
Sumant Kulkarni et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5547 – 5554

5547

ABSTRACT

Today is the era of Big Data and Cloud Computing.
Organizations, Universities and Governments are investing
heavily in big data analysis which provide strategically
important insights. The cloud platforms, with virtually
infinite amount of on demand and scalable resources, are
used to execute the required data transformations and
pipelines. As the scope of the data analysis activities widen,
organizations need a framework to schedule the data
pipelines and achieve the objectives of Budget management,
Data pipeline prioritization and Reuse encouragement. This
paper presents a “Cloud Data Pipeline Automation
Framework” with several checks and controls. The
framework was evaluated on Google Cloud Platform and the
results establish the effectiveness of the framework. By using
this automation approach, organizations would realize the
true benefits offered by the “pay-as-you-use” cloud
platforms.

Key words: Cloud Budget Management, Data Pipeline
Automation, Data Pipeline Prioritization, Effort
optimization, Scheduling Algorithm.

1 INTRODUCTION
Big data analysis provides valuable insights to

organizations. Availability of on demand, scalable cloud
resources have further boosted its adoption. However, as
more and more data analyses are performed on cloud, a few
unique challenges have emerged as described below:
A.Imagine a healthcare organization analyzing the patient

care and revenue data to distill useful information. There
can be several use cases, e.g.

(i) Assess regulatory compliance of health care quality.
(ii) Identify the trends in the patient service quality.
(iii) Identify most / least effective treatment strategies.
(iv) Profitability assessment of facilities and services.
(v) Project future needs and emergency preparedness.
Organizations need to choose and prioritize these use

cases and apportion the budget to them.
B.The base data used for this type of analysis need not be

static. As new data becomes available on
daily/weekly/monthly basis, some of these analyses will

need to rerun and refreshed periodically.
C.Some of the analyses can be shared with customers and

third parties and may generate direct revenues.
Organizations need to be prepared to respond in timely
manner for any such ad-hoc requests.

D.Many analyses are used for improving process / quality /
revenue for the existing services / products and are
funded from internal budgets. Organizations need to
ensure adherence and proper utilization of the internal
budgets.

E. Organizations need to budget for multiple iterations of the
analysis to improve the outcomes.

F. The Analysis is performed as a sequence of data
transformations which are tied together in a data
pipeline. Reusing the transformation components across
multiple pipelines can save significant time and effort of
the data engineers and is also less error prone.
Organizations need to provide a structure to encourage
such reuse.

G.Cloud platforms provide virtually unlimited on demand
resources. If a data pipeline erroneously starts
consuming too many resources or takes unusually long
time; significant wastage may result. Organizations need
to safeguard against this.

To address the above challenges, we propose a “Cloud Data
Pipeline Automation Framework”. The rest of the paper is
organized as follows. Section 2 gives an overview of the
related works. Section 3 lists the objectives of the proposed
framework. Section 4 describes the approach taken to
achieve the objectives using cloud services and tools. Section
5 presents the “Cloud Data Pipeline Automation
Framework”. Section 6 establishes the effectiveness of the
framework based on evaluation results. Section 7 has the
concluding remarks.

2 RELATED WORKS
Addressing the challenges related to Big data processing

on cloud is a subject of much interest for the academia.
Several efforts aim at resource, time, and cost optimizations
on the cloud platforms. Heuristic workflow scheduling
algorithms with various constraints are described in [2], [3],
[5], [22], and [23]. A summary of various workflow
scheduling techniques and their classification based on their
objectives and execution models is presented in [13]. Review

Cloud Data Pipeline Automation Framework with
Integrated Budget Management

Sumant Kulkarni1, Dr. Shashank Joshi2, Dr. Manjusha S. Joshi3

1Data Analyst and Cloud developer, Freelancer, Pune, India, sumant.shilpa@gmail.com
2Professor, Dean Faculty of Engineering and Technology, BVDU, Pune, India

3Asst Professor, SKNCOE, Vadgaon, Pune, India

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse200942020.pdf

https://doi.org/10.30534/ijatcse/2020/200942020

http://www.warse.org/IJATCSE/static/pdf/file/ijatcse200942020.pdf
https://doi.org/10.30534/ijatcse/2020/200942020

Sumant Kulkarni et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5547 – 5554

5548

of the approaches and techniques available for orchestrating
big data workflow in the cloud is provided in [14]. All these
solutions are aimed at cloud providers rather than cloud user
organizations. Cloud platform improvisations are readily
available to all cloud users. However, these solutions do not
cater for cloud user side data pipeline scheduling challenges
described in the Introduction above.

