
N. Manikandan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3828 – 3846

3828

ISSN 2278-3091
Volume 9, No.3, May - June 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse202932020.pdf

https://doi.org/10.30534/ijatcse/2020/202932020


ABSTRACT

In today's technology era, Convolutional Neural Networks
(CNNs) are the limelight for various cognitive tasks because
of their high accuracy. With the increasing complexity in the
applications, CNNs present high computation and storage
demands which call for customized hardware support to boost
their performance. The streaming nature of CNN's workloads
makes them suitable for hardware implementations like
FPGAs and ASICs. Providing sufficient resources alone
cannot solve this difficulty, which makes Approximate
Computing a solution. This article gives an insight into
various approximate computing techniques used to accelerate
the CNNs at multiple levels for the hardware
implementations. The survey has been conducted by
considering different metrics: approximation technique used,
datasets used for evaluation, network structure (AlexNet,
LeNet, Visual Geometry Group (VGG)), hardware platform
for implementation (Application Specific Integrated Circuit
(ASIC) or Field Programmable Gate Array (FPGA)), training
or testing phase and results (in terms of accuracy, area, power,
throughput, resource utilization). The approximate
computation techniques applied at the various levels of the
network and layers are discussed. Necessary comparisons
have also been made to know the utility of these techniques for
yielding more significant performance gains with minimal
losses in the accuracy. Methods are presented with recent
contributions in the state-of-the-art image processing
applications along with the various future outlooks based on
the studies made.

Key words : Approximate Computing, Convolutional Neural
Networks (CNNs), hardware accelerators, Image Processing

1. INTRODUCTION

In today’s technological and applicative world, Deep
Learning (DL) is being used widely for many applications in

various domains ranging from speech recognition, medical
image analysis, image processing, object recognition, natural
language processing, healthcare and so on. Deep
Learningwhich is a part of Artificial Intelligence (AI) and a
class of Machine Learning (ML) has placed its mark in
performing many real-time tasks because of its ability to learn
the problem and give better results [1-5]. The Deep Learning
techniques are composed of artificial neural networks which
are inspired by the human brain. Convolutional Neural
Networks (CNNs) is one of the widely used Deep Learning
techniques for applications like image classification [1], digit
recognition [2], image recognition [3], detection [4], and
many machine vision-related tasks. The CNNs have gained
immense popularity in the recent trends because of their
near-human accurate results. The CNNs give high
performance at the cost of requiring a massive amount of
resources, memory and high computational cost. So this calls
for a dedicated hardware platform to meet the performance
criteria and to accelerate the networks to be power and
energy-efficient for mobile applications. The acceleration of
CNNs on platforms like CPU and GPU is not adequate
because of low throughput and low energy-efficiency. The
ASIC implementation of these networks suffers from the
problem of reconfigurability, high investments and design
cycle complexity. The reconfigurability, high throughput
compared to CPUs and GPUs, high performance compared to
CPUs, better energy efficiency features of the FPGAs make
them a suitable platform for the acceleration of CNNs [6]. The
development of CNNs in recent times is increasing the
sparsity and use of customized data types. In this aspect,
FPGAs effectively increase the utilization of the resources by
supporting the customizable compact data types. However,
with these attractive features, the FPGA acceleration of CNNs
poses some challenges. For example, consider AlexNet,
which has more than 60 million parameters and requires a
storage capacity of approximately 250 MB when represented
in 32-bit Floating-Point model [7]. This results in the memory
overhead for the FPGA as it exceeds the on-chip memory
capacity. Using the external memory for storing those
parameters and moving values from/to FPGA increases

Approximation Computing Techniques to Accelerate CNN

Based Image Processing Applications – A Survey in
Hardware/Software Perspective

N. Manikandan1, M. Priyanka2, Sasikumar3, R. Muthaiah4
1Research Assistant, School of Computing, SASTRA Deemed University, India, manikandan_phd@outlook.com

2PG Scholar, School of Computing, SASTRA Deemed University, India, ridhipriya3@gmail.com
3Research Assistant, School of Computing, SASTRA Deemed University, India,vlsisasi@gmail.com

4Professor, School of Computing, SASTRA Deemed University, India, muthaiah66@gmail.com

N. Manikandan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3828 – 3846

3829

performance overheads. With the increasing size of the CNN
structures like VGG, GoogleNet requires memory
requirements furthermore. This calls for the necessary
optimizations to be done to the CNNs at different stages like
inference and training to achieve
high-performance gains in practical implementation.

1.1 Need for Approximate Computing
A general CNN architecture has an input layer and an output
layer with many intermediate layers. The middle layers of
CNN consist of many layers like Convolutional layers,
Activation layers, Pooling layers and Full connected layers.
The convolutional layers are computationally intensive, and
the fully connected layers are memory expensive. The
computational workload and memory requirements are based
on the number of MAC (Multiply and Accumulate)
operations and the number of parameters required for
performing the task. So, in order to minimize the overall
resource requirements, necessary optimizations are to be done
to the networks to eliminate the ineffective computations at
all the possible levels by using the approximation knobs [8].
The Approximate Computing (AC) uses the gap between the
accuracy needed by the application and efficiency given by the
computing system enabling various optimizations. The scope
for AC involves the need for approximation where an inexact
solution is sufficient for solving the complex problems,
efficient optimization and configurable quality. The AC is
mainly used for the applications which are error-tolerant like
scientific computing [9], image and signal processing [10],
deep learning [11] and so on. In the current scenario, Google
is using this AC technique for their Tensor Processing Units
(TPUs) which is a custom ASIC used as an accelerator for
neural networks [12]. The TPUs use Quantization technique
to reduce the neural network prediction cost, where 32-bit
floating-point calculations are converted into 8-bit integers.
The approximations can be made at various levels of a system
used for the application. For example, approximations can be
made at the circuit level where the exact adders and
multipliers can be replaced with approximate adders and
multipliers, which reduces the hardware overhead. The
approximated multi-bit adder circumvents the carry chain in
order to reduce the critical path delay, which increases the
performance of the circuit and energy-efficiency but traded
for accuracy [13]. The Approximate Computing is based on
the relaxations provided to the exact computing in order to
increase the performance efficiency of the systems in terms of
area, speed and power.

In this paper, we presented the survey of approximate
computing techniques applied at the various levels of CNN
implementation for Image Processing applications. These
CNNs are fully-connected structures which can reduce the
parameters of the model without any loss in the quality of the
models. This makes CNNs more suitable for many image
processing applications because of the high dimensionalities
in the images. The convolutional layers of the CNNs are the
feature extractor blocks which extracts required features from
the input image by sliding the kernels over the image,

reducing the dimensionality. This makes CNNs suitable for
many image processing applications like handwritten digit
recognition, image classification, object detection. With the
increasing complexity of the use, Approximate Computing
along with hardware acceleration can fuel the performance of
the CNNs. The approximations done at the structural level of
the CNN includes pruning and weight sharing where the
unimportant weights in the neural network structure are
removed thus reducing the network density and increasing the
performance in terms of energy and memory utilization. The
approximate adders and multipliers used at the circuit level
achieve improved efficiency in terms of power and area usage,
thus reducing the hardware costs. Approximating memories
also give significant reductions in the area used on the
hardware. The approximations for lowering the precision of
the data includes fixed-point quantization, dynamic
fixed-point, power-of-2 and using binary weights which
reduces the complexity in performing the complex operations
of MAC units. The CNNs can be approximated at both the
training phase and the inference phase of it. The pruning
technique is applied to the network in the training phase, and
the network is re-trained unless desired error rate is obtained
[14]-[16]. The precision reduction techniques like fixed-
point, dynamic fixed-point, power-of-2 and binary
quantization are applied to a trained neural network for the
CNN inference [17]-[20]. The approximated hardware units
like approximate multipliers can also be utilized to improve
the training performance of CNNs in terms of speed, area and
power [21].

The paper is organized as follows, a brief discussion about the
Convolutional Neural Networks and its layers with their
functionality in section 2. Section 3 presents various
approximate computing techniques used at different levels of
CNN implementations for the acceleration of the
computations by considering multiple hardware
implementation platforms like FPGAs and ASICs. Section 4
summarizes the work and explores future outlook.

2. OVERVIEW OF CNNs

The Convolutional Neural Networks (CNNs) are a type of
deep neural networks which have been widely applied in
computer vision applications. These CNNs gained utmost
popularity in computer vision application in 2012 when more
significant results were obtained for the application of object
detection in the ImageNet Large Scale Visual Recognition
Competition (ILSVRC) [1]. The image classification error
rate achieved was 15.3% which was less compared to previous
years 2011 (26%). The first CNN basis was established in
1998 by an object where they considered the neuron
organization of the cat's visual cortex as an artificial neural
network [22]. The CNNs are deep and feed-forward neural
networks. It is a sparsely connected network which has the
advantage of weight sharing, which reduces the total number
of parameters [23]. The CNNs are used in two phases, namely
training and inference. In the training phase, the neural
network is modelled by getting trained with the large volume

N. Manikandan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3828 – 3846

3830

of data set samples. Back-propagation algorithm is used to
iteratively update the network parameters like weights in
order to improvise the model prediction. In the inference
phase, the learnt model is tested with a new set of data
samples [24].

A. Convolutional layers
 Convolutional layers are the building blocks of the CNNs.
The main operation in this layer is convolution, so the name
convolutional layer. In this layer, the input (also called
Feature Map) is convolved with a sliding window (Kernel or
Filter) of size k x k. The Filter is shifted all over the input
image, and the convolutions obtained individually are
summed up. The convolution operation is the element-wise
multiplication between the Kernel and the kernel sized patch
of the input image. The repeated convolution of the same
Filter to the input image gives a map of activations which are
known as Feature Maps (FMs). These FMs indicate the
location of the dedicated features of the input image. The
output Feature Map of a convolutional layer is
mathematically given by equation (1) in [25].

Yi = f (b +) where i = (1,2,…,m) (1)

Where b is the bias value, and f is the non-linear activation
function to limit the value of a pixel to a suitable range.

The symbol represents the convolution operation between
the input image and the Kernel. These convolution layers are
computationally intensive as the number of MAC operations
increase with the increasing input size.

 B. Activation layers
The Activation layer follows the convolutional layer. The

activation function applies a non-linear transformation to all
FM values. These activation functions decide the firing of the
neurons. The different activation functions are Sigmoid, tanh,
ReLU, leaky ReLu, Maxout and ELU. Sigmoid and tanh are
the non-linear activations which make the neural networks
able to model the complicated decision boundary
classification. ReLU is the widely used activation function for
the neural networks as they satisfy the approximating
property of neural networks. The ReLU is a piecewise linear
activation function which incurs less computation cost and
minimum training time and has become the default choice for
deep learning networks.

