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ABSTRACT 
 
In today's technology era, Convolutional Neural Networks 
(CNNs) are the limelight for various cognitive tasks because 
of their high accuracy. With the increasing complexity in the 
applications, CNNs present high computation and storage 
demands which call for customized hardware support to boost 
their performance. The streaming nature of CNN's workloads 
makes them suitable for hardware implementations like 
FPGAs and ASICs. Providing sufficient resources alone 
cannot solve this difficulty, which makes Approximate 
Computing a solution. This article gives an insight into 
various approximate computing techniques used to accelerate 
the CNNs at multiple levels for the hardware 
implementations. The survey has been conducted by 
considering different metrics: approximation technique used, 
datasets used for evaluation, network structure (AlexNet, 
LeNet, Visual Geometry Group (VGG) ), hardware platform 
for implementation (Application Specific Integrated Circuit 
(ASIC) or Field Programmable Gate Array (FPGA)), training 
or testing phase and results (in terms of accuracy, area, power, 
throughput, resource utilization). The approximate 
computation techniques applied at the various levels of the 
network and layers are discussed. Necessary comparisons 
have also been made to know the utility of these techniques for 
yielding more significant performance gains with minimal 
losses in the accuracy. Methods are presented with recent 
contributions in the state-of-the-art image processing 
applications along with the various future outlooks based on 
the studies made.  
 
Key words : Approximate Computing, Convolutional Neural 
Networks (CNNs), hardware accelerators, Image Processing 
 
1. INTRODUCTION 
 
In today’s technological and applicative world, Deep 
Learning (DL) is being used widely for many applications in 

 
 

various domains ranging from speech recognition, medical 
image analysis, image processing, object recognition, natural 
language processing, healthcare and so on. Deep 
Learningwhich is a part of Artificial Intelligence (AI) and a 
class of Machine Learning (ML) has placed its mark in 
performing many real-time tasks because of its ability to learn 
the problem and give better results [1-5]. The Deep Learning 
techniques are composed of artificial neural networks which 
are inspired by the human brain. Convolutional Neural 
Networks (CNNs) is one of the widely used Deep Learning 
techniques for applications like image classification [1], digit 
recognition [2], image recognition [3], detection [4], and 
many machine vision-related tasks. The CNNs have gained 
immense popularity in the recent trends because of their 
near-human accurate results. The CNNs give high 
performance at the cost of requiring a massive amount of 
resources, memory and high computational cost. So this calls 
for a dedicated hardware platform to meet the performance 
criteria and to accelerate the networks to be power and 
energy-efficient for mobile applications. The acceleration of 
CNNs on platforms like CPU and GPU is not adequate 
because of low throughput and low energy-efficiency. The 
ASIC implementation of these networks suffers from the 
problem of reconfigurability, high investments and design 
cycle complexity. The reconfigurability, high throughput 
compared to CPUs and GPUs, high performance compared to 
CPUs, better energy efficiency features of the FPGAs make 
them a suitable platform for the acceleration of CNNs [6]. The 
development of CNNs in recent times is increasing the 
sparsity and use of customized data types. In this aspect, 
FPGAs effectively increase the utilization of the resources by 
supporting the customizable compact data types. However, 
with these attractive features, the FPGA acceleration of CNNs 
poses some challenges. For example, consider AlexNet, 
which has more than 60 million parameters and requires a 
storage capacity of approximately 250 MB when represented 
in 32-bit Floating-Point model [7]. This results in the memory 
overhead for the FPGA as it exceeds the on-chip memory 
capacity. Using the external memory for storing those 
parameters and moving values from/to FPGA increases 
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performance overheads. With the increasing size of the CNN 
structures like VGG, GoogleNet requires memory 
requirements furthermore. This calls for the necessary 
optimizations to be done to the CNNs at different stages like 
inference and training to achieve  
high-performance gains in practical implementation.  

1.1 Need for Approximate Computing 
A general CNN architecture has an input layer and an output 
layer with many intermediate layers. The middle layers of 
CNN consist of many layers like Convolutional layers, 
Activation layers, Pooling layers and Full connected layers. 
The convolutional layers are computationally intensive, and 
the fully connected layers are memory expensive. The 
computational workload and memory requirements are based 
on the number of MAC (Multiply and Accumulate) 
operations and the number of parameters required for 
performing the task. So, in order to minimize the overall 
resource requirements, necessary optimizations are to be done 
to the networks to eliminate the ineffective computations at 
all the possible levels by using the approximation knobs [8]. 
The Approximate Computing (AC) uses the gap between the 
accuracy needed by the application and efficiency given by the 
computing system enabling various optimizations. The scope 
for AC involves the need for approximation where an inexact 
solution is sufficient for solving the complex problems, 
efficient optimization and configurable quality. The AC is 
mainly used for the applications which are error-tolerant like 
scientific computing [9], image and signal processing [10], 
deep learning [11] and so on. In the current scenario, Google 
is using this AC technique for their Tensor Processing Units 
(TPUs) which is a custom ASIC used as an accelerator for 
neural networks [12]. The TPUs use Quantization technique 
to reduce the neural network prediction cost, where 32-bit 
floating-point calculations are converted into 8-bit integers. 
The approximations can be made at various levels of a system 
used for the application. For example, approximations can be 
made at the circuit level where the exact adders and 
multipliers can be replaced with approximate adders and 
multipliers, which reduces the hardware overhead. The 
approximated multi-bit adder circumvents the carry chain in 
order to reduce the critical path delay, which increases the 
performance of the circuit and energy-efficiency but traded 
for accuracy [13].  The Approximate Computing is based on 
the relaxations provided to the exact computing in order to 
increase the performance efficiency of the systems in terms of 
area, speed and power.   
 
In this paper, we presented the survey of approximate 
computing techniques applied at the various levels of CNN 
implementation for Image Processing applications. These 
CNNs are fully-connected structures which can reduce the 
parameters of the model without any loss in the quality of the 
models. This makes CNNs more suitable for many image 
processing applications because of the high dimensionalities 
in the images. The convolutional layers of the CNNs are the 
feature extractor blocks which extracts required features from 
the input image by sliding the kernels over the image, 

reducing the dimensionality. This makes CNNs suitable for 
many image processing applications like handwritten digit 
recognition, image classification, object detection. With the 
increasing complexity of the use, Approximate Computing 
along with hardware acceleration can fuel the performance of 
the CNNs. The approximations done at the structural level of 
the CNN includes pruning and weight sharing where the 
unimportant weights in the neural network structure are 
removed thus reducing the network density and increasing the 
performance in terms of energy and memory utilization. The 
approximate adders and multipliers used at the circuit level 
achieve improved efficiency in terms of power and area usage, 
thus reducing the hardware costs. Approximating memories 
also give significant reductions in the area used on the 
hardware. The approximations for lowering the precision of 
the data includes fixed-point quantization, dynamic 
fixed-point, power-of-2 and using binary weights which 
reduces the complexity in performing the complex operations 
of MAC units. The CNNs can be approximated at both the 
training phase and the inference phase of it. The pruning 
technique is applied to the network in the training phase, and 
the network is re-trained unless desired error rate is obtained 
[14]-[16]. The precision reduction techniques like fixed- 
point, dynamic fixed-point, power-of-2 and binary 
quantization are applied to a trained neural network for the 
CNN inference [17]-[20]. The approximated hardware units 
like approximate multipliers can also be utilized to improve 
the training performance of CNNs in terms of speed, area and 
power [21].  
 
The paper is organized as follows, a brief discussion about the 
Convolutional Neural Networks and its layers with their 
functionality in section 2. Section 3 presents various 
approximate computing techniques used at different levels of 
CNN implementations for the acceleration of the 
computations by considering multiple hardware 
implementation platforms like FPGAs and ASICs. Section 4 
summarizes the work and explores future outlook.     
  
