iceberg queries are also find co-occurrence
item-sets, but in it Items(Attributes) are grouped and compute
Aggregate values based on this item-set groups. These’s value
above the threshold are very small(tip of the iceberg).Compute
iceberg queries within available memory is difficult because
aggregate values are large in number (iceberg) .It needs huge
computation and memory requirement, so first find candidate sets
then generate results. To find candidate sets need to have read entire
data information, in parallel and distributed environment is difficult
get that information for computing candidate sets. Because no
information about entire data. In proposed algorithms use parallel
and distributed environment map-reduce framework to find
candidate sets within available memory and reduce memory
requirement and computation . Proposed different algorithms
named as single reducer (SRIceberg), Multiple reducers
(MRIceberg) and Multiple with iterative (IMRIcebrg). From our
experiments IMRIcerberg algorithm gives better performance than
other.

Key words : Iceberg queries, Map-Reduce, Big data and
Pattern mining.

1. INTRODUCTION

In Business intelligence, data analytics is one of the field used
,data analytic have set of methods and techniques convert raw
data into meaning full information and extract pattern
.Extract pattern in data, computing the aggregate values
major task in it. Frequent item set is one of the pattern.
Frequent item is a set of co-occurrence item set, in which
items set satisfies the user specified threshold value, majorly
use mini support count. . Iceberg queries are one kind of
frequent items set, item are grouped(Attributes) , using
frequent item set generate association rules[15], computed
based on item group(aggregated), this aggregate values are
large in number (Iceberg),find aggregate values above the
threshold values, it will be very small (Tip of Iceberg).

Answer the iceberg queries involve compute large number of
aggregate values in number(Iceberg) but,it return only 10% of
complete aggregate values, which are above the threshold
value only , Example of iceberg query so it require huge
computation and memory .iceberg queries run on huge data
in which domain size(number of aggregate values) is very
large, major challenge is cannot store all domain values in
available memory at a instance because memory is limited, an
example iceberg query show in Example1.
Example1:
 Find the students ,collage who got marks above 70% of total
marks.
In Example 1 problem represent inSQL query as follows for
better understanding.
SELECT Student,college FROM marks_table GROUP BY
subject_marks, collage HAVING
SUM(Student_marks)/total_marks> 0.70
Student and ,collage are attribute which represent set
students and set of college names
SUM is aggregate value,0.70 is threshold value

The algorithm for compute frequent pattern are not
efficient for compute iceberg queries .In frequent pattern
mining problem represent as : let I is set of singletons(items)
I={i1,i2,…in}, Frequent item-sets F { f= {ij,…ik }⊆ I
,|F|<=|I|, Support(f)> T}, support(f) = |{∀tl ∈ T : f ⊆ tl}|,T ∈	
D, D is data set. the iceberg query represent as
I={A1,A2,A3,B1,B2,B3,C1,C2,C3}, Frequent items sets F,{
F={iA,iB,iC},|iA|=|iB|=|iC|=3,iA∈{A1,A2,A3},iB∈{ B1,B2,B3}},
iC∈{ C1,C2,C3}, |F|<=|I|, Agg(f)> T},The variation of
iceberg query , first variation in candidate set generation.
in frequent item-set Sn use Sn-1 ,and generate candidate
set use set join operation. apply Apriori pruning
technique to reduce the candidate set computation. The
same set join operation not apply to iceberg query
computation for computing candidate set , because the
items are grouped illustration in example2

Example2: in frequent item set let
s2={{i1,i2}{i1,i3}} ,compute s3 =s2 ⋈ s2 , s3={{i1,i3}}.
in iceberg query item set let s2={{A1,B2}{A1,B1}},
S3={{A1,B2,C1},{A1,B1,C1}{A1,B1,C2}{A1,B1,C2}
{A1,B2,C3}{A1,B1,C3}}.
 Second variation between frequent item-set and iceberg
computation is size of item-set, in frequent item- set size

Computing Iceberg Queries on Map Reduce Framework
Pallam Ravi1, D Haritha2

1Schalor KLEF, India, satishpallam@gmail.com
2Professor KLEF, India, haritha_donavalli@kluniversity.in