C. Pooling layers
The primary use of pooling in CNNs is to reduce the size of

the image obtained from the previous layers. These layers are
placed in between the successive convolutional layers
appropriately. With the reduced image size, the number of
parameters are reduced, thereby decreasing the computations
to be performed. There are two types of pooling techniques,
Max pooling and Average pooling. In Max pooling, the
maximum value of the neurons in the FM is considered and
given as output. In Average pooling, the average value of the
neurons in the neighbourhood is taken as output. Max pooling
technique is being used widely in recent times. This pooling

technique is the process of downsampling the adjacent
pixels.

Figure 1: Example of Pooling

Figure 1 shows the different pooling schemes commonly used
in the CNNs. The stride controls the convolving of the Filter
with the input. The stride determines the shift of the Filter
over the input. For the example shown in the above figure, the
Filter is shifted by two units every time, and the
corresponding pooling operation is performed. In Figure 1,
we consider a 4 x 4 FM and a filter of size 2 x 2 with stride =
2. When the Kernel is slid over the first 2 x 2 patch of the FM,
for Max pooling the maximum value of (1, 0, 2, 1) is given in
the output FM, for Average pooling the average of (1, 0, 2, 1)
is given in the output FM. This is continued until the Filter is
slid all over the input FM. The output of this layer is the
shrunken form of the input.

D. Fully Connected layers
The fully connected layers are memory intensive layers.

The input and output layer's neurons are connected fully with
each other. These layers are computed using matrix
multiplications, and also the output of the fully connected
layers are applied with a non-linear function similar to
convolutional layers. The fully connected layers classify the
features extracted by the convolutional layers.

Yi = where i = (1,2,…,m) (2)
The equation (2) [25] represents the output vector of a fully

connected layer where the input FM to this layer is multiplied
with the weight matrix. In the equation Xi represents the input
FM and Wi,j represents the weight matrix of the fully
connected layer.

3. CLASSIFICATION OF APPROXIMATE COMPUTING
TECHNIQUES

The approximate computing techniques applied to accelerate
CNN's performance are given in Figure 2. These
approximations can be used at various levels of the neural
network. Depending on the layers of abstraction we have two
types of classifications, software-level approximation and
hardware-level approximation of the CNNs. The data
represented with high precision requires a large amount of
memory to store the parameters and the results of the
intermediate operations. The computations on such high
precision data require costly hardware units which require
more power and large chip area. This presents the use of
hardware-software co-design approximation techniques

N. Manikandan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3828 – 3846

3831

 Figure 2: Classification of Approximate Computing techniques for CNNs

which is the third classification of approximate computing
techniques for CNN. The approximations to the structure of
the network can be made by using Pruning and Weight
Sharing techniques. These structural level approximations to
the network reduce the number of parameters by removing the
redundant and unimportant connections in the network
layers. The CNNs can be accelerated by using approximated
computational units like adders and multipliers and also
approximated memories which increases the
energy-efficiency and reduces hardware area and cost. The
Network level approximations reduce the computational and
memory workloads by decreasing the precision of the data in
the network. Further sub-sections discuss the various works
that use approximate computing techniques for CNN
acceleration.

3.1 Software-level Approximate Computing technique
The software level approximations to the neural network try
to skip the computations to improve the overall execution
time. The approximation techniques at this level require the
support of algorithms to tune the network with
approximations, so the name software-level approximate
computing. The methods under this level modify the structure
of the neural network.

A. Pruning
This is the approximation technique used at the structural
level of the CNN model. This is a type of model compression
where the size of the network or model is reduced by making
required approximations. There are two ways of compressing

the network, pruning (decreasing the number of weights) and
reduced precision (the bit width to represent the data is
reduced). The neurons present at various layers of the network
are connected to each other with the weights. These
connections indicate convolution or matrix multiplication
operations. Pruning is the approximate computing technique
in which connections in the neural network involving in such
activities are removed. This is because all the connections in a
neural network are not equally important, so some of them
can be ignored while performing the operations. The
connections to be removed depending upon the importance of
the weights adhered to those connections in the network.
There are two types of pruning strategies, structured pruning
and unstructured pruning. These two strategies differ
regarding the connection's location information. In simple
pruning technique, the non-effective weights of the network
are pruned without considering the connection's location. In
structured pruning technique, the pruning of non-effective
weights is done by considering the connection's location.
Depending on the pruning granularity, we have four different
pruning techniques like Fine-grain (a), Intra-kernel (b), Filter
(c) and Kernel (d) represented in Figure 3. The Fine-grain
technique is an unstructured pruning technique, and the
remaining three techniques are structured pruning
techniques.

Unstructured Pruning

In the unstructured pruning, non-effective connections in the
neural network are removed irrespective of the location of

N. Manikandan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3828 – 3846

3832

Figure 3: Pruning Granularities (a) Fine-Grain (b) Intra-Kernel (c) Kernel (d) Filter

connections, thus making a dense network into a sparse one.
The number of parameters is minimized, but this technique
induces irregularity in the network, which causes memory
access inefficiency and low memory bandwidth utilization.
Parashar et al. [26] proposed an SCNN accelerator for a
sparse convolutional neural network which performs deep
encoding of the sparse weights and activations in order to
retrieve only non-zero values from memory. This accelerator
increases the energy-efficiency by eliminating the
multiplications involving zero weights and by maintaining
the compressed format of weights and activations throughout
the computation. The unstructured pruning achieves great
compression ratios but has certain limitations like irregularity
in the network structure and high training complexity [28].

Fine-Grain pruning is an unstructured pruning technique
where each scalar weight can be pruned. Han et al. [29]
adopted an iterative pruning methodology where the pruned
network is trained again and again. When pruning was done
to the AlexNet, the results showed that the accuracy did not
fall even when the network was pruned 9x times. From work
done in [45], high pruning ratios can be achieved, but the
sparsity induced in the network is complicated. In fine-grain
pruning technique, a threshold value is set for which the
weights with values less than the threshold are pruned [30].
Zhu et al. [31] present a trade-off between the network model
size and accuracy, and their work demonstrates that the large
and sparse models give better performance compared to small
and dense models.

Structured Pruning
This pruning technique approximates a large part of the
neural network, like channel or layer. The less important
connections are removed by considering their location, so that
irregularity is not introduced in the network structure.
Depending on the pruning granularities, we have Intra-kernel
pruning, Kernel pruning and Filter pruning. The largest
granularity exploited by the pruning is deleting a single

feature map or many feature maps. Pruning an entire FM
implies pruning all the incoming and outgoing kernels of the
FM. The next granularity in pruning is removing kernels
completely where a kernel implies one complete convolution;
this is Kernel pruning. The lowest granularity is exploited by
Intra-kernel pruning.
Intra-kernel pruning is a structured pruning technique where
the set of weights in a kernel with a regular structure are
pruned. Anwar et al. [32] used a particle filtering approach to
determine the important connections and paths in the
network, followed by optimization for the data representation.
Their approach reduced the convolution complexity by
utilizing both the intra-kernel striding and convolutional
lowering.

Kernel pruning is structured pruning technique where any
kernel from the output feature maps can be pruned. Anwar et
al.[33] combined both feature map pruning and kernel-level
pruning for the CIFAR-10 dataset, and the results showed
that kernel pruning gives better results by reducing the
number of parameters for the convolutional layers. Their
work does not pose constraints regarding the pruning mask
for the outgoing kernels of the FM as that of in [32] for
reducing the size of FM and kernels. This type of coarse
pruning technique gives a sparse representation of the
network, which is beneficial for VLSI based implementations.
Kernel level pruning is coarser than intra-kernel pruning and
finer than FM pruning which makes it to achieve better
pruning ratios.

Filter pruning is a structured pruning technique where a
group of kernels belonging to same output feature map are
pruned. Molchanov et al.[34] proposed a Taylor-expansion
based pruning criteria to reduce the cost of hardware and also
exploited filter pruning technique.
In the 1990s, the optimal brain damage study was performed
where the diagonal Hessian approximation was used for
computing saliency of the parameters and the less salient

N. Manikandan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3828 – 3846

3833

Table 1: FPGA based CNN acceleration with Pruning technique
Contributors Pruning

type
Network
layer

Network
structure

Device Frequency
(MHz)

Bit width Hardware resource
utilization

Accuracy
(%)

Achievements

Sun et al.,
2017 [41]

Unstructur-
ed

FC layer AlexNet Virtex-
7
VX485
T
FPGA

100 16- bit
fixed- point

2378 (D), 287396
(L), 498.6 GOP/s
(T),23.4 (P)

- The power efficiency
of 21.3 GOP/s/w and
number of weights in
FC layer reduced by
10x

Zhang et al.,
2019 [14]

Unstructur-
ed

Convoluti
onal and
FC layers

AlexNet Xilinx
Zynq
ZCU10
4

300 8- bit fixed
-point

696 (D), 101953 (L),
198.50 (B),290.40
GOP/s (T) for
convolutional
layers,14.11 GOP/s
(T) overall, 17.6 (P)

57.14
reverse
accuracy
and 57.18
peak
accuracy

AlexNet size reduces
from 240 MB to 8.73
MB, 182.3x and 1.1x
improvements for
latency and
throughput
respectively

Caiwen et al.,
2017 [37]

Structured FC layer AlexNet Altera
Cyclon
e V
5CEA9
FPGA

250 16- bit
fixed- point

700 GOPs (T)

56 6 – 102x energy
efficiency
improvements

Seungsik et al.,
2019 [15]

Structured Whole
network

VGG-16 Stratix
V
FPGA

100 7b linear
quantizatio
n

324 (D) 53.46 Upt o 30% reduction
in memory footprint

Liqiang et al.,
2019 [28]

Unstructur-
ed and
structured

Convoluti
onal layer

VGG,
AlexNet,
ResNet,
GoogLeN
et

Xilix
ZCU10
2

200 16- bit
fixed- point

1144 (D), 522k (L),
912 (B), 23.6 (P),309
GOP/s (T), 223
GOP/s (T), 291.4
GOP/s (P), 257.4
GOP/s (P)
respectively

- 2.4x – 12.9x speed up
and 89.2%, 88.3%,
76.5%, 65.8%
sparsities for the
mentioned networks
without any accuracy
loss

Niu et al.,
2019 [16]

Structured
(Kernel)

Convoluti
onal layer

VGG-16 Xilinx
Virtex-
7
XC7V
X690T

200 16- bit
fixed- point

3200 (D), 237k (L),
1200 (B)

90.8 24x higher throughput
with this
implementation

Kang et al.,
2019 [31]

Structured Whole
network

VGG-16 Xilix
Virtex
7

210 - 3074 (D), 181k (L),
1470 (B), 10.14
(P),8975 GOPS (T)