2. OVERVIEW OF CNNs 
 
The Convolutional Neural Networks (CNNs) are a type of 
deep neural networks which have been widely applied in 
computer vision applications. These CNNs gained utmost 
popularity in computer vision application in 2012 when more 
significant results were obtained for the application of object 
detection in the ImageNet Large Scale Visual Recognition 
Competition (ILSVRC) [1]. The image classification error 
rate achieved was 15.3% which was less compared to previous 
years 2011 (26%). The first CNN basis was established in 
1998 by an object where they considered the neuron 
organization of the cat's visual cortex as an artificial neural 
network [22]. The CNNs are deep and feed-forward neural 
networks. It is a sparsely connected network which has the 
advantage of weight sharing, which reduces the total number 
of parameters [23]. The CNNs are used in two phases, namely 
training and inference. In the training phase, the neural 
network is modelled by getting trained with the large volume 
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of data set samples. Back-propagation algorithm is used to 
iteratively update the network parameters like weights in 
order to improvise the model prediction. In the inference 
phase, the learnt model is tested with a new set of data 
samples [24].   

A.  Convolutional layers 
     Convolutional layers are the building blocks of the CNNs. 
The main operation in this layer is convolution, so the name 
convolutional layer. In this layer, the input  (also called 
Feature Map) is convolved with a sliding window (Kernel or 
Filter) of size k x k. The Filter is shifted all over the input 
image, and the convolutions obtained individually are 
summed up. The convolution operation is the element-wise 
multiplication between the Kernel and the kernel sized patch 
of the input image.  The repeated convolution of the same 
Filter to the input image gives a map of activations which are 
known as Feature Maps (FMs). These FMs indicate the 
location of the dedicated features of the input image. The 
output Feature Map of a convolutional layer is 
mathematically given by equation (1) in [25]. 
 

Yi = f (b +  )   where i = (1,2,…,m)        (1)                                                                                       
 
Where b is the bias value, and f is the non-linear activation 
function to limit the value of a pixel to a suitable range. 

The  symbol represents the convolution operation between 
the input image and the Kernel. These convolution layers are 
computationally intensive as the number of MAC operations 
increase with the increasing input size.  

 B.  Activation layers 
The Activation layer follows the convolutional layer. The 

activation function applies a non-linear transformation to all 
FM values. These activation functions decide the firing of the 
neurons. The different activation functions are Sigmoid, tanh, 
ReLU, leaky ReLu, Maxout and ELU. Sigmoid and tanh are 
the non-linear activations which make the neural networks 
able to model the complicated decision boundary 
classification. ReLU is the widely used activation function for 
the neural networks as they satisfy the approximating 
property of neural networks. The ReLU is a piecewise linear 
activation function which incurs less computation cost and 
minimum training time and has become the default choice for 
deep learning networks.  

C.  Pooling layers 
The primary use of pooling in CNNs is to reduce the size of 

the image obtained from the previous layers. These layers are 
placed in between the successive convolutional layers 
appropriately. With the reduced image size, the number of 
parameters are reduced, thereby decreasing the computations 
to be performed. There are two types of pooling techniques, 
Max pooling and Average pooling. In Max pooling, the 
maximum value of the neurons in the FM is considered and 
given as output. In Average pooling, the average value of the 
neurons in the neighbourhood is taken as output. Max pooling 
technique is being used widely in recent times. This pooling 

technique is the process of downsampling the adjacent 
pixels.  

 
Figure 1: Example of Pooling 

Figure 1 shows the different pooling schemes commonly used 
in the CNNs. The stride controls the convolving of the Filter 
with the input. The stride determines the shift of the Filter 
over the input. For the example shown in the above figure, the 
Filter is shifted by two units every time, and the 
corresponding pooling operation is performed. In Figure 1, 
we consider a 4 x 4 FM and a filter of size 2 x 2 with stride = 
2. When the Kernel is slid over the first 2 x 2 patch of the FM, 
for Max pooling the maximum value of (1, 0, 2, 1) is given in 
the output FM, for Average pooling the average of (1, 0, 2, 1) 
is given in the output FM. This is continued until the Filter is 
slid all over the input FM. The output of this layer is the 
shrunken form of the input.  

D.  Fully Connected layers 
The fully connected layers are memory intensive layers. 

The input and output layer's neurons are connected fully with 
each other. These layers are computed using matrix 
multiplications, and also the output of the fully connected 
layers are applied with a non-linear function similar to 
convolutional layers. The fully connected layers classify the 
features extracted by the convolutional layers.  

Yi =    where i = (1,2,…,m)                     (2)                
The equation (2) [25] represents the output vector of a fully 

connected layer where the input FM to this layer is multiplied 
with the weight matrix. In the equation Xi represents the input 
FM and Wi,j represents the weight matrix of the fully 
connected layer. 

 
3. CLASSIFICATION OF APPROXIMATE COMPUTING 
TECHNIQUES 
 
The approximate computing techniques applied to accelerate 
CNN's performance are given in Figure 2. These 
approximations can be used at various levels of the neural 
network. Depending on the layers of abstraction we have two 
types of classifications, software-level approximation and 
hardware-level approximation of the CNNs. The data 
represented with high precision requires a large amount of 
memory to store the parameters and the results of the 
intermediate operations. The computations on such high 
precision data require costly hardware units which require 
more power and large chip area. This presents the use of 
hardware-software co-design approximation techniques  
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              Figure 2: Classification of Approximate Computing techniques for CNNs 

 
which is the third classification of approximate computing 
techniques for CNN. The approximations to the structure of 
the network can be made by using Pruning and Weight 
Sharing techniques. These structural level approximations to 
the network reduce the number of parameters by removing the 
redundant and unimportant connections in the network 
layers. The CNNs can be accelerated by using approximated 
computational units like adders and multipliers and also 
approximated memories which increases the 
energy-efficiency and reduces hardware area and cost. The 
Network level approximations reduce the computational and 
memory workloads by decreasing the precision of the data in 
the network. Further sub-sections discuss the various works 
that use approximate computing techniques for CNN 
acceleration.   

3.1 Software-level Approximate Computing technique 
The software level approximations to the neural network try 
to skip the computations to improve the overall execution 
time. The approximation techniques at this level require the 
support of algorithms to tune the network with 
approximations, so the name software-level approximate 
computing. The methods under this level modify the structure 
of the neural network.   

A. Pruning 
This is the approximation technique used at the structural 
level of the CNN model. This is a type of model compression  
where the size of the network or model is reduced by making 
required approximations. There are two ways of compressing 

the network, pruning (decreasing the number of weights) and 
reduced precision (the bit width to represent the data is 
reduced). The neurons present at various layers of the network 
are connected to each other with the weights. These 
connections indicate convolution or matrix multiplication 
operations. Pruning is the approximate computing technique 
in which connections in the neural network involving in such 
activities are removed. This is because all the connections in a 
neural network are not equally important, so some of them 
can be ignored while performing the operations. The 
connections to be removed depending upon the importance of 
the weights adhered to those connections in the network. 
There are two types of pruning strategies, structured pruning 
and unstructured pruning. These two strategies differ 
regarding the connection's location information. In simple 
pruning technique, the non-effective weights of the network 
are pruned without considering the connection's location. In 
structured pruning technique, the pruning of non-effective 
weights is done by considering the connection's location. 
Depending on the pruning granularity, we have four different 
pruning techniques like Fine-grain (a), Intra-kernel (b), Filter 
(c) and Kernel (d) represented in Figure 3. The Fine-grain 
technique is an unstructured pruning technique, and the 
remaining three techniques are structured pruning 
techniques.  
 
Unstructured Pruning 
 
In the unstructured pruning, non-effective connections in the 
neural network are removed irrespective of the location of  
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Figure 3: Pruning Granularities  (a) Fine-Grain (b) Intra-Kernel (c) Kernel (d) Filter 

connections, thus making a dense network into a sparse one. 
The number of parameters is minimized, but this technique 
induces irregularity in the network, which causes memory 
access inefficiency and low memory bandwidth utilization. 
Parashar et al. [26] proposed an SCNN accelerator for a 
sparse convolutional neural network which performs deep 
encoding of the sparse weights and activations in order to 
retrieve only non-zero values from memory. This accelerator 
increases the energy-efficiency by eliminating the 
multiplications involving zero weights and by maintaining 
the compressed format of weights and activations throughout 
the computation. The unstructured pruning achieves great 
compression ratios but has certain limitations like irregularity 
in the network structure and high training complexity [28].  
 