ISSN 2278-3091
Volume 9, No.5, September - October 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse203952020.pdf

https://doi.org/10.30534/ijatcse/2020/203952020

Pallam Ravi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8325 - 8329

8326

are 1 to n. But in iceberg query, all item set are equal size
.The size of item-set is equals to number of grouped items
(Attributes) ,third variation is threshold support count
function only, But in iceberg query are aggregate
function like SUM,COUNT,AVG.. etc.
.
The general technique for answering iceberg queries is
sort the records based on domain values and compute
aggregate values ,sorting is takes heavy computation and
space. Domain size is very large than available memory.
Only 10% of aggregate values in the result set, so huge
computation required and many scans over the data set.
for example domain size is S in data set , available
memory is M so S/M scans are required compute the all
aggregate values .reduce scans over the data is primary
goal in iceberg query computation.
iceberg cube computation and iceberg query have
different goal in cube computation[13[14] the aggregate
values shared .
Today data set size growth in volume ,to compute iceberg
query ,many scans takes place ,to improve the
performance required parallel computation needed, so
for no work done in this context, so we use map reduce
framework for computing iceberg queries. we proposed
algorithm use single reducer (SRIceberg) .second we use
Multiple reducer (MRIceberg) and third algorithm Multiple
with iterative (IMRIcebrg)
The rest of paper are organized as in section2 discussed
relative works, in section3 proposed algorithms, section 4
discussed our experiment results , conclusion in section 5.

2. RELATIVE WORK

For computing aggregate queries sorting and hashing
method are used. These methods are not apply to iceberg
queries because it have huge domain ,The first iceberg
proposed in [1] ,in [1] use coarse count and sampling methods
proposed, for avoid false passive and false negative proposed
hybribed method. partition method[2] are used for average
aggregate values in iceberg query , methods and two bucket
state algorithm [3],in [5] dynamic pruning methods proposed
for bitmap index data[6]To improve the bitmap map based
iceberg query many different strategies like cache based[7],
look head pointer[8][9],[10][16][17][18]bit map number
proposed proposed,[11] low iceberg queries,[12] Iceberg
Querying in Vertical Database, different algorithm which
compute pattern like frequent item set, max, closure frequent
item sent on map reduce on hadoop. [21] min,max iceberg
queries based on value based property, No algorithm use
parallel distributed computation for answer the iceberg
queries, the map reduce framework support nothing shared
architecture, compute in parallel ,it have two phases, one is
map and phase, map phase generate key and value pairs ,and
reduce phase combine all record which have same key and
compute values have

In figure 1 show how map reduce works as mapper generate
<key,value> in above <A2B2, 1> <A1B3,2> <A2B1,5>
<A2B2, 8> <A1B3,3> <A2B1,9> <A2B2, 6> <A2B1,1>
<A1B3,8> <A2B2, 0> <A3B1,3> <A3B1,2> the reducer
combine files which have same key final values are
<A1B3,13> <A2B1, 6> <A2B2,15> <A3B1, 5> .this general
methods is not applicable in case of computing iceberg
queries because the number of key are huge so the reducer
required huge memory and sorting and shuffling in map
reducer frameworks take heavy computation

A2,B2, 1
A1,B3,2
A2,B1,5

A2,B2, 8
A1,B3,3
A2,B1,9

A2,B2, 0
A3,B1,3
A3,B1,2

A2,B2, 6
A2,B1,1
A1,B3,8

<A2B2, 1>
<A1B3,2>
<A2B1,5>

<A2B2, 8>
<A1B3,3>
<A2B1,9>

<A2B2, 6>
<A2B1,1>
<A1B3,8>

<A2B2, 0>
<A3B1,3>
<A3B1,2>

<A1B3,13>
<A2B1, 6>
<A2B2,15>
<A3B1, 5>

Mappers Reducer

Figure 1:Map-Reduce Framework

[10] in proposed method computing frequent item set by
Apriori based pruning strategies as we discussed in
introduction the iceberg query have some variation ,we
cannot apply same methods to iceberg query computations
With single reducer is bottleneck for computing Iceberg
queries on map reducer, because in pattern mining algorithm
many unique key ,value pair (k,v) generated, it require
computational cost and memory requirement. to avoid this
problem we proposed multiple reducer based algorithm, we
allocate one Attribute keys to a single reducer by this we can
reduce memory requirement of each reducer
With multiple reducer ,same key will pass to different reducer
,the information in data lost, it leads huge number of key
received by reducer ,to avoid this some set of key are allocated
a reducer, based one attribute items we allocate to each
reducer.
To reduce number of unique key analyzed by each reducer, we
allocating all reducer to one attribute items ,let attributes
A,B,C . A={A1,A2,…A1000} B={B1,B2…..B1000} and
C={C1,C2,….C1000} are item set for each attributes, a
iceberg query based attribute (A ,B,C) ,total pattern are
1000*1000*1000=109, for example Attribute A item are
allocate to all reducer , for first reducer allocating 100 item so
that reducer receive on 107 key only, for second also same
allocating 100 item ,it receive 107 key only, and so on.
our proposed three new algorithms for compute the iceberg
queries, first algorithm use single reducer (SRIceberg)
.second we use Multiple reducer (MRIceberg) and third
algorithm Multiple with iterative (IMRIcebrg)