78.3 87.5% pruning is
achieved and 42 FPS
frame rate

Rastislav et al.,
2019 [40]

Unstructur-
ed
(fine-grain)

Convoluti
onal,
pooling
and FC
layers

AlexNet
VGG-16

Xilinx
ZCU10
2

214 16- bit
fixed- point

237 (D), 244464 (L),
516 (B),68.71 (T)
GOP/s, ,213.26
GOP/s (T)
respectively

- 14.10 times faster than
Eyeriss accelerator

Li et al., 2019
[42]

Stuctured
pruning

Convoluti
onal and
FC layers

VGG-16
ResNet-1
8,
ResNet-1
52

Xilinx
Zynq
ZC706

140 16- bit
fixed-point

592 (D), 218600 (L),
545 (B) ,130.1 GOP/s
(T) for convolutional
layers and 109.18
GOP/s (T) for FC
layers in case of
VGG-16,94..28
GOP/s (T), 115.56
GOP/s (T)
respectively

- Offers high flexibility
and 88% reduction in
weights for FC layers

D : DSPs, L : LUTs, B : BRAM, P : Power(W), T: Throughput(GOP/s)

parameters of the network were pruned using second-order
Taylor's approximation [35]. Hassibi et al. do even the work
[36] used pruning to remove the less salient weights where the
inverse Hessian matrix was used to get the saliency of the
parameters in the network. Sicheng et al. [38] proposed a
hardware-software co-design framework to speed up the
acceleration of sparse CNNs by using sparsification schemes
and the network was implemented on Xilinx Zynq ZC706 and
has taken less processing power compared to a dense CNN.
Seungisik et al. [15] proposed a network stacking strategy
where multiple networks with different pruning ratios are
compressed by stacking the networks. In their proposed work,

the network requiring considerable memory resources were
trained using highest pruning ratio and then using structured
pruning strategy, an accurate model was developed for edge
level applications. While performing the pruning, a sparse
network is obtained with irregularity and also random
connections causing limitation to the CNN inference. Liqiang
et al. [28] proposed a hardware accelerator on FPGA for the
inference of sparse CNNs. Their work proposed weight-based
dataflow technique which performs element-wise matrix
multiplication instead of the spatial convolution. Heavy
pruning of the spatial neural network may reduce the
computation and overhead memory problems but may not
have faster inference. The work done by Niu et al. [16] was

N. Manikandan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3828 – 3846

3834

the first work to prune the spectral CNNs and accelerate them.
Their work proposed SPEC2, a new way to speed up the
inference of the spectral CNNs. Their work reduces the
computations by using the spectral transformation and uses
kernel pruning for reducing the memory resources to store the
parameters. The buffer multipliers to store weights are not
used efficiently when a pruned CNN is accelerated on the
hardware. This is because of the irregular sparsity and
miss-alignment caused by pruning. In order to overcome this
problem Kang et al.[39] used an accelerator-aware pruning
technique and accelerated on XC7VX690T FPGA so that the
weight storage buffers and multipliers are used effectively.

Table 1 presents the various works done in recent years for the
CNN acceleration using pruning technique. Various metrics
of the CNN implementation on the FPGA platform are
compared, and the achievements of the works are discussed.
Many works presented, have used the Imagenet dataset for
their evaluation and achieved more significant results for
image recognition and detection applications using the
structured pruning technique. From the table, it can be
inferred that structured pruning has been widely used for
getting better compressibility of the network and performance
throughput. Kernel level granularity of the structured pruning
has achieved better accuracy results compared to other
structured pruning granularities, and this gives 100%
pruning. For significant computations savings on hardware,
Intra-kernel sparsity has a greater advantage. Larger
performance gains are observed when pruning and
quantization were used together to approximate CNN. The
structured pruning is well suited for the CNNs but may not be
extended for other neural networks like LSTM, which lack
structural properties. So efficient optimizations can be made
to structured pruning technique to make it extensible for other
neural networks. The unstructured pruning obtained high
pruning ratios but induces irregularity into the networks,
which causes over-fitting problem and memory access
burden. This gives a scope to find optimizations in the
unstructured pruning to remove the irregular sparsity
problem.

 B. Weight Sharing
Weight sharing is another type of approximate computing
technique applied at the structural level of the CNN model.
Weight sharing technique does not reduce the computational
workload, but the memory required to store these weights is
decreased, thus decreasing the memory overhead. Chen et al.
[43] used HashNet, which applies a hashing trick to the
network to find shared weights for a layer. Their technique
determines weight sharing before the training, but the work
proposed in [44] finds the weight sharing for a fully trained
network. Han et al.[44] introduced an in-depth compression
approach which follows three pipeline stages, pruning the
network, quantization for the trained network and Huffman
coding. In their work, the number of essential weights is
limited by making the multiple connections share the same

weights and later the shared weights are fine-tuned. Their
work used k-means clustering technique to find the shared
weights for every layer of the neural network and has
achieved 35x to 45x reduction in the storage without
degrading the accuracy. Parallel accumulate share MAC
(PMAC) is used in a weight-shared CNN in order to
accelerate the CNN in terms of power and area [45]. Weight
sharing can be the area of interest mainly for the applications
requiring less memory bandwidths and is also applicable for
the deep learning networks like RNNs, and LSTM. This
technique supports the fast inference of the CNNs in an
embedded platform requiring small storage areas. The pruned
network has been standard on different hardware platforms,
but the weight sharing for the quantized network has not been
improvised. The advantage of weight sharing technique, to fit
the network model in hardware is still uncovered. This
advantage can be exploited by a hardware solution, where a
customized ASIC architecture can be built to deploy the
quantized sparse neural network by extending the advantage
of having customized bit width for quantization. The
HashNets showed greater results when implemented on GPU
platforms, so for better hardware achievements, they can be
implemented in FPGA and ASIC platforms. In further works,
HashNets along with pruning can be used for even better
performance.

3.2 Hardware-level Approximate Computing technique
The hardware layer is approximated in order to have
simplified hardware structures for implementing the CNNs
and accelerating their performance. The MAC operations in
the CNNs require lots of computations and memory
resources, so approximations can be made at the hardware
level to ease the calculations and reduce hardware costs. So
approximate adders and multipliers can be designed in order
to execute MAC operations by increasing performance and
energy gains quickly. Approximations can be made at a
memory level for improving the energy and power
requirements in the circuit.

A. Functional Approximations in computation modules
The computational module for a CNN is the MAC unit, which
comprises of adders and multipliers to perform the
convolution operations. The multiplication operations
generally are power consuming and require sophisticated
hardware units which call for approximations to achieve
required performance gains. The approximations made to
adders and multipliers increases the throughput and
power-efficiencies. Approximate computing is exploited for
adders, multipliers and dividers in order to achieve high
performance for error-tolerant applications [46]. Adders are
the basic arithmetic circuits in any computing systems. A
multiplier comprises of mainly three parts partial product
generation by AND gate, partial product reduction by an
adder and adding the final result by a Carry Propagation
Adder

N. Manikandan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3828 – 3846

3835

Table 2: Approximate adders and multipliers for CNN acceleration in VLSI implementations
Contributors Approximate

adder /
multiplier

Network
structure

Bit
width
(bits)

Implementation Performance
metrics
ASIC/FPGA

Frequency
(MHz)

Accuracy
(%)

Achievements

Kim et al.,
2015 [51]

Approximate
Mitchell’s log
multiplier

AlexNet 16,32 32 nm digital
standard cell
library, synopsis
design compiler

0.61 mW (P),
1.08 mW (P)
respectively,113.
5 um2 (A),
209um2 (A)
respectively

190

84.87 Proposed design
saves 80% of
energy compared to
32 bit fixed point
multiplier

Kim et al.,
2018 [52]

Approximate
Mitchell’s log
multiplier

LeNet
CudaCon
vNet

8, 16,
32

32 nm digital
standard cell
library, synopsis
design compiler

0.197 mW (P),
0.549 mW (P),
1.41 mW (P)
respectively,312
um2 (A) , 909
um2 (A), 2161
um2 (A)
respectively

250 99.02,81.43
respectively

76.6 % power
reductions
compared to fixed
point multiplier

Faraone et al.,
2019 [53]

Reconfigurable
constant
coefficient
multiplier
(RCCM),2
ADD,
3-ADD,4-ADD

AlexNet 4,6,8 Xilinx KU115
FPGA

7.6W (P), 7.6W
(P), 7.8W (P)
respectively,187
k (L) , 205.6 k
(L), 255.8 k (L)
respectively

250 79.8, 79.8,
80

50% resource
savings is obtained

Wang et al.,
2019 [54]

Approximate
Multiply
Accumulate
Array (AMMA)

Random
input data
samples

8, 12,
15

Xilinx XC7Z020 432 (L), 922 (L),
1186 (L)

236.74 - 10.7x faster than an
exact multiplier

Ansari et al.,
2019 [59]

Cartesian-geneti
c programing
(CGP) based
approximate
multipliers

LeNet - 28 nm CMOS
technology,
Synosis design
compiler

4330 mW (P),
92.86 um2 (A),
87 (L)

- 87 71.45% reduction
in energy and
61.55% reductions
in area

Kowsalya et
al., 2019 [58]

Pipelined hybrid
merged adders
(PHMAC)

- 13, 32,
64

Xilinx Virtex 7
FPGA

2 mW (P), 11.70
mW (P), 45.56
mw (P),16 (L),
25 (L), 233 (L)

- - Area and power
consumptions are
reduced by 50%

Luo et al.,
2019 [57]

Single Clock
Cycle Adder
(SCCA)

LeNet - 65 nm CMOS
technology

0.417 mW (P),
799.9 um2 (A)

- 98.7 Speed up increased
by 2.8x and 59.9%
reduction in PDP

Chuliang et al.,
2020 [55]

Reconfigurable
approximate
multiplier

VGG-16 - Xilinx ZCU102
FPGA

0.21 mW (P),
129 (L)

200 - 17% and 15%
reductions in
latency and power
savings

P : Power(W), A : Area(um2), L : LUTs

(CPA). The approximations can be performed to the
multipliers at these three parts [47]. Using logarithmic
multiplier for approximating the computations in neural
networks is a promising research area. Many works have been
developed having improvements over original work done by
Mitchell et al. [48]. This multiplier has given significant
performance in terms of power and area by maintaining low
error rates [49],[50]. To reduce the critical path delay, Yizhi
et al. [21] proposed approximate binary multipliers for CNNs
with binary weights which use 2's complement to represent
the data. Based on the error tolerance property of the CNNs,
they also proposed approximate adders for the data path of
their
architecture, which reduces the delay and area consumption.
Reconfigurable constant coefficient multiplier (RCCM) is
proposed in [53] for area-efficient implementation of CNN on

FPGA. In their proposed accelerator, the coefficients are
made constant, and input is multiplied to the fixed coefficient
using multiplexers or bit shifts so that the multiplier is highly
optimized for FPGA implementation. For the quantized
CNNs, the data is represented with different bit precision.
Implementation of such CNNs may require different
multipliers for different precisions at various layers of the
network, thereby causing area overhead and increasing the
hardware cost. For such quantized CNN applications,
Chuliang et al. [55] proposed a reconfigurable approximate
multiplier which can implement multiplications involving
various bit width representation of the data. In this
approximate multiplier, the long bit width multiplications are
made into short ones, and later the results are combined using
a merging module. Kamel et al. [56] investigated two
strategies to reduce the hardware cost of the adders, which are
used to map the CNN directly on to the hardware. Their

N. Manikandan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3828 – 3846

3836

strategy, serialization of adders and approximating
computing of the adders when synthesized on FPGA did not
yield greater results. Thus they put forth an idea of having
individual DSP blocks in the FPGA. Their work explored how
the multi-operand adders are challenging for CNNs on the
FPGA.