Fine-Grain pruning is an unstructured pruning technique 
where each scalar weight can be pruned. Han et al.  [29] 
adopted an iterative pruning methodology where the pruned 
network is trained again and again. When pruning was done 
to the AlexNet, the results showed that the accuracy did not 
fall even when the network was pruned 9x times. From work 
done in [45], high pruning ratios can be achieved, but the 
sparsity induced in the network is complicated. In fine-grain 
pruning technique, a threshold value is set for which the 
weights with values less than the threshold are pruned [30]. 
Zhu et al. [31] present a trade-off between the network model 
size and accuracy, and their work demonstrates that the large 
and sparse models give better performance compared to small 
and dense models.   
 
Structured Pruning 
This pruning technique approximates a large part of the 
neural network, like channel or layer. The less important 
connections are removed by considering their location, so that 
irregularity is not introduced in the network structure. 
Depending on the pruning granularities, we have Intra-kernel 
pruning, Kernel pruning and Filter pruning. The largest 
granularity exploited by the pruning is deleting a single 

feature map or many feature maps. Pruning an entire FM 
implies pruning all the incoming and outgoing kernels of the 
FM. The next granularity in pruning is removing kernels 
completely where a kernel implies one complete convolution; 
this is Kernel pruning. The lowest granularity is exploited by 
Intra-kernel pruning.   
Intra-kernel pruning is a structured pruning technique where 
the set of weights in a kernel with a regular structure are 
pruned. Anwar et al. [32] used a particle filtering approach to 
determine the important connections and paths in the 
network, followed by optimization for the data representation. 
Their approach reduced the convolution complexity by 
utilizing both the intra-kernel striding and convolutional 
lowering.    
 
Kernel pruning is structured pruning technique where any 
kernel from the output feature maps can be pruned. Anwar et 
al.[33] combined both feature map pruning and kernel-level 
pruning for the CIFAR-10 dataset, and the results showed 
that kernel pruning gives better results by reducing the 
number of parameters for the convolutional layers. Their 
work does not pose constraints regarding the pruning mask 
for the outgoing kernels of the FM as that of in [32] for 
reducing the size of FM and kernels. This type of coarse 
pruning technique gives a sparse representation of the 
network, which is beneficial for VLSI based implementations. 
Kernel level pruning is coarser than intra-kernel pruning and 
finer than FM pruning which makes it to achieve better 
pruning ratios.  
 
Filter pruning is a structured pruning technique where a 
group of kernels belonging to same output feature map are 
pruned. Molchanov et al.[34] proposed a Taylor-expansion 
based pruning criteria to reduce the cost of hardware and also 
exploited filter pruning technique. 
In the 1990s, the optimal brain damage study was performed 
where the diagonal Hessian approximation was used for 
computing saliency of the parameters and the less salient  
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Table 1:  FPGA based CNN acceleration with Pruning technique 
Contributors Pruning 

type 
Network 
layer 

Network 
structure 

Device Frequency 
(MHz) 

Bit width Hardware resource 
utilization 
 

Accuracy 
(%) 

Achievements 

Sun et al., 
2017 [41] 

Unstructur-
ed 

FC layer AlexNet Virtex-
7 
VX485
T 
FPGA 

100 16- bit 
fixed- point 

2378 (D),  287396 
(L), 498.6 GOP/s 
(T),23.4 (P) 

- The power efficiency 
of 21.3 GOP/s/w and 
number of weights in 
FC layer reduced by 
10x  

Zhang et al., 
2019 [14] 

Unstructur-
ed 

Convoluti
onal and 
FC layers 

AlexNet Xilinx 
Zynq 
ZCU10
4 

300 8- bit fixed 
-point 

696 (D), 101953 (L), 
198.50 (B),290.40 
GOP/s (T) for 
convolutional 
layers,14.11 GOP/s 
(T) overall, 17.6 (P) 
 

57.14 
reverse 
accuracy 
and 57.18 
peak 
accuracy 

AlexNet size reduces 
from 240 MB to 8.73 
MB, 182.3x and 1.1x 
improvements for 
latency and 
throughput 
respectively 

Caiwen et al., 
2017 [37] 

Structured FC layer AlexNet Altera 
Cyclon
e V 
5CEA9 
FPGA 

250 16- bit 
fixed- point 

700 GOPs (T) 
 

56 6 – 102x energy 
efficiency 
improvements 

Seungsik et al., 
2019 [15] 

Structured Whole 
network 

VGG-16 Stratix 
V 
FPGA 

100 7b linear 
quantizatio
n 

324 (D) 53.46  Upt o 30% reduction 
in memory footprint  

Liqiang et al., 
2019 [28]  

Unstructur-
ed and 
structured  

Convoluti
onal layer 

VGG, 
AlexNet, 
ResNet, 
GoogLeN
et 

Xilix 
ZCU10
2 

200 16- bit 
fixed- point 

1144 (D), 522k (L), 
912 (B), 23.6 (P),309 
GOP/s (T),  223 
GOP/s (T),  291.4 
GOP/s (P),  257.4 
GOP/s (P) 
respectively 

- 2.4x – 12.9x speed up 
and 89.2%, 88.3%, 
76.5%, 65.8% 
sparsities for the 
mentioned networks 
without any accuracy 
loss 

Niu et al., 
2019 [16] 

Structured 
(Kernel)  

Convoluti
onal layer 

VGG-16 Xilinx 
Virtex-
7 
XC7V
X690T 

200 16- bit 
fixed- point 

3200 (D), 237k (L), 
1200 (B) 
 

90.8  24x higher throughput 
with this 
implementation 

Kang et al., 
2019 [31] 

Structured Whole 
network 

VGG-16 Xilix 
Virtex 
7 

210 - 3074 (D), 181k (L), 
1470 (B), 10.14 
(P),8975 GOPS (T) 

78.3 87.5% pruning is 
achieved and 42 FPS 
frame rate 

Rastislav et al., 
2019 [40] 

Unstructur-
ed 
(fine-grain) 

Convoluti
onal, 
pooling 
and FC 
layers 

AlexNet 
VGG-16 

Xilinx 
ZCU10
2 

214 16- bit 
fixed- point 

237 (D), 244464 (L), 
516 (B),68.71 (T) 
GOP/s, ,213.26 
GOP/s (T)  
respectively 

- 14.10 times faster than 
Eyeriss accelerator 

Li et al., 2019 
[42] 

Stuctured 
pruning 

Convoluti
onal and 
FC layers 

VGG-16 
ResNet-1
8, 
ResNet-1
52 

Xilinx 
Zynq 
ZC706 

140 16- bit 
fixed-point 

592 (D),  218600 (L), 
545 (B) ,130.1 GOP/s 
(T) for convolutional 
layers and 109.18 
GOP/s (T) for FC 
layers in case of 
VGG-16,94..28 
GOP/s (T), 115.56 
GOP/s (T) 
respectively 