Pallam Ravi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8325 - 8329

8327

3. PROPOSED METHOD

First we proposed algorithm 1 called Single Reducer
Iceberg(SRIceberg) ,in map reduce frame work , mapper
phase generate <key ,value> pair and sent it reducer, the
reducer combine all same key ,in this all keys are have same
no of item sets means same length ,each item belongs to one
attributes
Algorithm1: Single Reducer Iceberg (SRIceberg)
Algorithm

Begin procedure SRIcebergMapper(tl)
 //p item-sets in tl,Agg is value
Emit(p,Agg);
End procedure

Begin procedure SRIcebergReducer(p,(Agg(P1), Agg(P2),
Agg(P3)….. Agg(Pm))
Aggvalue=0;
For all Agg € ,(Agg(P1), Agg(P2), Agg(P3)….. Agg(Pm))
Aggvalue=Aggvalue+Agg
End for
Emit (P,Aggvalue)
End procedure

In figure 1 shows single reducer ,the mapper find aggregate
values like sum it require huge amount of memory to reduce
that memory ,we proposed Algorithm2: Multiple Reducer
Iceberg (MRIceberg) Algorithm ,in which we allocate items
of single attribute to each reducer by this the memory
requirement of each reducer is reduced
It shown in figure 2 ,in that attribute A items are allocated to
each reducer ,reduce one A1,two A2,reduce take A3 mean the
reducer will compute aggregate value which key is prefix with
allocated item ,A1 will take care about
<A1B3,13>,second reducer <A2B1, 6> <A2B2,15> and
third reducer about <A3B1, 5>,so in single reducer in figure
1 reducer required 4 memory counter needed ,with multi
reducer one, second and third needs only1,2 and 1 counter
respectively.
Algorithm 2: Multiple Reducer Iceberg (MRIceberg)
Algorithm
Begin procedure SRIcebergMapper(tl)
 //p item-sets in tl,Agg is value
Emit(p,Agg);
End procedure

Begin procedure SRIcebergReducer(p,(Agg(P1), Agg(P2),
Agg(P3)….. Agg(Pm))
C={set of item allocation reducer}
P prefix € C;
Aggvalue=0;
For all Agg € ,(Agg(P1), Agg(P2), Agg(P3)….. Agg(Pm))
Aggvalue=Aggvalue+Agg
End for
Emit (P,Aggvalue)
End procedure

With Multiple Reducer Iceberg (MRIceberg) Algorithm ,its
checks all possible items set aggregate values ,and its need
sorting and shuffles ,there is no pruning ,for pruning we
proposed Algorithm3: Iterative Multiple Reducer Iceberg
(IMRIceberg) Algorithm in which map reducer work with
multiple iteration each iteration the map key size will
increment ,it start with key size with one end with no of
Attributes,
For each iteration ,each aggregate value is compared with
threshold value ,if it is below threshold value keep it
infrequent item set, this infrequent item set will used next
mapper for generating key, it does not generate key with
prefix it is in infrequent set, it will refreshed each iteration

A2,B2, 1
A1,B3,2
A2,B1,5

A2,B2, 8
A1,B3,3
A2,B1,9

A2,B2, 0
A3,B1,3
A3,B1,2

A2,B2, 6
A2,B1,1
A1,B3,8

<A2B2, 1>
<A1B3,2>
<A2B1,5>

<A2B2, 8>
<A1B3,3>
<A2B1,9>

<A2B2, 6>
<A2B1,1>
<A1B3,8>

<A2B2, 0>
<A3B1,3>
<A3B1,2>

<A1B3,13>

<A2B1, 6>
<A2B2,15>

<A3B1, 5>

Mappers Reducer

Figure 2:Map-Reducer with Multi Reducer

In figure 3 shows that first iteration in which it find the A3 is
infrequent because it aggregate value below threshold value
(7),it show in dashed in reducer, second iteration the mapper
not generate key with A3 as prefix, it shows in figure 4