Table 2 presents various works using approximate adders and
multipliers for the CNN acceleration with hardware
implementations. From the table, it can be observed that the
approximated log multipliers require less power compared to
other approximate multipliers for the ASIC implementations.
The Approximate binary multiplier has less area
requirements compared to other binary multipliers. It is also
observed that more significant achievements in terms of area
and power have been obtained by using these approximated
adders and multipliers for quantized CNNs. The approximate
multipliers can still optimize the CNNs in further works when
combined with pruning and matrix decomposition
approaches. This gives customized arithmetic, a new
dimension to be explored. The studied approximate
multipliers and adders can further enhance their performance
by using Stochastic Computing approximation.

 B. Functional Approximations in memories
At the hardware level, the memories face limitations like high
memory bandwidth, latency for memory access, memory
congestion and power consumptions due to leakages for CNN
accelerations. The approximate computing is a paradigm
which allows the error tolerance for many applications in
order to have power and energy-efficient implementations. So
with this inexactness in computing, the memories can also be
approximated to have required savings in energy. The
approximations in memory include reduction of refresh rate
reduction for DRAM, threshold voltage scaling for SRAM
and approximation in SRAM registers. Many modern
accelerators have widely used embedded DRAMs (eDRAMs)
because of their high density. Shafiee et al.[60] proposed a
memristor crossbar array-based CNN accelerator with
pipeline architecture and used eDRAM buffers for fast data
transfers between the network layers.

 Chowdhury et al. [61] proposed a memristive accelerator for
binary CNNs called MB-CNN, which performs the XNOR
based convolutions and bit-count operations in the 2R
crosspoint arrays within the memory. Fengbin et al.[62]
proposed Retention-aware Neural Acceleration (RANA)
framework which is based on the principle that the DRAM
refreshment is not required if the lifetime of eDRAM's data is
less than the retention time of the eDRAM. Their work used a
refresh-optimized eDRAM controller at the architecture level
of CNN and implemented RANA in TSMC 65nm GP
technology. Imani et al.[63] proposed RAPIDNN, a
framework to accelerate CNN by employing neuron to

memory transformation. Their structure is modelled to have
non-volatile memory blocks to perform the operations like
additions, pooling, activations and additions.

 C. Use of Non-Volatile memories
The non-volatile memories (NVMs) like PCM, STT-RAM
when used in a system, they enhance the power and energy
considerations. Even though hardware platforms like FPGA
and ASIC are used to accelerate the CNNs, they face a
challenge of data movement cost. All the weights and input
values from the networks are to be stored, which asks for a
dedicated memory. One solution to reduce the data movement
in memories is to use Processing in-memory technique, as the
logic is implemented inside the memory blocks. This PIM
performs some computations like bitwise operations within
the memory, thereby increasing the acceleration performance
and reducing memory workload. But these NVMs face
challenges regarding the lifetime of memory and the
performance which limits their use for practical systems.
Approximations are introduced in the systems to overcome
those challenges [63].

The main aim of approximate computing in NVMs is to
improve the energy efficiency while maintaining the
reliability of the system. The use of eDRAM and SRAM based
crossbar memories can minimize the weights transfer
between the processing units and the off-chip memory but still
does not give the required performance for the input and
output data movement. Chi et al. [64] proposed PRIME, a
new PIM (Processing-in Memory) architecture for CNN
acceleration which has ReRAM as main memory. In their
architecture, with the PIM logic, a part of computations can
be performed within the memory, thus obtaining high
memory bandwidth through in-memory communication of
the data. Deliang et al. [65] used in-memory computations for
CNN acceleration. They proposed an architecture which
works both as NVM and reconfigurable in-memory logic to
perform the convolution layer operations. SRAMs can be
substituted by many NVM technologies like phase-change
memory, RRAM and STT-RAM for mainly minimizing the
standby power. The STT-RAM technique is highly adopted
because of its high density and power leakage, which is near
to zero. Pan et al. [66] proposed a computing in-memory
architecture, MLC-SST based on multilevel cells and
STT-MRAM memories. This architecture was used for
performing the convolution operations of BCNN to achieve
less power consumptions. Sun et al. [67] proposed a
co-processor for CNN with MRAM and in-memory design
architecture and implemented in 22 nm CMOS technology.
The weights were stored in the MRAM memory and reused
for performing the operations with the input. For the faster
computations, Angizi et al. [68] proposed IMCE, a
convolutional accelerator for the less bit-width CNN. The
SOT-MRAM proposed in their work does two works,
performs AND/OR logic operations and memory read/write
operations.

N. Manikandan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3828 – 3846

3837

Table 3: Approximate memories used for the CNN acceleration in ASIC implementations
Contributors Approximate

memory technique
Dataset Implementation Area

(mm2)
Energy

(J)
Achievements

Chi et al., 2016
[64]

PRIME, ReRAM
based main memory

MNIST,
ImageNet

65 nm GP
technology

- 18.2pJ ~2360x performance
improvements and ~895x
energy consumption
improvements

Shafiee et al.,
2016 [60]

ISSAC, eDRAM to
store weights and
in-situ MAC
operations

ImageNet CACTI 6.5 at 32
nm technology

0.215 - 14.8x, 5.5x, 7.5x
improvements in
throughput, energy and
computational density
respectively

Diliang et al.,
2017 [65]

SOT-MRAM array
for BCNN

ImageNet NCSU 45 nm
CMOS PDK

5.28 310.42 uJ ~7x and ~1.7x reduced
energy and area

Angizi et al.,
2018 [68]

IMCE, SOT-MRAM
based design

ImageNet,
SVHN,
MNIST

45 nm technology
node

2.12,
0.01,
0.009

785.25 mJ,
135.26 mJ,
0.92 mJ

~3x reductions in energy
to process low bit-width
AlexNet

Angizi et al.,
2018 [69]

CMP-PIM,
SOT-MRAM based
design

SVHN,
MNIST

45 nm CMOS PDK 1.7 87.54 mJ,
0.14 mJ

~94x and 3x increased
energy efficiency when
compared with CNN and
LBCNN

Angizi et al. [69] also proposed a comparator based PIM
(CMP-PIM) accelerator, which uses parallel memory
sub-array based on SOT-MRAM as a fundamental unit for
processing CNNs. Their work used CMPNET, a modified
CNN to replace the high computation multiplications with
additions and comparisons. Ikegami et al. [70] proposed a
CNN accelerator using Voltage control spintronics memory
(VoCSM), where the binary and ternary computations are
done using this NVM which gives high throughput. Roohi et
al. [71] also proposed an in-memory CNN accelerator with
SOT-MRAM non-volatile device. Their proposed accelerator
can execute AlexNet with 3.8x and 4.5x reduction in energy
and area compared to ReRAM based designs when
implemented on NCSU 45nm CMOS PDK in Cadence
Spectre. Joshi et al. [72] proposed a methodology to train the
CNN (ResNet) with no significant accuracy loss when
weights were stored in phase-change memory (PCM) devices
which were implemented in 90 nm CMOS technology.

Table 3 presents the area and energy requirements obtained
by using various approximated memories for the CNN
acceleration in hardware implementation. It is observed that
the NVM techniques used for CNN acceleration can be
utilized both as a memory to store weights and to perform the
convolution layer operations. It is also observed that the use of
non-volatile memories has shown more significant
performance improvements compared with DRAM and
SRAM memories. The MultilevelMultilevel Cell strategy can
be used by SOT-MRAM based designs for BCNNs and
extended network architectures to have greater in-memory
computing and less power consumptions. The MB-CNN
architecture uses a memristive crossbar array to perform the
computations using XNOR gates, which makes this technique
to be used for more complex CNN structures in future. The

Stochastic Computing strategy can be further used with these
approximated memories even further to increase the
convolution computations.

3.3 Hardware-software co-design approximate computing
In the state-of-art of the neural network applications, the
networks are not much suitable for edge level computations
because of the increased number of computations and
requirement of large memory bandwidth. Memory congestion
and computation complexity occur due to high precision
representation of the network parameters (bit width) and the
data paths. For the CNN inference, approximate arithmetic
can be a better option to design simplified network
accelerators by reducing the complexity of the design. Many
hardware-software co-design techniques are being used to
reduce the memory overload and reduce energy consumption
for the implementation of neural networks.

The arithmetic operations performed by using a floating-point
representation of the data makes the computations complex
and increases the complexity of hardware units like adders
and multipliers. Many approximations have been made even
for the floating-point representation units in recent years. Lai
et al, [2017][73] proposed a numbering scheme which uses
floating-point representation for the weights and fixed-point
representation for the activations. Their work made a study on
range Vs precision and concluded that floating-point
representation could provide variable range and precisions
compared to fixed-point description. Block floating point
(BFP) arithmetic with quantization and rounding schemes
have been used in recent trends to improve the hardware and
energy efficiencies [74],[75]. In order to have reduced
computational complexity and hardware costs, the
floating-point arithmetic is replaced with reduced precision
formats discussed below.