- Offers high flexibility 
and 88% reduction in 
weights for FC layers 

D : DSPs, L : LUTs, B : BRAM, P : Power(W), T: Throughput(GOP/s) 
 
parameters of the network were pruned using second-order 
Taylor's approximation [35]. Hassibi et al. do even the work 
[36] used pruning to remove the less salient weights where the 
inverse Hessian matrix was used to get the saliency of the 
parameters in the network. Sicheng et al. [38] proposed a 
hardware-software co-design framework to speed up the 
acceleration of sparse CNNs by using sparsification schemes 
and the network was implemented on Xilinx Zynq ZC706 and 
has taken less processing power compared to a dense CNN. 
Seungisik et al. [15] proposed a network stacking strategy  
where multiple networks with different pruning ratios are 
compressed by stacking the networks. In their proposed work, 

the network requiring considerable memory resources were 
trained using highest pruning ratio and then using structured 
pruning strategy, an accurate model was developed for edge 
level applications. While performing the pruning, a sparse 
network is obtained with irregularity and also random 
connections causing limitation to the CNN inference. Liqiang 
et al. [28] proposed a hardware accelerator on FPGA for the 
inference of sparse CNNs. Their work proposed weight-based 
dataflow technique which performs element-wise matrix 
multiplication instead of the spatial convolution. Heavy 
pruning of the spatial neural network may reduce the 
computation and overhead memory problems but may not 
have faster inference. The work done by Niu et al. [16] was 
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the first work to prune the spectral CNNs and accelerate them. 
Their work proposed SPEC2, a new way to speed up the 
inference of the spectral CNNs. Their work reduces the 
computations by using the spectral transformation and uses 
kernel pruning for reducing the memory resources to store the 
parameters. The buffer multipliers to store weights are not 
used efficiently when a pruned CNN is accelerated on the 
hardware. This is because of the irregular sparsity and 
miss-alignment caused by pruning. In order to overcome this 
problem Kang et al.[39] used an accelerator-aware pruning 
technique and accelerated on XC7VX690T FPGA so that the 
weight storage buffers and multipliers are used effectively.  
 
Table 1 presents the various works done in recent years for the 
CNN acceleration using pruning technique. Various metrics 
of the CNN implementation on the FPGA platform are 
compared, and the achievements of the works are discussed. 
Many works presented, have used the Imagenet dataset for 
their evaluation and achieved more significant results for 
image recognition and detection applications using the 
structured pruning technique. From the table, it can be 
inferred that structured pruning has been widely used for 
getting better compressibility of the network and performance 
throughput. Kernel level granularity of the structured pruning 
has achieved better accuracy results compared to other 
structured pruning granularities, and this gives 100% 
pruning. For significant computations savings on hardware, 
Intra-kernel sparsity has a greater advantage. Larger 
performance gains are observed when pruning and 
quantization were used together to approximate CNN. The 
structured pruning is well suited for the CNNs but may not be 
extended for other neural networks like LSTM, which lack 
structural properties. So efficient optimizations can be made 
to structured pruning technique to make it extensible for other 
neural networks. The unstructured pruning obtained high 
pruning ratios but induces irregularity into the networks, 
which causes over-fitting problem and memory access 
burden. This gives a scope to find optimizations in the 
unstructured pruning to remove the irregular sparsity 
problem.     

  B. Weight Sharing 
Weight sharing is another type of approximate computing 
technique applied at the structural level of the CNN model. 
Weight sharing technique does not reduce the computational 
workload, but the memory required to store these weights is 
decreased, thus decreasing the memory overhead. Chen et al. 
[43] used HashNet, which applies a hashing trick to the 
network to find shared weights for a layer. Their technique 
determines weight sharing before the training, but the work 
proposed in [44] finds the weight sharing for a fully trained 
network. Han et al.[44] introduced an in-depth compression 
approach which follows three pipeline stages, pruning the 
network, quantization for the trained network and Huffman 
coding. In their work, the number of essential weights is 
limited by making the multiple connections share the same 

weights and later the shared weights are fine-tuned. Their 
work used k-means clustering technique to find the shared 
weights for every layer of the neural network and has 
achieved 35x to 45x reduction in the storage without 
degrading the accuracy. Parallel accumulate share MAC 
(PMAC) is used in a weight-shared CNN in order to 
accelerate the CNN in terms of power and area [45]. Weight 
sharing can be the area of interest mainly for the applications 
requiring less memory bandwidths and is also applicable for 
the deep learning networks like RNNs, and LSTM. This 
technique supports the fast inference of the CNNs in an 
embedded platform requiring small storage areas. The pruned 
network has been standard on different hardware platforms, 
but the weight sharing for the quantized network has not been 
improvised. The advantage of weight sharing technique, to fit 
the network model in hardware is still uncovered. This 
advantage can be exploited by a hardware solution, where a 
customized ASIC architecture can be built to deploy the 
quantized sparse neural network by extending the advantage 
of having customized bit width for quantization. The 
HashNets showed greater results when implemented on GPU 
platforms, so for better hardware achievements, they can be 
implemented in FPGA and ASIC platforms. In further works, 
HashNets along with pruning can be used for even better 
performance.   

3.2 Hardware-level Approximate Computing technique 
The hardware layer is approximated in order to have 
simplified hardware structures for implementing the CNNs 
and accelerating their performance. The MAC operations in 
the CNNs require lots of computations and memory 
resources, so approximations can be made at the hardware 
level to ease the calculations and reduce hardware costs. So 
approximate adders and multipliers can be designed in order 
to execute MAC operations by increasing performance and 
energy gains quickly. Approximations can be made at a 
memory level for improving the energy and power 
requirements in the circuit.  

A. Functional Approximations in computation modules 
The computational module for a CNN is the MAC unit, which 
comprises of adders and multipliers to perform the 
convolution operations. The multiplication operations 
generally are power consuming and require sophisticated 
hardware units which call for approximations to achieve 
required performance gains. The approximations made to 
adders and multipliers increases the throughput and 
power-efficiencies. Approximate computing is exploited for 
adders, multipliers and dividers in order to achieve high 
performance for error-tolerant applications [46]. Adders are 
the basic arithmetic circuits in any computing systems. A 
multiplier comprises of mainly three parts partial product 
generation by AND gate, partial product reduction by an 
adder and adding the final result by a Carry Propagation 
Adder  
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Table 2: Approximate adders and multipliers for CNN acceleration in VLSI implementations 
Contributors Approximate 

adder / 
multiplier 

Network 
structure 

Bit 
width 
(bits) 

Implementation Performance  
metrics 
ASIC/FPGA 

Frequency 
(MHz) 

Accuracy 
(%) 

Achievements 

Kim et al., 
2015 [51] 

Approximate 
Mitchell’s log 
multiplier 

AlexNet 16,32 32 nm digital 
standard cell 
library, synopsis 
design compiler 

0.61 mW (P), 
1.08 mW (P) 
respectively,113.
5 um2 (A), 
209um2 (A) 
respectively 

190 
 

84.87 Proposed design 
saves 80% of 
energy compared to 
32 bit fixed point 
multiplier 

Kim et al., 
2018 [52] 

Approximate 
Mitchell’s log 
multiplier 

LeNet 
CudaCon
vNet 

8, 16, 
32 

32 nm digital 
standard cell 
library, synopsis 
design compiler 

0.197 mW (P), 
0.549 mW (P), 
1.41 mW (P) 
respectively,312 
um2 (A) , 909 
um2 (A), 2161 
um2 (A)  
respectively 

250 99.02,81.43 
respectively 

76.6 % power 
reductions 
compared to fixed 
point multiplier 

Faraone et al., 
2019 [53] 
 
 

Reconfigurable 
constant 
coefficient 
multiplier 
(RCCM),2 
ADD, 
3-ADD,4-ADD 

AlexNet 4,6,8 Xilinx KU115 
FPGA 

7.6W (P), 7.6W 
(P), 7.8W (P) 
respectively,187 
k (L)  , 205.6 k 
(L), 255.8 k (L) 
respectively 

250 79.8, 79.8, 
80 

50% resource 
savings is obtained 

Wang et al., 
2019 [54] 

Approximate 
Multiply 
Accumulate 
Array (AMMA) 

Random 
input data 
samples 

8, 12, 
15 

Xilinx XC7Z020 432 (L), 922 (L), 
1186 (L) 
 

236.74 - 10.7x faster than an 
exact multiplier 

Ansari et al., 
2019 [59] 

Cartesian-geneti
c programing 
(CGP) based 
approximate 
multipliers 

LeNet - 28 nm CMOS 
technology, 
Synosis design 
compiler 

4330 mW (P), 
92.86 um2 (A), 
87 (L) 