There are many “cloud based” proprietary data pipeline
(ETL) tools available for data processing like AWS Glue,
Fivetran, Blendo, Matillion, SnapLogic, Confluent, and
XPlenty. Likewise, many open source ETL tools like Stitch,
Talend, Apache Airflow, Apatche Nifi, KNIME [1] are also
available for the organizations to use. Many of the tools have
easy to use web interface for the users to define their data
pipelines. They provide connectivity to all public cloud
platforms as well as a host of data sources. Most of them
have built in transformations for data transfer, cleanup, and
integration. Some of the tools like Airflow [24], support
workflow automation and scheduling. PipeFlow [6] is a tool
that allows the user to write a stream processing script in a
higher level data flow language which can run on any
streaming engine like Spark or Storm. ShareInsights [7] is a
data pipeline platform which uses a custom language, library
of components and collaboration tools to accelerate data
pipeline development. Apache Zeppelin [11] is a web-based
notebook that enables data-driven, interactive data analytics
on a wide range of technologies.
However, to the best of our knowledge, none of the “of the
shelf” tools provide the facility of Budget management and
prioritization while scheduling the data pipelines. Jürgen
Cito et al. [8] have concluded in their systematic study on
how software developers build applications for the cloud that
“Cloud costs are deemed as important but are not tangible to
developers.” Syed Karimunnisa et al. [21] have mentioned
“Scheduling for Resource Optimization” as one of the
current research trend and issue in Cloud computing. Hence,
it is imperative that budget management, use case
prioritization and reuse be integrated with the data pipeline
scheduling framework. Our framework aims to achieve the
same.

3 PROBLEM DEFINITION
Organizations employing large scale data analysis

activities using cloud platforms, need a data pipeline
scheduling framework to achieve following objectives:

A. Define Data Transformations
B. Build Data Pipelines using Transformations
C. Repository of Transformations and Pipelines for reuse
D. Scheduling Data Pipelines
E. Prioritizing Data Pipelines
F. Monitoring Data Pipelines
G. Budget Allocation and Monitoring.

4 RESEARCH APPROACH
We present a new “Cloud Data Pipeline Automation
Framework” which addresses above challenges. We have

built a prototype tool using the framework and tested it on
Google Cloud Platform. We compared the performance
before and after using the tool and have presented the results.
The results confirm the effectiveness of the framework vis a
vis the stated objectives.

4.1 Key Design Considerations
 The budget allocations for data processing activities

need to be drilled down to the data pipeline level by
the business. It is possible to set up pipelines with
unlimited budget.

 To support fluctuations in business, we have kept the
data pipeline prioritization in the hands of the user
and have avoided automation of the same.

 The scheduling of the pipeline is based on “Priority
Scheduling” algorithm. The algorithm is enhanced
with several Checks and Controls.

 Apache Airflow [24] is used to build the
transformation DAGs. It provides support for a
large set of operators including custom operators, so
that any underling big data technology can be used
for the data transformations. The DAGs also serve
as a Data transformations repository.

 The Data Pipeline design is kept simple and is made
of a fixed sequence of Data Transformations. Any
conditional flow control is handled inside the
Airflow DAG. This eliminates the need for a rich
and complex GUI for defining the data pipelines.

 The framework has provision for building data
pipeline schedules in advance, to aid planning and
reduce delays.

 Since the challenges are common to all cloud
platforms, the framework is cloud platform
independent. The architecture is described using
GCP tools and services. But similar and equivalent
tools in AWS and Azure cloud platforms are
mentioned in Table 3.

 The framework itself is on cloud platform as it is
convenient for cloud users.