N. Manikandan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3828 – 3846

3838

 A. Fixed point
For faster performance and less memory or resource
consumption, the floating-point representation can be
replaced with fixed-point arithmetic by not prioritizing the
precision. For fixed-point arithmetic the data representation
is an integer, so the operations on such data can be easily
implemented in FPGAs. Hamerstrom et al. [76] proposed an
on-chip learning framework to have high performance and
low-cost architecture which used 8-16 bit fixed-point
representation. When designing complex CNN, using DSP
blocks to store the network causes issues like chip area
wastage, and also a large number of unimportant details of the
DSP block confuses. Ahmed et al. [79] proposed an 8-bit fixed
point parallel MAC unit for full customization of the FPGA
accelerator of CNN instead of using DSP blocks, achieving
high computational speeds. Solovyev et al. [24] proposed an
FPGA implementation for CNN with the fixed-point
representation of the data in convolutional blocks for
handwritten digit recognition application. The bit width for
data representation in convolution block was chosen
depending on whether rounding the values after each addition
and multiplication or rounding the values at the end of
convolution. It is observed that turning the value after each
elementary operation results in higher performance but also
increases memory overhead. So it is suggestible to perform
rounding of the value after convolution. Xiao et al. [17]
proposed an FPGA implementation of the CNN for
handwritten digit recognition where all the weights and
parameters were represented in 18 bit fixed point format
where the accuracy obtained was 97.5% for recognizing the
MNIST data set digits. It is seen that handwritten digit
recognition by CNN with fixed-point arithmetic has higher
accuracy compared to that of floating-point arithmetic in [80].
Hashemi et al. [81] made a study on different representations
of data, and they evaluated for three different datasets, and
also they proposed a methodology to maintain accuracy for
increasing network size at low precision.

 B. Dynamic Fixed point
For all the network layers, the values associated with weights
and parameters may have a different range at different layers
of the network. The fixed point representation should be
capable of providing a wide range of values for different
network layers, or else there will be accuracy degradation.
This dynamic fixed-point representation is used for the
intermediate values of the network layers. The wide dynamic
range coverage limits the fixed-point representation. So the
dynamic fixed point is used when large range for the
activations of the network layers is allowed. Ristretto, an
approximation framework is introduced to analyze the CNNs
regarding the numerical representation of the weights and
outputs of both convolutional and fully connected layers [19].
This framework uses dynamic fixed-point representation and
results when compared, says that the fixed point maintains

the accuracy for bit width up to 18, below which there is
accuracy degradation. With this type of representation of the
network, the advantage is that the computation complexity
and the resources required are reduced.
 C. Power-of 2 Quantization
It is known that for any CNN, the multiplication operation
requires a lot of computation, and it requires a complex
design to be implemented in hardware. So the multipliers are
to be replaced in order to have power and area-efficient
hardware units. This power-of-2 is one such approximate
computing technique where the weights in the CNN are
quantized to 2i format. This type of quantization represents
the data with low bit width and gives less accuracy
degradation. This approximation allows using barrel shifters
instead of multipliers for performing the operations, thus
reducing the complexity. In many of the neural networks, the
weights and activations may not be distributed uniformly. For
such non-uniform distribution of data, non–linear
quantization can be used. Vogel et al. [83] presented a
power-of-arbitrary-log based quantization for the pre-trained
CNN, and their performance in terms of power and energy
efficiency were compared with 8-bit fixed point multiplier.
Using different precision and different arithmetic for the
same CNN structure can give better results with less accuracy
degradation. Zhao et al. [84] was the first work to use the
multi-precision and multi arithmetic representations for the
CNN acceleration on the FPGAs. They proposed a Tomato
framework for CNN acceleration, where they used both
power-of-2 and fixed-point representation for the weights.
Large bit reduction for the data representation in the neural
network suffers from the accuracy loss. This challenge is
addressed by Fong et al. [86], where they proposed
Incremental Network Quantization (INQ) strategy. The
weights are represented in low bit format as power-of-2 such
that computation difficulty is minimized as general shift
operations replace the multiplications.
 D. Binary Quantization
This type of quantization reduces the accessing of memory as
the weights and parameters are represented with a single bit,
thus reducing the memory bandwidth. For this quantization,
the complex multipliers are replaced with multiplexers. In
this type of representation, the weights are represented in
binary. If the weights and activations of the CNNs are
described in the binary format, then those neural networks are
called Binarized Neural Networks (BNNs). There are two
types of binarization:

1. Binarized weights and activations with full precision
2. Binarized weights and activation

The first type uses conditional negation for multiplications
and reduces the memory requirements for the storing of
weights. In the second type, the MAC operations are replaced
with XNOR based activities and signed bit count. It is known
as full-binarization when all the input, output activations and
the weights are represented in binary. If either of those is
binary, then it is known as partial-binarization. The BNNs

N. Manikandan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3828 – 3846

3839

Table 4 : FPGA based CNN acceleration using approximate arithmetic
Technique Contributors Network

layer
Bit
width
(bits)

Accuracy Dataset Device Frequency
(MHz)

Hardware
resource
utilization

Remarks

Fixed point Gupta et al.,
2015 [77]

Convoluti-
onal and
pooling
layer

16 - CIFAR-
10

Xilinx
Kintex325
T FPGA

166 812(D),
62922(L),
334(B),
7W(P)

Energy
efficiency
and
computation
al
throughput
are
increased

Zhou et al.,
2015 [90]

Convoluti-
onal and
pooling
layers

11 8
(bad/250fr
ames)

MNIST Virtex-7
FPGA

150 83(D),
80175(L),
0(B)

16.42x
faster
implementat
ion
compared to
PC platform

Zhisheng et
al., 2017 [91]

Convoluti-
onal and
FC layers

8 98.16% MNIST Xilinx
485T

- 574(D),
7204(L),
343.5(B),
0.47W(P)

31.43% and
47.95%
reductions in
latency and
power
compared to
32 bit
floating
point engine

Wijeratene et
al., 2018 [78]

Convoluti-
onal layer

32 Q
point

- ImageNe
-t

Xilinx
Virtex 7

200 576(D),
117k(L),
226.2
GOPs(T)

Reduced
resource
utilization
with a
throughput
of 226.2
GOPs

Solovyev et
al., 2018 [24]

Convoluti-
on and FC
layers

12 96% MNIST DE0-Nano
developme
nt board

143 5947(L) Overall
processing
speed of
150frames/s
ec is
achieved

Edwin et al.,
2019 [92]

Whole
network

12 97.59% MNIST Xilinx
Zynq
7000, SoC

100 158(D),
4254(L),
45(B)

17% higher
throughput
compared to
software
implementat
ion

Xiao et al.,
2020 [17]

Whole
network

18 97.57% MNIST Cyclone
10 FPGA

150 274(D),
12588(L)

Highest
recognition
rate for
LeNet has
been
achieved

Cho et al.,
2020 [18]

Whole
network

11 98.64% MNIST Xczu9eg-f
fvb1156-2
-I FPGA

- 143(D),
32589(L),
95(B)

40% and
90%
reductions in
memory
usage and
latency

Dynamic
Fixed Point

Qiu et al.,
2016 [93]

Whole
network

16 86.66% ImageNe
-t

Xilinx
Zynq
ZC706

150 780(D),
182616(L),
486(B)

Only 0.4%
loss in
accuracy and
a frame rate

N. Manikandan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3828 – 3846

3840

of 4.45 fps
Yao et al.,
2018 [20]

Convoluti-
onal,
pooling
and FC
layers

16 - ImageNe
-t

Zynq-XC7
Z100

- 364(D),
310688(L),
543.6(B),
9.63W(P)

0.054GOPS/
DSP and
5.24GOPS/
w
performance
density and
power
efficiency
are obtained
respectively

Ding et al.,
2019 [82]

Whole
network

16 - Serial
network
structure

Cyclone V
FPGA

125 80% DSP
utilized,
3.78W(P),
6.63
GOPS(T)

The
precision
error
obtained is
1% for 16 bit
fixed point
representati
on

Power-of-2 Vogel et al.,
2018 [83]

Covolutio-
nal layer

5b 80.59 ImageNe
-t

Xilinx
Virtex7

-- 9(D),
29.04k(L),
740(B),
4.329W(P)

22.3%
reduction in
power
consumption
s and
reduced
resource
utilization

Zhao et al.,
2019 [84]

Convoluti-
onal layers

mixed 68.02 ImageNe
-t

Intel
Stratix V

156 256(D),
362.7k(L),
828(B),
3536
GOPs(T)

Achieved a
frame rate of
3000fps and
very little
latency

Piyasena et al.,
2019 [85]

Convoluti-
onal layers

2,3 99.9,97.53 MNIST
CIFAR-
10

Xilinx
Virtex
ultrascale+
XCVU9P

100 680k(L),
30.5(B),
1.926W(P)

Achieved
greater
power
savings and
run time
computation
s

Fong et al.,
2019 [86]

Convoluti-
onal and
FC layers

32b 78.17 Imagene
-t

Stratix V
GXA7

155 0(D),
155.5k(L),
2061(B),
8.694W(P),
195.350
GOPs(T)

1.87x
throughput
improvemen
ts and 20%
improvemen
ts in latency

Binary
quantization

Yaman et al.,
2016 [94]

Convoluti-
on,
pooling
and FC
layers

1 95.8 MNIST Xilix Zynq
ZC706

200 91131(L),
4.5(B),
<22W(P)

Achieved
greater
throughput

Liang et al.,
2017 [88]

Convoluti-
onal and
FC layers

1 98.24,
86.31,
66.80

MNIST,
CIFAR-
10,
AlexNet

Altera
stratix V
fpga

150 384(D),
2210(L),
26.2(B)

Greater seed
up is
achieved
compare to
CPU
platforms

Zhao et al.,
2017 [95]

Convoluti-
onal and
FC layers

1 - CIFAR-
10

Xilinx
Zynq 7000
SoC

143 3(D),
46.9k(L),
4.7W(P),
207.8
GOPs(T)

15.1x better
performance
and 11.6x
improved
throughput

N. Manikandan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3828 – 3846

3841

Guo et al.,
2018 [96]

All layers 1 88.61,
96.9

CIFAR-
10,
SVHN

Xilinx
Zynq
ZC702

- 29.6k(L),
103(B),
3.2W(P),
2236 GOPs
(T), 722
GOPs(T)

3.1x, 5.4x,
4.9x
improved
performance
, resource
efficiency
and power
efficiency

Guan et al.,
2019 [97]

- 1 97.53 MNIST Intel
Altera
5CEBA7F

125 19(D),
38794(L),
615(B)

Weight
reduction by
4-6x and
14x reduced
latency

D : DSPs, L : LUTs, B : BRAM, P : Power, T: Throughput

have the advantage of efficiently mapping the network to the
hardware without degrading the accuracy of the network. In a
CNN, the input to the first layer will be from average pooling
layer where the data is in either fixed format or floating
format. In order to perform the multiplications, the binarized
weights use multiplexers instead of XNOR gates. But for a
fully connected layer, the input comes from
batch-normalization layer, so XNOR gates replace
multiplication in the dot product [87]. Liang et al. [88] used
bit-level XNOR gates and shifting operations to reduce the
bottleneck caused by using multipliers for MAC operations
and also used data quantization techniques to reduce the
memory footprint. The inference of this BNN on Stratix-v
FPGA achieved tera operations per second (TOP/s)
performance with less accuracy loss. Two approximations,
CNNs with binary weights and CNNs with XNOR gates, are
introduced for faster and less memory required convolution
operations [89]. In binary weight CNNs, the weights are
represented in binary, so the convolutions involving binary
data are fast and require less memory to store the results. For
the XNOR networks, both the weights and inputs to the
network layers are in binary format. Wang et al. [30]
proposed the LUTNet, a neural network accelerator which
uses K-LUTs as operators for the inference of a neural
network. The XNOR based dense BNN architecture is
modified to K-LUTs based sparse network where K-inputs are
directly mapped to K-LUTs. This approach used in [30] has
achieved higher efficiencies in area and energy compared to
regular BNN accelerators.