- 87 71.45% reduction 
in energy and 
61.55% reductions 
in area 

Kowsalya et 
al., 2019 [58] 

Pipelined hybrid 
merged adders 
(PHMAC) 

- 13, 32, 
64 

Xilinx Virtex 7 
FPGA 

2 mW (P), 11.70 
mW (P), 45.56 
mw (P),16 (L), 
25 (L), 233 (L) 

- - Area and power 
consumptions are 
reduced by 50% 

Luo et al., 
2019 [57] 

Single Clock 
Cycle Adder 
(SCCA) 

LeNet - 65 nm CMOS 
technology 

0.417 mW (P), 
799.9 um2 (A) 

- 98.7 Speed up increased 
by 2.8x and 59.9% 
reduction in PDP 

Chuliang et al., 
2020 [55] 

Reconfigurable 
approximate 
multiplier 

VGG-16 - Xilinx ZCU102 
FPGA 

0.21 mW (P), 
129 (L) 
 

200 - 17% and 15% 
reductions in 
latency and power 
savings 

P : Power(W), A : Area(um2), L : LUTs 
 
(CPA). The approximations can be performed to the 
multipliers at these three parts [47]. Using logarithmic 
multiplier for approximating the computations in neural 
networks is a promising research area. Many works have been 
developed having improvements over original work done by 
Mitchell et al. [48]. This multiplier has given significant 
performance in terms of power and area by maintaining low 
error rates [49],[50]. To reduce the critical path delay, Yizhi 
et al.  [21] proposed approximate binary multipliers for CNNs 
with binary weights which use 2's complement to represent 
the data. Based on the error tolerance property of the CNNs, 
they also proposed approximate adders for the data path of 
their  
architecture, which reduces the delay and area consumption. 
Reconfigurable constant coefficient multiplier (RCCM) is 
proposed in [53] for area-efficient implementation of CNN on 

FPGA. In their proposed accelerator, the coefficients are 
made constant, and input is multiplied to the fixed coefficient 
using multiplexers or bit shifts so that the multiplier is highly 
optimized for FPGA implementation. For the quantized 
CNNs, the data is represented with different bit precision. 
Implementation of such CNNs may require different 
multipliers for different precisions at various layers of the 
network, thereby causing area overhead and increasing the 
hardware cost. For such quantized CNN applications, 
Chuliang et al. [55] proposed a reconfigurable approximate 
multiplier which can implement multiplications involving 
various bit width representation of the data. In this 
approximate multiplier, the long bit width multiplications are 
made into short ones, and later the results are combined using 
a merging module. Kamel et al. [56] investigated two 
strategies to reduce the hardware cost of the adders, which are 
used to map the CNN directly on to the hardware. Their 
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strategy, serialization of adders and approximating 
computing of the adders when synthesized on FPGA did not 
yield greater results. Thus they put forth an idea of having 
individual DSP blocks in the FPGA. Their work explored how 
the multi-operand adders are challenging for CNNs on the 
FPGA. 
 
Table 2 presents various works using approximate adders and 
multipliers for the CNN acceleration with hardware 
implementations. From the table, it can be observed that the 
approximated log multipliers require less power compared to 
other approximate multipliers for the ASIC implementations. 
The Approximate binary multiplier has less area 
requirements compared to other binary multipliers. It is also 
observed that more significant achievements in terms of area 
and power have been obtained by using these approximated 
adders and multipliers for quantized CNNs. The approximate 
multipliers can still optimize the CNNs in further works when 
combined with pruning and matrix decomposition 
approaches. This gives customized arithmetic, a new 
dimension to be explored.  The studied approximate 
multipliers and adders can further enhance their performance 
by using Stochastic Computing approximation.  

   B. Functional Approximations in memories 
At the hardware level, the memories face limitations like high 
memory bandwidth, latency for memory access, memory 
congestion and power consumptions due to leakages for CNN 
accelerations. The approximate computing is a paradigm 
which allows the error tolerance for many applications in 
order to have power and energy-efficient implementations. So 
with this inexactness in computing, the memories can also be 
approximated to have required savings in energy. The 
approximations in memory include reduction of refresh rate 
reduction for DRAM, threshold voltage scaling for SRAM 
and approximation in SRAM registers. Many modern 
accelerators have widely used embedded DRAMs (eDRAMs) 
because of their high density. Shafiee et al.[60] proposed a 
memristor crossbar array-based CNN accelerator with 
pipeline architecture and used eDRAM buffers for fast data 
transfers between the network layers. 
 
 Chowdhury et al. [61] proposed a memristive accelerator for 
binary CNNs called MB-CNN, which performs the XNOR 
based convolutions and bit-count operations in the 2R 
crosspoint arrays within the memory. Fengbin et al.[62] 
proposed Retention-aware Neural Acceleration (RANA) 
framework which is based on the principle that the DRAM 
refreshment is not required if the lifetime of eDRAM's data is 
less than the retention time of the eDRAM. Their work used a 
refresh-optimized eDRAM controller at the architecture level 
of CNN and implemented RANA in TSMC 65nm GP 
technology. Imani et al.[63] proposed RAPIDNN, a 
framework to accelerate CNN by employing neuron to 

memory transformation. Their structure is modelled to have 
non-volatile memory blocks to perform the operations like 
additions, pooling, activations and additions.  

   C.  Use of Non-Volatile memories 
The non-volatile memories (NVMs) like PCM, STT-RAM 
when used in a system, they enhance the power and energy 
considerations. Even though hardware platforms like FPGA 
and ASIC are used to accelerate the CNNs, they face a 
challenge of data movement cost. All the weights and input 
values from the networks are to be stored, which asks for a 
dedicated memory. One solution to reduce the data movement 
in memories is to use Processing in-memory technique, as the 
logic is implemented inside the memory blocks. This PIM 
performs some computations like bitwise operations within 
the memory, thereby increasing the acceleration performance 
and reducing memory workload. But these NVMs face 
challenges regarding the lifetime of memory and the 
performance which limits their use for practical systems. 
Approximations are introduced in the systems to overcome 
those challenges [63].  
 
The main aim of approximate computing in NVMs is to 
improve the energy efficiency while maintaining the 
reliability of the system. The use of eDRAM and SRAM based 
crossbar memories can minimize the weights transfer 
between the processing units and the off-chip memory but still 
does not give the required performance for the input and 
output data movement. Chi et al. [64] proposed PRIME, a 
new PIM (Processing-in Memory) architecture for CNN 
acceleration which has ReRAM as main memory. In their 
architecture, with the PIM logic, a part of computations can 
be performed within the memory, thus obtaining high 
memory bandwidth through in-memory communication of 
the data. Deliang et al. [65] used in-memory computations for 
CNN acceleration. They proposed an architecture which 
works both as NVM and reconfigurable in-memory logic to 
perform the convolution layer operations. SRAMs can be 
substituted by many NVM technologies like phase-change 
memory, RRAM and STT-RAM for mainly minimizing the 
standby power. The STT-RAM technique is highly adopted 
because of its high density and power leakage, which is near 
to zero. Pan et al. [66] proposed a computing in-memory 
architecture, MLC-SST based on multilevel cells and 
STT-MRAM memories. This architecture was used for 
performing the convolution operations of BCNN to achieve 
less power consumptions. Sun et al. [67] proposed a 
co-processor for CNN with MRAM and in-memory design 
architecture and implemented in 22 nm CMOS technology. 
The weights were stored in the MRAM memory and reused 
for performing the operations with the input. For the faster 
computations, Angizi et al. [68] proposed IMCE, a 
convolutional accelerator for the less bit-width CNN.  The 
SOT-MRAM proposed in their work does two works, 
performs AND/OR logic operations and memory read/write 
operations.  
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Table 3: Approximate memories used for the CNN acceleration in ASIC implementations 
Contributors Approximate 

memory technique 
Dataset Implementation Area 

(mm2) 
Energy 

(J) 
Achievements 

Chi et al., 2016 
[64] 