 Security is also built-in as it is always crucial in
cloud environments.

4.2 Google Tools and Services used in the framework
 Cloud Function [25] – It is a serverless execution

environment for building and connecting cloud
services and responding to events and triggers.

 Cloud Scheduler [26] – It is a fully managed
enterprise-grade cron job scheduler.

 Cloud Pub / Sub [27] – It is a fully-managed real-
time messaging service that is used to send and
receive messages between independent applications.

 Cloud Datastore [28] – It is a NoSQL document
database built for automatic scaling.

 Cloud Composer [29] – It is a managed workflow
orchestration service that is built on Airflow.

 Cloud Storage [30] – It is a globally unified, scalable,
and durable object storage.

Sumant Kulkarni et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5547 – 5554

5549

Figure 1: Cloud Data Pipeline Automation Framework Architecture

5 CLOUD DATA PIPELINE AUTOMATION
FRAMEWORK

5.1 Overview (Please refer to Figure 1)
 Data processing involves executing several

transformations on the data. Most of the
transformations need to be processed one after the
other in a Data Pipeline. This framework allows
configuring of such Data Pipelines and
Transformations.

 For each Transformation Type, a corresponding
Airflow DAG needs to be defined. This DAG
contains the exact Data Processing tasks to be
performed for the Transformation.

 A Data Pipeline is triggered by the user using a python
script. The trigger is received and stored in a “Read
Pub Sub Topic”.

 Cloud scheduler periodically triggers a “Read cloud
function”. This will read pending triggers in the Read
Pub Sub Topic and store them in Datastore.

 Cloud scheduler periodically triggers a “Schedule
Cloud Function”. The Schedule Cloud Function will
schedule the next Transformation pending in the
Datastore, based on a Scheduling Algorithm. To
schedule the Transformation, an appropriate request
will be sent to Cloud Composer.

 The cloud composer will invoke corresponding
Airflow Directed Acrylic Graph (DAG). The DAG in
turn will invoke the appropriate underlined tasks
configured for the transformation. This is where most
of the Data processing takes place.

 On completion of the DAG, a Success or Failure
message will be sent to “Status Pub Sub Topic”.

 The “Status Cloud Function” will be triggered due to
this message and it will update the Transformation
status in the Datastore.

5.2 Checks and Controls
 The Data Pipelines which are made of

Transformations are stored in a configurable
repository. Thus, any number of Pipelines can be
developed based on the need and can be integrated
with configuration changes alone.

 The Transformation types are configurable. For each
Transformation type a corresponding DAG needs to
be developed. Many different types of Data
processing tasks can be executed through the Airflow
DAG.

 The Data pipeline requests have a Priority set from
1(Highest) to 7 (Lowest). This ensures that resources
are made available to urgent tasks first. Low priority
tasks are processed when the resources are less
loaded so that there is no unnecessary ramp up or
overloading of common infrastructure. The user can
disable scheduling of tasks of any priority at run time
based on business need.

 The Data Pipelines will have a budget assigned to
them. If a request exceeds the allocated budget, it will
be automatically skipped by the framework.

 Maximum number of simultaneous transformations of
each type is configurable. This can be tuned with
corresponding ramp up / ramp down in shared
infrastructure resources like a data source. With a
ramp up in infrastructure, more tasks can be run in

Sumant Kulkarni et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5547 – 5554

5550

parallel reducing the turn-around time; however, this
will entail additional infra cost. And vice versa for
ramp down. Thus, the cost vs time adjustment can be
done to achieve the desired optimization.

 There is provision for automatic reattempts of Failed
Transformations for a configured number of times.

 There is provision to Cancel, Pause or Restart Data
pipelines, if some problem is detected during
processing.

 The speed of scheduling tasks can be adjusted by
changing the periodicity of invoking “Read” and
“Schedule” cloud functions in the Cloud Scheduler.

 Running tasks are periodically scanned to check if any
task is taking longer than expected and is flagged of
in an alert email.