Table 4 gives comparisons between different network level
approximations made to CNNs. Resource utilization and
performance in terms of power and throughput are also
compared. It is observed that the highest accuracy for MNIST
dataset is found by using power-of-2 quantization, for
ImageNet by using dynamic fixed-point representations. The
fixed point representations have achieved higher accuracies
but less throughput compared to dynamic fixed-point
representation. The advantage of this fixed point
representation can be further increased at the hardware level

by using parallel and pipelined convolutional units to reduce
the computation complexity and increase the inference speed.
The multipliers to perform the convolution operations with
these fixed-point numbers can be built using LUTs, thus
increasing the utilization of hardware resources. The
heterogeneity property can be exploited in FPGAs to make

efficient use of DSPs by allowing different bit widths along
with binarized data. High throughputs can be obtained by
utilising the data-level parallelism in the PEs along with the
fixed point and dynamic fixed-point representations. Simple
rounding schemes for fixed-point representations can be
identified in order to have reduced hardware complexity. The
use of binary quantization for CNNs has dramatically reduced
the memory footprint and obtained higher speeds compared to
the other approximate arithmetic circuits. These approximate
arithmetic can be further extended to lightweight neural
networks for further performance increments.

 E. Stochastic Computing
The stochastic computing (SC) differs from conventional
computing concerning the representation of the numbers in
the network. In conventional computing, base two notation is
used for representing the numbers. In stochastic computing,
the numbers are represented with probability p, which has a
stochastic value v. The stochastic value is single bit
representation and may vary with the system clock. The
stochastic value is determined in two ways, non-polarized and
polarized. In non-polarized mapping, the probability (p) is
directly mapped to the logical value (v). In polarized
mapping, the probability (p) of range [0,1] is mapped to its
logical value (v) of range [-1,1]. The negative numbers cannot
be represented using non-polarized mapping. This is a
low-cost approximation technique which uses small circuits
to perform the operations. This SC, when applied to the
neural network, has the advantage of enhanced power
efficiency and reduced hardware cost. In SC simple logic
gates like AND, XOR is used to perform the multiplications
and multiplexers are used to perform the scaled additions.
This SC is a substitute for binary computing at a low-cost
implementation. The major advantages of using this SC to

N. Manikandan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3828 – 3846

3842

accelerate the CNNs is the reduced hardware cost and less
memory and power consumptions. The convolutional block in
a CNN is the feature extractor, and Convolutional block
requires a large number of operations. This computational
complexity can be reduced using the SC for the feature
extractor operations. One such method is proposed by Ren et
al. [98], by implementing four designs for the feature
extractor block and weight storage methods are proposed to
reduce the area consumption. The SC-based feature extractor
design is presented and optimized form the view of precision
calculation and their hardware design achieved significant
reductions in area, power and energy when compared to CPU,
GPU and binary ASIC based implementations [99]. SC for
CNN basis functions like inner product calculation, pooling
and activation function is presented by Hamdan et al. [100] to
exploit the correlation and the network is synthesized
targeting the Xilinx Zynq Z706 FPGA. Their work proposed a
MUX tree to calculate the inner product through SC for the
convolutional layers, and it has more accuracy and requires
less hardware compared to a conventional method. For
having reduced memory resources, Xiaolong et al. [101]
proposed Domain Wall Memory (DWM) technique for
SC-DCNNs. This DWM is a high-density memory and
non-volatile which is used to replace SRAMs. An effective
resource sharing scheme is proposed for storing the weights of
convolutional and fully connected layers based on DWM
strategy. HEIF, an SC based framework, is proposed by Li et
al. [102]for the applications including LeNet and AlexNet. In
their work, the required optimizations were done on the
functional block connections in the CNN, reducing the
bitstream length and achieved 6.5x area efficiency and 5.6x
energy enhancements.

The weights of CNN represented in binary reduces the
complexity to perform the MAC operations and also reduces
the memory footprint. The binarization of the weights of CNN
can be either deterministic or stochastic. The FPGA
implementation of stochastic BNN is proposed to enhance the
learning ability of the BNNs [103]. With this stochastic
binarization, the inference speed for both the MNIST and
CIFAR-10 datasets have been increased significantly
compared to a non-regularized BNN. Two SC-based designs
are compared in terms of area, power consumption and
accuracy [104]. Their analysis for MNIST handwritten digit
recognition dataset says that Binary Interface Stochastic
Computing (BISC) has outperformed the Extended Stochastic
Logic (ESL) which is 50x faster and consumes less area and
power. The limitation with the SC-based accelerators is that
they can implement shallow neural networks having limited
depth. This gives the insight to optimize the SC-based designs
further and extend its advantages to more significant and
complex networks. The SC approach can also be used along
with other approximation techniques like pruning and weight
sharing to reduce hardware complexity and increase the

inference speeds. These SC-DCNN implementations can
further be extended to use many other NVMs like Re-RAM,
SST-MRAM and SOT-MRAM for storing weights instead of
SRAMS.

4. CONCLUSION
This survey presented the various approximate computing
techniques applied to CNNs for acceleration. The
dependencies of performance metrics like accuracy, power,
area, throughput with approximation techniques for image
processing applications are enumerated. Various works for
each approximation techniques are compared for various
image processing applications like classification, detection
and recognition without a loss in the accuracy. At the outset,
the approximation techniques such as pruning, weight
sharing and reduced precision allow re-training of the
network by which a part of efficiency lost during the use of
these approximations can be regained. The hardware
approximations like approximating computational models,
approximating memories do not support re-training since it is
difficult for keeping track of all errors occurred due to
approximations. This limitation makes the accuracy loss
non-recoverable, and thus its scope is limited in hardware for
the deep learning applications. These approximations can
further achieve more magnificent performances when it is
applied to lightweight neural networks. This survey widens
the window in the field of deep learning acceleration to
further extend the research scope with the insights
provided.

REFERENCES
1. O. Russakovsky et al., “ImageNet Large Scale Visual

Recognition Challenge,” Int. J. Comput. Vis., vol. 115,
no. 3, pp. 211–252, 2015.
https://doi.org/10.1007/s11263-015-0816-y

2. A. G. Scanlan, “Low power & mobile hardware
accelerators for deep convolutional neural networks,”
Integration. VLSI Journal, October, 2018.

3. S. Chokkadi, “A Study on various state of the art of the
Art Face Recognition System using Deep Learning
Techniques,” International Journal of Advanced Trends
in Computer Science and Engineering, pp. 1590–1600,
2019.
https://doi.org/10.30534/ijatcse/2019/84842019

4. R. Girshick, “Fast R-CNN.” In Proceedings of the IEEE
international conference on computer vision, pp.
1440-1448, 2015.

5. M. Syamala, “A Deep Analysis on Aspect based
Sentiment Text Classification Approaches,”
International Journal of Advanced Trends in Computer
Science and Engineering, pp. 1795–1801, 2019.
https://doi.org/10.30534/ijatcse/2019/01852019

6. K. Ovtcharov, O. Ruwase, J. Kim, J. Fowers, K. Strauss,
and E. S. Chung, “Accelerating Deep Convolutional
Neural Networks Using Specialized Hardware,”
Microsoft Research Whitepaper pp. 1–4, 2015.

N. Manikandan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3828 – 3846

3843

7. N. Suda et al., “Throughput-Optimized Open-CL
based FPGA accelerator for Large-Scale
Convolutional Neural Networks,” In Proceedings of
the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays pp. 16–25, 2016.

8. M. A. Hanif and M. U. Javed, “Hardware-Software
Approximations for Deep Neural Networks,”
Approximate Circuits, pp. 269–288,2019.

9. M. Lass, D. K. Thomas, C. Plessl, and S. Member,
“Using Approximate Computing for the Calculation
of Inverse Matrix p -th Roots,” IEEE Embedded
Systems Letters, vol. 10, no. 2, pp. 33–36, 2017.
https://doi.org/10.1109/LES.2017.2760923

10. T. Ayhan and M. Altun, “Circuit Aware Approximate
System Design With Case Studies in Image
Processing and Neural Networks,” IEEE Access, vol.
7, pp. 4726–4734, 2020.

11. C. Chen, J. Choi, K. Gopalakrishnan, V. Srinivasan, and
S. Venkataramani, “Exploiting Approximate
Computing for Deep Learning Acceleration,” In 2018
Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 821–826, 2018.

12. N. P. Jouppi et al., “In - Datacenter Performance
Analysis of a Tensor Processing Unit,” In Proceedings
of the 44th Annual International Symposium on
Computer Architecture, pp. 1–12, 2017..

13. A. B. Kahng and S. Kang, “Accuracy-configurable
adder for approximate arithmetic designs,”In
Proceedings of the 49th Annual Design Automation
Conference, pp. 820-825. 2012.
https://doi.org/10.1145/2228360.2228509

14. M. Zhang, L. Li, H. Wang, Y. Liu, H. Qin, and W. Zhao,
“Optimized Compression for Implementing
Convolutional Neural Networks on
FPGA,”Electronics, vol.8, no.3,pp. 295, 2019.

15. S. Moon, S. Member, Y. Byun, and S. Member,
“Memory-Reduced Network Stacking for Edge-Level
CNN Architecture with Structured Weight Pruning,”
IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 9, no. 4, pp. 735-746, 2019.

16. Y. Niu et al., “SPEC 2 : SPECtral SParsE CNN
Accelerator on FPGAs,”In 2019 IEEE 26th
International Conference on High Performance
Computing, Data, and Analytics (HiPC), pp. 195–204,
2019.
https://doi.org/10.1109/HiPC.2019.00033

17. R. Xiao, J. Shi, and C. Zhang, “FPGA Implementation
of CNN for Handwritten Digit Recognition,” In 2020
IEEE 4th Information Technology, Networking,
Electronic and Automation Control Conference (ITNEC)
pp. 1128–1133, 2020.

18. Y. Kim, “Implementation of Data-optimized
FPGA-based Accelerator for Convolutional Neural
Network.” In 2020 International Conference on
Electronics, Information, and Communication (ICEIC),
pp. 1-2. IEEE, 2020.