PRIME, ReRAM 
based main memory 

MNIST, 
ImageNet 

65 nm GP 
technology 

- 18.2pJ ~2360x performance 
improvements and ~895x 
energy consumption 
improvements 

Shafiee et al., 
2016 [60] 

ISSAC, eDRAM to 
store weights and 
in-situ MAC 
operations 

ImageNet CACTI 6.5 at 32 
nm technology 

0.215 - 14.8x, 5.5x, 7.5x 
improvements in 
throughput, energy and 
computational density 
respectively  

Diliang et al., 
2017 [65] 

SOT-MRAM array 
for BCNN 

ImageNet NCSU 45 nm 
CMOS PDK 

5.28 310.42 uJ ~7x and ~1.7x reduced 
energy and area  

Angizi et al., 
2018 [68] 

IMCE, SOT-MRAM 
based design 

ImageNet, 
SVHN, 
MNIST 

45 nm technology 
node 

2.12, 
0.01, 
0.009 

785.25 mJ, 
135.26 mJ, 
0.92 mJ 

~3x reductions in energy 
to process low bit-width 
AlexNet  

Angizi et al., 
2018 [69] 

CMP-PIM, 
SOT-MRAM based 
design 

SVHN, 
MNIST 

45 nm CMOS PDK 1.7 87.54 mJ, 
0.14 mJ 

~94x and 3x increased 
energy efficiency when 
compared with CNN and 
LBCNN 

 
Angizi et al. [69] also proposed a comparator based PIM 
(CMP-PIM) accelerator, which uses parallel memory 
sub-array based on SOT-MRAM as a fundamental unit for 
processing CNNs. Their work used CMPNET, a modified 
CNN to replace the high computation multiplications with 
additions and comparisons. Ikegami et al. [70] proposed a 
CNN accelerator using Voltage control spintronics memory 
(VoCSM), where the binary and ternary computations are 
done using this NVM which gives high throughput. Roohi et 
al. [71] also proposed an in-memory CNN accelerator with 
SOT-MRAM non-volatile device. Their proposed accelerator 
can execute AlexNet with 3.8x and 4.5x reduction in energy 
and area compared to ReRAM based designs when 
implemented on NCSU 45nm CMOS PDK in Cadence 
Spectre. Joshi et al. [72] proposed a methodology to train the 
CNN (ResNet) with no significant accuracy loss when 
weights were stored in phase-change memory (PCM) devices 
which were implemented in 90 nm CMOS technology.  
 
Table 3 presents the area and energy requirements obtained 
by using various approximated memories for the CNN 
acceleration in hardware implementation. It is observed that 
the NVM techniques used for CNN acceleration can be 
utilized both as a memory to store weights and to perform the 
convolution layer operations. It is also observed that the use of 
non-volatile memories has shown more significant 
performance improvements compared with DRAM and 
SRAM memories. The MultilevelMultilevel Cell strategy can 
be used by SOT-MRAM based designs for BCNNs and 
extended network architectures to have greater in-memory 
computing and less power consumptions. The MB-CNN 
architecture uses a memristive crossbar array to perform the 
computations using XNOR gates, which makes this technique 
to be used for more complex CNN structures in future. The  

Stochastic Computing strategy can be further used with these 
approximated memories even further to increase the 
convolution computations.  

3.3 Hardware-software co-design approximate computing 
In the state-of-art of the neural network applications, the 
networks are not much suitable for edge level computations 
because of the increased number of computations and 
requirement of large memory bandwidth. Memory congestion 
and computation complexity occur due to high precision 
representation of the network parameters (bit width) and the 
data paths. For the CNN inference, approximate arithmetic 
can be a better option to design simplified network 
accelerators by reducing the complexity of the design. Many 
hardware-software co-design techniques are being used to 
reduce the memory overload and reduce energy consumption 
for the implementation of neural networks.  
 
The arithmetic operations performed by using a floating-point 
representation of the data makes the computations complex 
and increases the complexity of hardware units like adders 
and multipliers. Many approximations have been made even 
for the floating-point representation units in recent years.  Lai 
et al, [2017][73] proposed a numbering scheme which uses 
floating-point representation for the weights and fixed-point 
representation for the activations. Their work made a study on 
range Vs precision and concluded that floating-point 
representation could provide variable range and precisions 
compared to fixed-point description. Block floating point 
(BFP) arithmetic with quantization and rounding schemes 
have been used in recent trends to improve the hardware and 
energy efficiencies [74],[75]. In order to have reduced 
computational complexity and hardware costs, the 
floating-point arithmetic is replaced with reduced precision 
formats discussed below.  
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    A.  Fixed point 
For faster performance and less memory or resource 
consumption, the floating-point representation can be 
replaced with fixed-point arithmetic by not prioritizing the 
precision. For fixed-point arithmetic the data representation 
is an integer, so the operations on such data can be easily 
implemented in FPGAs. Hamerstrom et al. [76] proposed an 
on-chip learning framework to have high performance and 
low-cost architecture which used 8-16 bit fixed-point 
representation. When designing complex CNN, using DSP 
blocks to store the network causes issues like chip area 
wastage, and also a large number of unimportant details of the 
DSP block confuses. Ahmed et al. [79] proposed an 8-bit fixed 
point parallel MAC unit for full customization of the FPGA 
accelerator of CNN instead of using DSP blocks, achieving 
high computational speeds. Solovyev et al. [24] proposed an 
FPGA implementation for CNN with the fixed-point 
representation of the data in convolutional blocks for 
handwritten digit recognition application. The bit width for 
data representation in convolution block was chosen 
depending on whether rounding the values after each addition 
and multiplication or rounding the values at the end of 
convolution. It is observed that turning the value after each 
elementary operation results in higher performance but also 
increases memory overhead. So it is suggestible to perform 
rounding of the value after convolution. Xiao et al. [17] 
proposed an FPGA implementation of the CNN for 
handwritten digit recognition where all the weights and 
parameters were represented in 18 bit fixed point format 
where the accuracy obtained was 97.5% for recognizing the 
MNIST data set digits. It is seen that handwritten digit 
recognition by CNN with fixed-point arithmetic has higher 
accuracy compared to that of floating-point arithmetic in [80]. 
Hashemi et al. [81] made a study on different representations 
of data, and they evaluated for three different datasets, and 
also they proposed a methodology to maintain accuracy for 
increasing network size at low precision.   

    B. Dynamic Fixed point 
For all the network layers, the values associated with weights 
and parameters may have a different range at different layers 
of the network. The fixed point representation should be 
capable of providing a wide range of values for different 
network layers, or else there will be accuracy degradation. 
This dynamic fixed-point representation is used for the 
intermediate values of the network layers. The wide dynamic 
range coverage limits the fixed-point representation. So the 
dynamic fixed point is used when large range for the 
activations of the network layers is allowed. Ristretto, an 
approximation framework is introduced to analyze the CNNs 
regarding the numerical representation of the weights and 
outputs of both convolutional and fully connected layers [19]. 
This framework uses dynamic fixed-point representation and 
results when compared, says that the fixed point maintains 

the accuracy for bit width up to 18, below which there is 
accuracy degradation. With this type of representation of the 
network, the advantage is that the computation complexity 
and the resources required are reduced.   
   C.  Power-of 2 Quantization 
It is known that for any CNN, the multiplication operation 
requires a lot of computation, and it requires a complex 
design to be implemented in hardware. So the multipliers are 
to be replaced in order to have power and area-efficient 
hardware units. This power-of-2 is one such approximate 
computing technique where the weights in the CNN are 
quantized to 2i format. This type of quantization represents 
the data with low bit width and gives less accuracy 
degradation. This approximation allows using barrel shifters 
instead of multipliers for performing the operations, thus 
reducing the complexity. In many of the neural networks, the 
weights and activations may not be distributed uniformly. For 
such non-uniform distribution of data, non–linear 
quantization can be used. Vogel et al. [83] presented a 
power-of-arbitrary-log based quantization for the pre-trained 
CNN, and their performance in terms of power and energy 
efficiency were compared with 8-bit fixed point multiplier. 
Using different precision and different arithmetic for the 
same CNN structure can give better results with less accuracy 
degradation. Zhao et al. [84] was the first work to use the 
multi-precision and multi arithmetic representations for the 
CNN acceleration on the FPGAs. They proposed a Tomato 
framework for CNN acceleration, where they used both 
power-of-2 and fixed-point representation for the weights. 
Large bit reduction for the data representation in the neural 
network suffers from the accuracy loss. This challenge is 
addressed by Fong et al. [86], where they proposed 
Incremental Network Quantization (INQ) strategy. The 
weights are represented in low bit format as power-of-2 such 
that computation difficulty is minimized as general shift 
operations replace the multiplications.  
   D.  Binary Quantization 
This type of quantization reduces the accessing of memory as 
the weights and parameters are represented with a single bit, 
thus reducing the memory bandwidth. For this quantization, 
the complex multipliers are replaced with multiplexers. In 
this type of representation, the weights are represented in 
binary. If the weights and activations of the CNNs are 
described in the binary format, then those neural networks are 
called Binarized Neural Networks (BNNs). There are two 
types of binarization:  