5.3 Process Flow
 Triggering a Data Pipeline - The user uses a python

based script to trigger the data pipeline. This will
send a message to the “Read Pub sub Topic” using
Google cloud API for Pub Sub. The message will
contain:

 Priority – 1 (Highest) to 7 (Lowest)
Data Pipeline Type – From a configured list of

Data Pipeline types.
 Command - Start / Cancel / Pause / Restart
Data Pipeline Id – Not required for Start

Command, it will be system generated.
Data Pipeline Configuration - Json Payload

corresponding to the Data Pipeline
 Estimated Cost and Duration
 Earliest Start Datetime – For prebuilt schedules
 Logging info like username, current time

 To control access, a service account is created which
has access to the “Read Pub sub Topic”. The trigger
script user provides the credential json file of this
service account to send the request. This ensures
proper authorization.

 Read a Data Pipeline request - Cloud scheduler
triggers the “Read Cloud Function” periodically. The
function reads and acknowledges pending messages
in the “Read pub Sub Topic”. The message details
will be stored in datastore table “Data Pipeline” with
Status = Submitted. If there is no Data Pipeline Id
provided, the system will generate and assign a
unique Data Pipeline Id.

 Schedule a Data Pipeline - Cloud scheduler triggers
the “Schedule Cloud Function” periodically. It reads
the status of all transformations and schedules them
for execution. The decision regarding which
transformations to schedule is done using a
Scheduling Algorithm described in Table 1. To
schedule a transformation, appropriate request is sent
to Cloud composer. The Cloud Composer has a DAG
configured and deployed for each transformation
type. The “Schedule Cloud Function” invokes this
DAG to schedule the processing of a transformation.

The DAG request also includes the transformation
configuration json.

Table 1: Scheduling Algorithm

Get the list of Data Pipelines where Command = Cancel / Pause and
Status = Submitted
For each Cancel / Pause Command
 Get the Data Pipeline with the given Data Pipeline Id
 Change the Data Pipeline Status to = Cancelled / Paused
 Change the Command Request Status to = Processed
Get the list of Data Pipelines where Command = Restart
and Status = Submitted
For each Restart Command
 Get the Data Pipeline with the given Data Pipeline Id
 Change the Data Pipeline Status to = Processing
 Change the Command Request Status to = Processed
Set Priority (P) = 1
While P <= 7 and the Priority level is not disabled
 Get the list of Data Pipelines where Priority = P and
 Status = Submitted/Processing and
 “Earliest Start Datetime” after current datetime
(Ordered by Submission time)
 For each Data Pipeline ID (DPID)

If the Pipeline exceeds Budgeted cost, skip the pipeline
Get the Transformation where Data Pipeline ID = DPID and
status = Processing / Failed
If Failed Transformation is found and number of attempts
are below “maximum allowed” and number of
transformations for this type are within configured limits
 Schedule above transformation by invoking its DAG
 Update the Transformation Status to = Processing
 Increment the no of attempts by 1
If No Transformation is found
Get the next Transformation in the Data Pipeline
If number of jobs for this transformation type
are within configured limits

Create an entry for the next Transformation with
status = Submitted
Schedule above transformation for processing by
invoking its DAG
Update the Transformation Status to = Processing
Increment the number of attempts by 1
If this is first transformation in the Data Pipeline
Set the Data Pipeline Status = Processing

Increment the Priority (P) by 1

 Process a transformation - The Cloud Composer runs
the invoked DAG in Airflow. In Airflow, a DAG
(Directed Acyclic Graph) is a collection of all the
tasks you want to run, organized in a way that
reflects their relationships and dependencies. Airflow
provides operators for many common tasks,
including: Bash command, Python function, Sending
Email, HTTP Request, Execute SQL commands on
various databases like Cloud Bigtable. It can also run
many more specific tasks like Docker, Dataproc job
and Dataflow job. All these tasks are included in the
pre-designed DAG for each transformation. On
completion of the DAG, a success or failure message
is sent to the “Status Pub Sub Topic”.

Sumant Kulkarni et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5547 – 5554

5551

 Scheduling Algorithm - The algorithm which is used
to decide which transformations are to be scheduled
for processing by the “Schedule Cloud Function” is
described in Table 1
The scheduling algorithm is a key component of the
framework. The algorithm is based on “Priority
Scheduling” and uses several checks and controls.