Algorithm 3: Iterative Multiple Reducer Iceberg
(IMRIceberg)

AlgorithmBegin procedure SRIcebergMapper(tl,s)
 //p item-sets in tl,Agg is value
I={ }
Emit(p,Agg);
End procedure

Begin procedure SRIcebergReducer(p,(Agg(P1), Agg(P2),
Agg(P3)….. Agg(Pm))
C={set of item allocation reducer}
P prefix € C;
Aggvalue=0;
For all Agg € ,(Agg(P1), Agg(P2), Agg(P3)….. Agg(Pm))
Aggvalue=Aggvalue+Agg
End for
Emit (P,Aggvalue)
End procedure

After second iteration produce final results show in fig In next
section we will discussed about experiment results

Pallam Ravi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8325 - 8329

8328

Algorithm 4: MINMAX Multi reducer Iceberg
(MMMIceberg)
 Algorithm Begin procedureMMMIcebergMapper(tl,s)
//p item-sets in tl,Agg is value
I={ }
If(Agg>Threshold)

Emit(p,Agg);
End procedure

A2,B2, 1
A1,B3,2
A2,B1,5

A2,B2, 8
A1,B3,3
A2,B1,9

A2,B2, 0
A3,B1,3
A3,B1,2

A2,B2, 6
A2,B1,1
A1,B3,8

<A2, 1>
<A1,2>
<A2,5>

<A2, 8>
<A1,3>
<A2,9>

<A2, 6>
<A2,1>
<A1,8>

<A2, 0>
<A3,3>
<A3,2>

<A1,13>

<A2, 21>

<A3, 5>

Mappers Reducer

Iteration 1

Figure 3: Iteration-1Itterative Map Reducer

A2,B2, 1
A1,B3,2
A2,B1,5

A2,B2, 8
A1,B3,3
A2,B1,9

A2,B2, 0
A3,B1,3
A3,B1,2

A2,B2, 6
A2,B1,1
A1,B3,8

<A2B2, 1>
<A1B3,2>
<A2B1,5>

<A2B2, 8>
<A1B3,3>
<A2B1,9>

<A2B2, 6>
<A2B1,1>
<A1B3,8>

<A2B2, 0>

<A1B3,13>

<A2B1, 6>
<A2B2,15>

A3

A3

A3

A3

Mappers Reducer

Iteration 2

 Figure 4: Iteration-1Itterative Map-Reducer

4. EXPERIMENT RESULTS
 The performance of algorithms are studied with different
data volume ,the main objective of this study as follows
1. Study the computation for variant algorithms on map
reduce frame work
2. Impact of attribute order based on cardinality
3.Study performance our algorithm with different threshold
values
4.Study performance of min and Max aggregate function in
iceberg queries
The experiment is conducted on environment with 16 GB ram
and i7 8 th intel processor. The software configuration is
established with hadoop 3.0 cluster with single node. The
experiment is conducted on various specifications with data
records ranging from 1 million to 10 million records with
attributes with cardinalities of 10,5,4,3. The Hadoop setup

has different configurations with combinations such as single
reducer and mapper, multiple mapper and reducer. Each
experiment time has been recorded with precision and
accuracy by conducting in suitable environment
in fig 5 shows that iterative algorithm give good performance
that other, in single Reducer (SRiceberg) , mapper generate
huge keys ,which we need shuffles and sort takes the
computation time, with MRiceberg queries the key are
distributed among the reduce so no of sort key per reducer is
minimized so the performance was improved. in IMRIceberg
queries takes advantage of multi reducer ,in it each iteration
prune the candidates based upon threshold values, so the
performance is improved

Figure 5: Performances of our proposed algorithm

in figure 5 show that performances of our proposed algorithm
with different threshold values, IMRIceberg is give high
performance because it is threshold based pruning ,

in figure 6 show attributes cardinality influence the
performance of IMRIceberg in it ascending order give better
then descending order, because no of key generation are less
compared to descending order.

Figure 6: Performances of IMRIceberg algorithm with
Attribute ordering

In our experiment we use SUM aggregate function ,our first
two algorithm can used other all aggregate values also but in
IRMiceberg algorithm only applicable for anti-monotone

Pallam Ravi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8325 - 8329

8329

aggregate functions only, it not works for non anti-monotone
functions like AVG,
For MIN and MAX aggregate function the pruning will done
in mapper only ,the mapper generate key only when that
aggregate value is satisfy the threshold values, Our algorithm
will work with multi nodes in a cluster and multi mapper also
.