1. Binarized weights and activations with full precision 
2. Binarized weights and activation 

The first type uses conditional negation for multiplications 
and reduces the memory requirements for the storing of 
weights. In the second type, the MAC operations are replaced 
with XNOR based activities and signed bit count. It is known 
as full-binarization when all the input, output activations and 
the weights are represented in binary. If either of those is 
binary, then it is known as partial-binarization. The BNNs   
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Table 4 : FPGA based CNN acceleration using approximate arithmetic 
Technique Contributors Network 

layer 
Bit 
width 
(bits) 

Accuracy Dataset Device Frequency 
(MHz) 

Hardware 
resource 
utilization 
 

Remarks 

Fixed point  Gupta et al., 
2015 [77] 

Convoluti-
onal and 
pooling 
layer 

16 - CIFAR-
10 

Xilinx 
Kintex325
T FPGA 

166 812(D), 
62922(L), 
334(B), 
7W(P) 

Energy 
efficiency 
and 
computation
al 
throughput 
are 
increased 

Zhou et al., 
2015 [90] 

Convoluti-
onal and 
pooling 
layers 

11 8 
(bad/250fr
ames) 

MNIST  Virtex-7 
FPGA 

150 83(D), 
80175(L), 
0(B) 
 

16.42x 
faster 
implementat
ion 
compared to 
PC platform 

Zhisheng et 
al., 2017 [91] 

Convoluti-
onal and 
FC layers 

8 98.16% MNIST Xilinx 
485T 

- 574(D), 
7204(L), 
343.5(B), 
0.47W(P) 
 

31.43% and 
47.95% 
reductions in 
latency and 
power 
compared to 
32 bit 
floating 
point engine 

Wijeratene et 
al., 2018 [78] 

Convoluti-
onal layer 

32 Q 
point 

- ImageNe
-t 

Xilinx 
Virtex 7  

200 576(D), 
117k(L), 
226.2 
GOPs(T) 
 

Reduced 
resource 
utilization 
with a 
throughput 
of 226.2 
GOPs 

Solovyev et 
al., 2018 [24] 

Convoluti-
on and FC 
layers 

12 96% MNIST  DE0-Nano 
developme
nt board 

143 5947(L) Overall 
processing 
speed of 
150frames/s
ec is 
achieved 

Edwin et al., 
2019 [92] 

Whole 
network 

12 97.59% MNIST Xilinx 
Zynq 
7000, SoC 

100 158(D), 
4254(L), 
45(B) 
 

17% higher 
throughput 
compared to 
software 
implementat
ion 

Xiao et al., 
2020 [17] 

Whole 
network 

18 97.57% MNIST Cyclone 
10 FPGA 

150 274(D), 
12588(L) 
 

Highest 
recognition 
rate for 
LeNet has 
been 
achieved 

Cho et al., 
2020 [18] 

Whole 
network 

11 98.64% MNIST  Xczu9eg-f
fvb1156-2
-I FPGA 

- 143(D), 
32589(L), 
95(B) 
 

40% and 
90% 
reductions in 
memory 
usage and 
latency 

Dynamic 
Fixed Point 

Qiu et al., 
2016 [93] 

Whole 
network 

16 86.66% ImageNe
-t 

Xilinx 
Zynq 
ZC706 

150 780(D), 
182616(L), 
486(B) 
 

Only 0.4% 
loss in 
accuracy and 
a frame rate 
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of 4.45 fps 
Yao et al., 
2018 [20] 

Convoluti-
onal, 
pooling 
and FC 
layers 

16 - ImageNe
-t 

Zynq-XC7
Z100 

- 364(D), 
310688(L), 
543.6(B), 
9.63W(P) 
 

0.054GOPS/
DSP and 
5.24GOPS/
w 
performance 
density and 
power 
efficiency 
are obtained 
respectively 

Ding et al., 
2019 [82] 

Whole 
network 

16 - Serial 
network 
structure 

Cyclone V 
FPGA 

125 80% DSP 
utilized, 
3.78W(P), 
6.63 
GOPS(T) 
 

The 
precision 
error 
obtained is 
1% for 16 bit 
fixed point 
representati
on 

Power-of-2 Vogel et al., 
2018 [83] 

Covolutio-
nal layer 

5b 80.59 ImageNe
-t 

Xilinx 
Virtex7 

-- 9(D), 
29.04k(L), 
740(B), 
4.329W(P) 
 

22.3% 
reduction in 
power 
consumption
s and 
reduced 
resource 
utilization 

Zhao et al., 
2019 [84] 

Convoluti-
onal layers 

mixed 68.02 ImageNe
-t 

Intel 
Stratix V 

156 256(D), 
362.7k(L), 
828(B), 
3536 
GOPs(T) 

Achieved a 
frame rate of 
3000fps and 
very little 
latency 

Piyasena et al., 
2019 [85] 

Convoluti-
onal layers 

2,3 99.9,97.53 MNIST 
CIFAR-
10 

Xilinx 
Virtex 
ultrascale+ 
XCVU9P 

100 680k(L), 
30.5(B), 
1.926W(P) 
 

Achieved 
greater 
power 
savings and 
run time 
computation
s 

Fong et al., 
2019 [86] 

Convoluti-
onal and 
FC layers 

32b 78.17 Imagene
-t 

Stratix V 
GXA7 

155 0(D), 
155.5k(L), 
2061(B), 
8.694W(P), 
195.350 
GOPs(T) 
 

1.87x 
throughput 
improvemen
ts and 20%  
improvemen
ts in latency 

Binary 
quantization 

Yaman et al., 
2016 [94] 

Convoluti-
on, 
pooling 
and FC 
layers 

1 95.8 MNIST Xilix Zynq 
ZC706 

200 91131(L), 
4.5(B), 
<22W(P) 
 

Achieved 
greater 
throughput 

Liang et al., 
2017 [88] 

Convoluti-
onal and 
FC layers 

1 98.24, 
86.31, 
66.80 

MNIST, 
CIFAR-
10, 
AlexNet 

Altera 
stratix V 
fpga 

150 384(D), 
2210(L), 
26.2(B) 
 

Greater seed 
up is 
achieved 
compare to 
CPU 
platforms  

Zhao et al., 
2017 [95] 

Convoluti-
onal and 
FC layers 

1 - CIFAR-
10 

Xilinx 
Zynq 7000 
SoC 

143 3(D), 
46.9k(L), 
4.7W(P), 
207.8 
GOPs(T) 
 

15.1x better 
performance 
and 11.6x 
improved 
throughput 
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Guo et al., 
2018 [96] 

All layers 1 88.61, 
96.9 

CIFAR-
10, 
SVHN 

Xilinx 
Zynq 
ZC702 

- 29.6k(L), 
103(B), 
3.2W(P), 
2236 GOPs 
(T), 722 
GOPs(T) 
 