19. Philipp Gysel, Mohammad Motamedi, and Soheil
Ghiasi, “HARDWARE-ORIENTED
APPROXIMATION OF CONVOLUTIONAL
NEURAL NETWORKS,” arXiv preprint arXiv, 2016.

20. Y. Yao et al., “A FPGA-based Hardware Accelerator
for Multiple Convolutional Neural Networks,” 2018
14th IEEE Int. Conf. Solid-State Integr. Circuit
Technol., pp. 1–3, 2018.

21. Y. Wang, J. Lin, and Z. Wang, “An Energy-Efficient
Architecture for Binary Weight Convolutional
Neural Networks,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol.26, no.2, pp.
280-293, 2017.

22. Y. Lecun, P. Haffner, L. Bottou, and Y. Bengio, “Object
Recognition with Gradient-Based Learning,” Shape,
Contour and Grouping in Computer Vision Lecture
Notes in Computer Science, pp. 319–345, 1999.
https://doi.org/10.1007/3-540-46805-6_19

23. J.-K. Kim, M.-Y. Lee, J.-Y. Kim, B.-J. Kim, and J.-H.
Lee, “An efficient pruning and weight sharing method
for neural network,” 2016 IEEE International
Conference on Consumer Electronics-Asia (ICCE-Asia),
2016.

24. R. A. Solovyev, A. A. Kalinin, A. G. Kustov, D. V.
Telpukhov, and V. S. Ruhlov, “FPGA Implementation
of Convolutional Neural Networks with Fixed-Point
Calculations,” arXiv, vol. 1808.09945, pp. 1–9, 2018.

25. Z. Liu, Y. Dou, J. Jiang, J. Xu, S. Li, and Y. Zhou,
“Throughput-Optimized FPGA Accelerator for Deep
Convolutional Neural Network,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS),
vol. 10, no. 3, pp. 1-23, 2017.

26. A. Parashar et al., “SCNN : An Accelerator for
Compressed-sparse Convolutional Neural Networks.”
ACM SIGARCH Computer Architecture News, vol.45,
no. 2, pp. 27-40, 2019.
https://doi.org/10.1145/3140659.3080254

27. K. Abdelouahab et al., “Accelerating CNN inference on
FPGAs : A Survey,” arXiv preprint arXiv, 2018.

28. L. Lu, J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang,
“An Efficient Hardware Accelerator for Sparse
Convolutional Neural Networks on FPGAs,” IEEE
27th Annu. Int. Symp. Field-Programmable Cust.
Comput. Mach., pp. 17–25, 2019.

29. Song Han, Jeff Pool, John Tran, and William J. Dally,
“Learning bothWeights and Connections for Efficient
Neural Networks,” Advances in neural information
processing systems, pp. 1135–1145, 2015.

30. E. Wang, J. J. Davis, P. Y. K. Cheung, and G. A.
Constantinides, “LUTNet : Rethinking Inference in
FPGA Soft Logic,” 2019 IEEE 27th Annu. Int. Symp.
Field-Programmable Cust. Comput. Mach., pp. 26–34,
2019, doi: 10.1109/FCCM.2019.00014.

31. M. H. Zhu, “To prune , or not to prune : exploring the
efficacy of pruning for model compression,” arXiv :
1710 . 01878, vol.2, Nov 2017.

N. Manikandan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3828 – 3846

3844

32. S. Anwar, K. Hwang, and W. Sung, “Structured
Pruning of Deep Convolutional Neural Networks.”
ACM Journal on Emerging Technologies in Computing
Systems (JETC), vol. 13, no. 3, pp. 1-18, 2017.
https://doi.org/10.1145/3005348

33. S. Anwar, W. Sung, and C. Science, “COMPACT
DEEP CONVOLUTIONAL N EURAL
NETWORK,” vol. 1, no. 2015, pp. 1–10, 2017.

34. Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, and Jan Kautz, “PRUNING CONVOLUTIONAL
NEURAL NETWORKS FOR RESOURCE
EFFICIENT INFERENCE,” arXiv preprint arXiv,
2016.

35. Yann Le Cun, John S. Denker, and Sara A. Solla,
“Optimal Brain Damage,” Advances in neural
information processing systems, 1990.

36. B. Hassibi, D. G. Stork, G. J. Ivolff, S. Hill, and R. Suite,
“Optimal Brain Surgeon and General Xetlwork
Pruning.” IEEE international conference on neural
networks,1993.

37. C. Ding et al., “CirCNN : Accelerating and
Compressing Deep Neural Networks Using
Block-Circulant Weight Matrices.” Proceedings of the
50th Annual IEEE/ACM International Symposium on
Microarchitecture. 2017.

38. S. Li, W. Wen, and Y. Wang, “An FPGA Design
Framework for CNN Sparsification and
Acceleration,” In 2017 IEEE 25th Annual International
Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 28-28, 2017.

39. H. Kang, “Real-Time Object Detection on 640x480
Image With VGG16 + SSD,” In 2019 International
Conference on Field-Programmable Technology
(ICFPT), pp. 419–422, 2019.
https://doi.org/10.1109/ICFPT47387.2019.00082

40. R. J. Struharik, B. Z. Vukobratović, A. M. Erdeljan, and
D. M. Rakanović, “CoNNa–Hardware accelerator for
compressed convolutional neural networks,”
Microprocessors and Microsystems, vol. 73, p. 102991,
2020.

41. F. Sun et al., “A High-Performance Accelerator for
Large-Scale Convolutional Neural Networks,” In
2017 IEEE International Symposium on Parallel and
Distributed Processing with Applications and 2017 IEEE
International Conference on Ubiquitous Computing and
Communications (ISPA/IUCC), pp. 622-629,2017.

42. Y. Li and Y. Du, “A Novel Software-Defined
Convolutional Neural Networks Accelerator,” IEEE
Access, vol. 7, pp. 177922–177931, 2019.

43. W. Chen, J. W. W. Edu, C. Cse, and W. Edu,
“Compressing Neural Networks with the Hashing
Trick” In International conference on machine learning,
pp. 2285-2294, 2015.

44. Song Han, Huizi Mao, and William J. Dally, “Deep
Compression: Compressing Deep Neural Networks
With Pruning, Trained Quantization And Huffman
Coding,” arXiv preprint arXiv, 2015.

45. J. Garland and D. Gregg, “Low Complexity
Multiply-Accumulate Units for Convolutional Neural
Networks with Weight-Sharing,” ACM Transactions
on Architecture and Code Optimization (TACO), vol. 15,
no. 3, pp. 1–24, 2018.
https://doi.org/10.1145/3233300

46. H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. I. E. Han, “A
Review , Classification , and Comparative Evaluation
of Approximate arithmetic circuits,” ACM Journal on
Emerging Technologies in Computing Systems (JETC),
vol. 13, no. 4, pp. 1–34, 2017.

47. H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, and J.
Han, “A Comparative Evaluation of Approximate
Multipliers,”In 2016 IEEE/ACM International
Symposium on Nanoscale Architectures (NANOARCH),
pp. 191–196, 2016.

48. J. N. Mitchell and J. R. Associate, “Computer
Multiplication and Division Using Binary Logarithms
*,” IRE Transactions on Electronic Computers,pp.
512–517, 1962.
https://doi.org/10.1109/TEC.1962.5219391

49. A. Avramovic and P. Bulic, “An iterative logarithmic
multiplier,” Microprocessors and Microsystems vol. 35,
pp. 23–33, 2011.

50. W. Liu and D. Wang, “Design of Approximate
Logarithmic Multipliers,” In Proceedings of the on
Great Lakes Symposium on VLSI 2017, pp. 47–52,2017.
https://doi.org/10.1145/3060403.3060409

51. S. Member, M. S. Kim, A. A. Del Barrio, and L. T.
Oliveira, “Efficient Mitchell ’ s Approximate Log
Multipliers for Convolutional Neural Networks,”
IEEE Transactions on Computers, vol. 68, no. 5, pp.
660-675, 2018

52. M. S. Kim, A. A. D. Barrio, R. Hermida, and N.
Bagherzadeh, “Low-power implementation of
Mitchells approximate logarithmic multiplication for
convolutional neural networks,” 2018 23rd Asia and
South Pacific Design Automation Conference
(ASP-DAC), 2018.

53. J. Faraone et al., “AddNet : Deep Neural Networks
Using FPGA-Optimized Multipliers,” IEEE Trans.
Very Large Scale Integr. Syst., vol. PP, pp. 1–14, 2019.

54. Z. Wang, M. A. Trefzer, S. J. Bale, and A. M. Tyrrell,
“Approximate Multiply-Accumulate Array for
Convolutional Neural Networks on FPGA,” 2019 14th
Int. Symp. Reconfigurable Commun. Syst., pp. 35–42,
2019.

55. C. Guo, L. Zhang, X. Zhou, W. Qian, and C. Zhuo, “A
Reconfigurable Approximate Multiplier for
Quantized CNN Applications,” In 2020 25th Asia and
South Pacific Design Automation Conference
(ASP-DAC), pp. 235-240, 2020

56. F. Berry, I. Pascal, and U. M. R. Cnrs, “The Challenge
of Multi-Operand Adders in CNNs on FPGAs,” In
Proceedings of the 18th International Conference on
Embedded Computer Systems: Architectures, Modeling,
and Simulation, pp. 157-160. 2018.

N. Manikandan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3828 – 3846

3845

57. L. Luo, Z. Chen, X. Yang, F. Qiao, Q. Wei, and H. Yang,
“A single clock cycle approximate adder with hybrid
prediction and error compensation methods,”
Microelectronics J., vol. 87, no. September 2018, pp.
45–50, 2019.
https://doi.org/10.1016/j.mejo.2019.03.007

58. T. Kowsalya, “Area and Power Efficient Pipelined
Hybrid Merged Adders for Customized Deep
Learning Framework for FPGA Implementation,”
Microprocess. Microsyst., p. 102906, 2019.

59. M. S. Ansari, S. Member, V. Mrazek, B. F. Cockburn, L.
Sekanina, and S. Member, “Improving the Accuracy
and Hardware Efficiency of Neural Networks Using
Approximate Multipliers,” IEEE Trans. Very Large
Scale Integr. Syst., vol. PP, pp. 1–12, 2019.

60. A. Shafiee, A. Nag, N. Muralimanohar, and R.
Balasubramonian, “ISAAC : A Convolutional Neural
Network Accelerator with In-Situ Analog Arithmetic
in Crossbars,” ACM SIGARCH Computer Architecture
News, vol.44, no. 3, pp. 14–26, 2016.