5. CONCLUSION
with huge volume data ,Generate candidate set for iceberg
query computing with the parallel and distributed
map-reduce framework is suitable because it have map and
reducer phases. multi reducer and iterative manner allocation
strategies to reduce memory requirement to allocate the key
to reducer ,the effective way of allocate key s is decreasing
order of their cardinality of attributes. For MIN and MAX
aggregate function the pruning will done in maper only ,the
mapper generate key only when that aggregate value is satisfy
the threshold values. Our algorithm will work with multi
nodes in a cluster and multi mapper also. The future study is
improve the AVG aggregation function iceberg query
performance with map-reduce framework..
.

REFERENCES

1. M. Fang, N. Shivakumar, H. Garcia-Molina, R.
Motwani, and J.D. Ullman Computing Iceberg
Queries Efficiently Proc. Int’l Conf.VLDB, pp.
299-310, 1998

2. Bae and S. Lee Partitioning Algorithms for the
Computation of Average Iceberg Queries,”
Proceeding.Sec Int’l Conf. DaWaK , 2000.

3. Pallam Ravi,D.Haritha Average iceberg queries
computation with state buckets counter”. SSRG
International Journal of Engineering Trends and
Technology, 2020, 68(8), pp. 53-57.

4. Pallam Ravi, D.Haritha A Survey: Computing
Iceberg Queries”, IJET 7(2.7).

5. B.He et al Efficent computing Iceberg queries using
compresed bitmap index IEEE Trans’ On Know
And Data Eng’, 2012

6. V shanker et al Cache Based Evaluation of Iceberg
Queries “ICCCT-2014

7. V Shanker et al Effective Iceberg Query Evaluation
by Deferring Push and Pop Operations, IJAC
Vol.36, Issue.2.2015

8. V Shanker et al, Answering Iceberg Queries
Efficiently Using Check Point Mechanism,IJAC ,
Vol.46, Issu.2,2015

9. Pallam Ravi and D Haritha Computing Iceberg
Queries Having Non Anti Monotone Constrains
With Bit Map Number, JATIT,Vol. 8. No. 2 -- 2016

10. K.P. Leela et al On Incorporating Iceberg Queries
in Query Processors, Proc. Intl Conf. DASFAA, pp.
431-442, 2004.

11. Y.Cui and W.Perrizo Aggregate Function
Computation and Iceberg Query-ing in Vertical
Database”, CTA, 2006

12. 4. 5. J. Han, J. Pei, G. Dong, and K. Wang, Efficient
Computation of Iceberg Cubes with Complex
Measures, Proc. ACM SIGMOD Int‟l Conf.
Management of Data, pp. 1-12, 2001.

13. K.S. Beyer and Ramakrishnan R, Bottom-Up
Computation of Sparse and Iceberg CUBEs, Proc.
ACM SIGMOD Int‟l Conffeence. Management of
Data, pp. 359-370, 1999.

14. S. Agarwal et al On the Computation of
Multidimensional Aggregates Proc. Int’l
Confference. VLDB , pp. 506-521, 1996.

15. R. Agrawal et al Mining Association Rules
between Sets of Items in Large Databases,” Proc.
ACM SIGMOD Int’l Conference Mgmnt of Data,
pp. 207-216, 1993.

16. G. Antoshenkov Byte-Aligned Bitmap
Compression, Proceeding.Conf.Data Compression
PP. 476, 1995.

17. K.S. Beyer and R. Ramakrishnan, “Bottom-Up
Computation of Sparse and Iceberg CUBEs,”
Proceeding. ACM SIGMOD Int’l Conference.
Mgmnt of Data, pp. 359-370, 1999.

18. C.Y. Chan and Y.E. Ioannidis, “Bitmap Index
Design and Evaluation,” Proc. ACM SIGMOD
Int’l Conf. Management of Data, 1998.

19. F. Delie`ge and T.B. Pedersen, “Position List Word
Aligned Hybrid: Optimizing Space and
Performance for Compressed Bitmaps,” Proc. Int’l
Conf. Extending Database Technology (EDBT), pp.
228-239, 2010.

20. Lakshmi L,A Comparative Study of Navigation
Techniques and Information Retrieval
Algorithms for Web Mining,IJATCSE,vol 8(1.3)
pp 10-14

21. Pallam Ravi and D.Haritha Efficient computation
of min & max iceberg queries using value based
property.Journal of Engineering Science and
Technology Review, 2019, 12(6), pp. 202-207