3.1x, 5.4x, 
4.9x 
improved 
performance
, resource 
efficiency 
and power 
efficiency 

Guan et al., 
2019 [97] 

- 1 97.53 MNIST Intel 
Altera 
5CEBA7F 

125 19(D), 
38794(L), 
615(B) 
 

Weight 
reduction by 
4-6x  and 
14x reduced 
latency 

D : DSPs, L : LUTs, B : BRAM, P : Power, T: Throughput 
 
have the advantage of efficiently mapping the network to the 
hardware without degrading the accuracy of the network. In a 
CNN, the input to the first layer will be from average pooling 
layer where the data is in either fixed format or floating 
format. In order to perform the multiplications, the binarized 
weights use multiplexers instead of XNOR gates. But for a 
fully connected layer, the input comes from 
batch-normalization layer, so XNOR gates replace 
multiplication in the dot product [87]. Liang et al. [88] used 
bit-level XNOR gates and shifting operations to reduce the 
bottleneck caused by using multipliers for MAC operations 
and also used data quantization techniques to reduce the 
memory footprint. The inference of this BNN on Stratix-v 
FPGA achieved tera operations per second (TOP/s) 
performance with less accuracy loss. Two approximations, 
CNNs with binary weights and CNNs with XNOR gates, are 
introduced for faster and less memory required convolution 
operations [89]. In binary weight CNNs, the weights are 
represented in binary, so the convolutions involving binary 
data are fast and require less memory to store the results. For 
the XNOR networks, both the weights and inputs to the 
network layers are in binary format. Wang et al. [30] 
proposed the LUTNet, a neural network accelerator which 
uses K-LUTs as operators for the inference of a neural 
network. The XNOR based dense BNN architecture is 
modified to K-LUTs based sparse network where K-inputs are 
directly mapped to K-LUTs. This approach used in [30] has 
achieved higher efficiencies in area and energy compared to 
regular BNN accelerators.   
 
Table 4 gives comparisons between different network level 
approximations made to CNNs. Resource utilization and 
performance in terms of power and throughput are also 
compared. It is observed that the highest accuracy for MNIST 
dataset is found by using power-of-2 quantization, for 
ImageNet by using dynamic fixed-point representations. The 
fixed point representations have achieved higher accuracies 
but less throughput compared to dynamic fixed-point 
representation. The advantage of this fixed point 
representation can be further increased at the hardware level 

by using parallel and pipelined convolutional units to reduce 
the computation complexity and increase the inference speed. 
The multipliers to perform the convolution operations with 
these fixed-point numbers can be built using LUTs, thus 
increasing the utilization of hardware resources. The 
heterogeneity property can be exploited in FPGAs to make  
 
efficient use of DSPs by allowing different bit widths along 
with binarized data. High throughputs can be obtained by 
utilising the data-level parallelism in the PEs along with the 
fixed point and dynamic fixed-point representations. Simple 
rounding schemes for fixed-point representations can be 
identified in order to have reduced hardware complexity. The 
use of binary quantization for CNNs has dramatically reduced 
the memory footprint and obtained higher speeds compared to 
the other approximate arithmetic circuits. These approximate 
arithmetic can be further extended to lightweight neural 
networks for further performance increments.  

   E.  Stochastic Computing 
The stochastic computing (SC) differs from conventional 
computing concerning the representation of the numbers in 
the network. In conventional computing, base two notation is 
used for representing the numbers. In stochastic computing, 
the numbers are represented with probability p, which has a 
stochastic value v. The stochastic value is single bit 
representation and may vary with the system clock. The 
stochastic value is determined in two ways, non-polarized and 
polarized. In non-polarized mapping, the probability (p) is 
directly mapped to the logical value (v). In polarized 
mapping, the probability (p) of range [0,1] is mapped to its 
logical value (v) of range [-1,1]. The negative numbers cannot 
be represented using non-polarized mapping. This is a 
low-cost approximation technique which uses small circuits 
to perform the operations. This SC, when applied to the 
neural network, has the advantage of enhanced power 
efficiency and reduced hardware cost. In SC simple logic 
gates like AND, XOR is used to perform the multiplications 
and multiplexers are used to perform the scaled additions. 
This SC is a substitute for binary computing at a low-cost 
implementation. The major advantages of using this SC to 
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accelerate the CNNs is the reduced hardware cost and less 
memory and power consumptions. The convolutional block in 
a CNN is the feature extractor, and Convolutional block 
requires a large number of operations. This computational 
complexity can be reduced using the SC for the feature 
extractor operations. One such method is proposed by Ren et 
al. [98], by implementing four designs for the feature 
extractor block and weight storage methods are proposed to 
reduce the area consumption. The SC-based feature extractor 
design is presented and optimized form the view of precision 
calculation and their hardware design achieved significant 
reductions in area, power and energy when compared to CPU, 
GPU and binary ASIC based implementations [99]. SC for 
CNN basis functions like inner product calculation, pooling 
and activation function is presented by Hamdan et al. [100] to 
exploit the correlation and the network is synthesized 
targeting the Xilinx Zynq Z706 FPGA. Their work proposed a 
MUX tree to calculate the inner product through SC for the 
convolutional layers, and it has more accuracy and requires 
less hardware compared to a conventional method. For 
having reduced memory resources, Xiaolong et al. [101] 
proposed Domain Wall Memory (DWM) technique for 
SC-DCNNs. This DWM is a high-density memory and 
non-volatile which is used to replace SRAMs. An effective 
resource sharing scheme is proposed for storing the weights of 
convolutional and fully connected layers based on DWM 
strategy. HEIF, an SC based framework, is proposed by Li et 
al. [102]for the applications including LeNet and AlexNet. In 
their work, the required optimizations were done on the 
functional block connections in the CNN, reducing the 
bitstream length and achieved 6.5x area efficiency and 5.6x 
energy enhancements.  
 
The weights of CNN represented in binary reduces the 
complexity to perform the MAC operations and also reduces 
the memory footprint. The binarization of the weights of CNN 
can be either deterministic or stochastic. The FPGA 
implementation of stochastic BNN is proposed to enhance the 
learning ability of the BNNs [103]. With this stochastic 
binarization, the inference speed for both the MNIST and 
CIFAR-10 datasets have been increased significantly 
compared to a non-regularized BNN. Two SC-based designs 
are compared in terms of area, power consumption and 
accuracy [104]. Their analysis for MNIST handwritten digit 
recognition dataset says that Binary Interface Stochastic 
Computing (BISC) has outperformed the Extended Stochastic 
Logic (ESL) which is 50x faster and consumes less area and 
power. The limitation with the SC-based accelerators is that 
they can implement shallow neural networks having limited 
depth. This gives the insight to optimize the SC-based designs 
further and extend its advantages to more significant and 
complex networks. The SC approach can also be used along 
with other approximation techniques like pruning and weight 
sharing to reduce hardware complexity and increase the 

inference speeds. These SC-DCNN implementations can 
further be extended to use many other NVMs like Re-RAM, 
SST-MRAM and SOT-MRAM for storing weights instead of 
SRAMS. 

4. CONCLUSION 
This survey presented the various approximate computing 
techniques applied to CNNs for acceleration. The 
dependencies of performance metrics like accuracy, power, 
area, throughput with approximation techniques for image 
processing applications are enumerated. Various works for 
each approximation techniques are compared for various 
image processing applications like classification, detection 
and recognition without a loss in the accuracy. At the outset, 
the approximation techniques such as pruning, weight 
sharing and reduced precision allow re-training of the 
network by which a part of efficiency lost during the use of 
these approximations can be regained. The hardware 
approximations like approximating computational models, 
approximating memories do not support re-training since it is 
difficult for keeping track of all errors occurred due to 
approximations. This limitation makes the accuracy loss 
non-recoverable, and thus its scope is limited in hardware for 
the deep learning applications. These approximations can 
further achieve more magnificent performances when it is 
applied to lightweight neural networks. This survey widens 
the window in the field of deep learning acceleration to 
further extend the research scope with the insights 
provided.  
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