61. A. P. Chowdhury, P. Kulkarni, and V. G. G. V. Alex,
“MB-CNN : Memristive Binary Convolutional Neural
Networks for Embedded Mobile Devices,” Journal of
Low Power Electronics and Applications, pp. 1–27,
2018.
https://doi.org/10.3390/jlpea8040038

62. F. Tu, W. Wu, S. Yin, L. Liu, and S. Wei, “RANA :
Towards Efficient Neural Acceleration with
Refresh-Optimized Embedded DRAM,” 2018
ACM/IEEE 45th Annu. Int. Symp. Comput. Archit., pp.
340–352, 2018.

63. M. Imani, M. Samragh, Y. Kim, and S. Gupta,
“RAPIDNN : In-Memory Deep Neural Network
Acceleration Framework.”arxiv preprint arxiv, 2018.

64. P. Chi, S. Li, and C. Xu, “PRIME : A Novel
Processing-in-memory Architecture for Neural
Network Computation in ReRAM-based Main
Memory,” ACM SIGARCH Computer Architecture
News , vol. 44, no. 3, pp. 27-39 2016.

65. D. Fan and S. Angizi, “Energy Efficient In-Memory
Binary Deep Neural Network Accelerator with
Dual-Mode SOT-MRAM,” In 2017 IEEE International
Conference on Computer Design (ICCD), pp. 609-612,
2017.

66. Y. Pan, P. Ouyang, and A. M. Cell, “A
MultilevelMultilevel Cell STT-MRAM-Based
Computing In-Memory Accelerator for Binary
Convolutional Neural Network,” IEEE Trans. Magn.,
vol. PP, pp. 1–5, 2018

67. Baohua Sun, Daniel Liu, and Leo Yu, “MRAM
Co-designed Processing-in-Memory CNN
Accelerator for Mobile and IoT Applications,” arXiv
preprint arXiv, 2018.

68. S. Angizi, Z. He, F. Parveen, D. Fan, and C. Florida,
“IMCE : Energy-Efficient Bit-Wise In-Memory
Convolution Engine for Deep Neural Network.” In

2018 23rd Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 111-116, 2018..

69. S. Angizi, Z. He, A. S. Rakin, and D. Fan, “CMP-PIM :
An Energy-Efficient Comparator-based
Processing-In-Memory Neural Network
Accelerator,” Proceedings of the 55th Annual Design
Automation Conference, pp. 1-6, 2018

70. K. Ikegami et al., “Binary and ternary convolutional
neural network acceleration by in-nonvolatile
memory computing with Voltage Control Spintronics
Memory (VoCSM),” 2019 Electron Devices Technol.
Manuf. Conf., pp. 225–227, 2019.

71. A. Roohi, S. Angizi, D. Fan, and R. F. Demara,
“Processing-In-Memory Acceleration of
Convolutional Neural Networks for
Energy-Efficiency, and Power-Intermittency
Resilience,” 20th Int. Symp. Qual. Electron. Des., pp.
8–13, 2019.

72. V. Joshi et al., “Accurate deep neural network
inference using computational phase-change
memory,” Nat. Commun., no. 2020, pp. 1–13, 2020.

73. l. Lai et al., “Deep Convolutional Neural Network
Inference with Floating-point Weights and
Fixed-point Activations,” arxiv preprint arxiv, 2017.

74. T. J. Webb et al., “Flexpoint : An Adaptive Numerical
Format for Efficient Training of Deep Neural
Networks,” In Advances in neural information
processing systems, pp. 1742-1752. 2017.

75. X. Lian, Z. Liu, Z. Song, and J. Dai,
“High-Performance FPGA-Based CNN Accelerator
With Block-Floating-Point Arithmetic,” IEEE Trans.
Very Large Scale Integr. Syst., vol. 27, no. 8, pp.
1874–1885, 2019.

76. D. Hammerstrom, “A VLSI architecture for
high-performance, low-cost, on-chip learning,” 1990
IJCNN International Joint Conference on Neural
Networks, 1990.

77. S. Gupta, A. Agrawal, K. Gopalakrishnan, Y. Heights, P.
Narayanan, and S. Jose, “Deep Learning with Limited
Numerical Precision.” In International Conference on
Machine Learning, pp. 1737-1746. 2015.

78. S. Wijeratne, S. Jayaweera, M. Dananjaya, and A.
Pasqual, “Reconfigurable Co-Processor Architecture
with Limited Numerical Precision to Accelerate Deep
Convolutional Neural Networks,” 2018 IEEE 29th Int.
Conf. Appl. Syst. Archit. Process., pp. 1–7, 2018.
https://doi.org/10.1109/ASAP.2018.8445087

79. H. O. Ahmed, M. Ghoneima, and M. Dessouky,
“Concurrent MAC Unit Design using VHDL for Deep
Learning Networks on FPGA,” 2018 IEEE Symp.
Comput. Appl. Ind. Electron., pp. 31–36, 2018.

80. M. Gallus and A. Nannarelli, “Handwritten Digit
Classification using 8-bit Floating Point based
Convolutional Neural Networks,” 2018.

81. S. Hashemi, N. Anthony, H. Tann, R. I. Bahar, and S.
Reda, “Understanding the Impact of Precision
Quantization on the Accuracy and Energy of Neural

N. Manikandan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3828 – 3846

3846

Networks.” In Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp 1474-1479, 2017.

82. R. Ding, G. Su, G. Bai, W. Xu, N. Su, and X. Wu, “A
FPGA-based Accelerator of Convolutional Neural
Network for Face Feature Extraction,” 2019 IEEE Int.
Conf. Electron Devices Solid-State Circuits, pp. 1–3,
2019.

83. S. Vogel and A. Guntoro, “Efficient Hardware
Acceleration of CNNs using Logarithmic Data
Representation with Arbitrary log-base.”, In
Proceedings of the International Conference on
Computer-Aided Design, pp. 1-8. 2018.

84. Y. Zhao et al., “Automatic Generation of
Multi-precision Multi-arithmetic CNN Accelerators
for FPGAs,” pp. 45–53, 2019.

85. D. Piyasena, R. Wickramasinghe, D. Paul, S. Lam, and
M. Wu, “Reducing Dynamic Power in Streaming CNN
Hardware Accelerators by Exploiting Computational
Redundancies.”,I n 2019 29th International Conference
on Field Programmable Logic and Applications (FPL),
pp. 354-359. IEEE, 2019.

86. C. Fung, B. Fong, J. Mu, and W. Zhang, “A
Cost-Effective CNN Accelerator Design with
Configurable PU on FPGA,” 2019 IEEE Comput. Soc.
Annu. Symp. VLSI, pp. 31–36, 2019

87. S. Fpgas, J. Lin, A. Lotfi, V. Akhlaghi, Z. Tu, and R. K.
Gupta, “Accelerating Local Binary Pattern Networks
with Refresh-Optimized Embedded DRAM,” 2019
Des. Autom. Test Eur. Conf. Exhib., pp. 1112–1117,
2019.

88. S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei, “FP-BNN :
Binarized neural network on FPGA,”
Neurocomputing, vol. 0, pp. 1–15, 2017.

89. M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi,
“XNOR-Net : ImageNet Classification Using Binary
Convolutional Neural Network,” In European
conference on computer vision, pp. 525-542, 2016.
https://doi.org/10.1007/978-3-319-46493-0_32

90. Y. Zhou and A. C. N. N. Basics, “An FPGA-based
Accelerator Implementation for Deep Convolutional
Neural Networks,” no. Iccsnt, pp. 829–832, 2015.

91. Z. Li et al., “Laius : An 8-bit Fixed-point CNN
Hardware Inference Engine,” In 2017 IEEE
International Symposium on Parallel and Distributed
Processing with Applications and 2017 IEEE
International Conference on Ubiquitous Computing and
Communications (ISPA/IUCC), pp. 143-150, 2017.

92. V. Luna and F. Ariza, “El siguiente artículo ha sido
aceptado para ser publicado en el,” vol . 30 , no . 1 de
la revista Ciencia e Ingenieria Neogranadina . Esta
versión es preliminar y puede contener algunos errores
.,” vol. 30, no. 1, 2019.

93. J. Qiu et al., “Going Deeper with Embedded FPGA
Platform for Convolutional Neural Network,” In
Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays pp.
26–35, 2016.

94. Y. Umuroglu, N. J. Fraser, G. Gambardella, and M.
Blott, “FINN : A Framework for Fast , Scalable
Binarized Neural Network Inference,” In Proceedings
of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 65-74, 2017.

95. R. Zhao, W. Song, W. Zhang, T. Xing, and J. Lin,
“Accelerating Binarized Convolutional Neural
Networks with Software-Programmable FPGAs,” In
Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp.
15–24, 2017.

96. P. Guo et al., “FBNA : A Fully Binarized Neural
Network Accelerator,” In 2018 28th International
Conference on Field Programmable Logic and
Applications (FPL), pp. 51-513, 2018.

97. T. Guan, P. Liu, X. Zeng, M. Kim, and M. Seok,
“Recursive Binary Neural Network Training model
for Efficient Usage of On-Chip Memory,” IEEE
Transactions on Circuits and Systems I: Regular Papers,
pp. 1–13, 2019.

98. A. Ren, J. Li, Z. Li, and C. Ding, “SC-DCNN :
Highly-Scalable Deep Convolutional Neural Network
using Stochastic Computing.” ACM SIGPLAN
Notices, pp.405-418, 2017.

99. Z. Li et al., “Structural Design Optimization for Deep
Convolutional Neural Networks using Stochastic
Computing,” In Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 250-25, 2017

100. H. Abdellatef, M. Khalil-hani, N. Shaikh-husin, and S.
O. Ayat, “Stochastic Computing Correlation
Utilization in Convolutional Neural Network Basic
Functions,” Telkomnika, vol. 16, no. 6, 2018.
https://doi.org/10.12928/telkomnika.v16i6.8955

101. X. Ma et al., “An Area and Energy Efficient Design of
Domain-Wall Memory-Based Deep Convolutional
Neural Networks using Stochastic Computing,” In
2018 19th International Symposium on Quality
Electronic Design (ISQED), pp. 314-321, 2018.

102. J. Draper, B. Yuan, J. Tang, and Q. Qiu, “HEIF : Highly
Efficient Stochastic Computing based Inference
framework for Deep Neural Networks,” IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 8, pp.: 1543-1556,
2018.

103. C. Lammie, W. Xiang, and M. R. Azghadi,
“Accelerating Deterministic and Stochastic Binarized
Neural Networks on FPGAs Using OpenCL,” In 2019
IEEE 62nd International Midwest Symposium on
Circuits and Systems (MWSCAS), pp. 626-629,2019.

104. A. Khadem, “Design Challenges of Neural Network
Acceleration Using Stochastic Computing,” arXiv
preprint arXiv ,pp. 1–14, 2020.