 It schedules the pipelines based on Priority 1
(highest) to Priority 7 (lowest). Within the
priorities it uses FCFS (First come first
serve).

 Priorities disabled by user are skipped.
 Pipelines scheduled for future are skipped.

These are pre-built schedules.
 Pipelines exceeding budget are skipped.

Revenue earning pipelines can be setup with
unlimited budget.

Maximum number of jobs for each
transformation type is restricted through
configuration to avoid system overloading.

 Update transformation status - The “Status Cloud
Function” will be triggered whenever a message on
the “Status Pub Sub Topic” is received. This cloud
function will update the transformation status in the
Datastore.

 If the transformation is successful, its status is
set to = Success

 If the transformation is successful and it is the
last transformation in a Data Pipeline, the
status of the Data Pipeline is set to =
Success

 If the transformation is failed, its status is set to
= Failed

 If the transformation is failed and number of
attempts are equal to maximum allowed, the
status of the Data Pipeline is set to = Failed

 Long Running Transformations Alert – Cloud
scheduler triggers the “Monitor Cloud Function”
periodically. It checks the duration of running tasks
against estimated duration and sends an alert email
for long running jobs.

 Transformations Status Dashboard –
The status of all Data Pipeline requests, and their
underlining transformations can be viewed on the
Datastore page of the Google cloud console. Simple
queries can also be run to filter the transformations
based on its attributes like priority, status.
A web based customized UI dashboard can also be
developed to view this status. It can also be used for
maintenance and backend updating of the
Transformation and Data Pipeline status in the
datastore by the system administrator.

5.4 Repositories for Reuse
 Data Transformation Repository - A DAG is defined

for each Data Transformation. The DAGs are python
scripts which run in Airflow environment. A name is
assigned to the DAG and its related information is
stored in a json configuration file. This file along
with the corresponding airflow DAG script, forms
the repository of all Data Transformations. The data
engineers will search through this repository before
creating any new transformation to maximize reuse.

 Data Pipeline Repository – A Data pipeline has a
simple structure and is made of a fixed sequence of
Data Transformations. All conditional flows are
handled inside the Data Transformations. The list of
all Data pipelines is stored in a json configuration
file. The data engineers add new entries to this file
whenever a new data pipeline is required.

5.5 Data Model
Datastore kinds (tables) required for the framework are
mentioned in Table 2.

Table 2: Datastore Table Fields

Data Pipeline Table Transformation Table
Data Pipeline Id Data Pipeline Id
Data Pipeline Type Transformation Type
Status Status
Command Number of Attempts
Data Pipeline Configuration Transformation Configuration
Estimated Cost Estimated Cost
Estimated Duration Estimated Duration
Submission Datetime Submission Datetime
Last Update Datetime Last Update Datetime
Updated By Updated By
Earliest Start Datetime

5.6 Public Cloud Compatibility
The architecture above is described using GCP. Similar and
equivalent tools and services available in AWS and Azure
platforms are mentioned in Table 3. This framework can be
implemented in AWS and Azure using these services.

Table 3: Equivalent Tools and Services

GCP AWS Azure
Cloud Function AWS Lambda Azure Function
Cloud Scheduler AWS Lambda Rule Function Schedule
Pub / Sub Pub / Sub Azure Service Bus
Cloud Composer +
Airflow

Airflow webserver +
AWS EMR

Bitnami Apache
Airflow

Datastore DynamoDB Cosmos DB
Cloud Storage Amazon S3 Blob storage
Service Accounts Service Accounts Service Principal

Sumant Kulkarni et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5547 – 5554

5552

5.7 Security
 Service Accounts are used to control access to the

various parts of the system. For triggering a request
on the “Read Pub sub Topic” a Service Account is
created. And only this service account can send
message to the Topic. The access credential json file
of this service account is shared with the users who
are authorized to submit these requests.

 Another service account is created for the Cloud
functions (Read, Schedule, Status and Monitor) used
in the automation. These cloud functions are setup to
run under the service account. All required accesses
are provisioned to this service account. This ensures
that users cannot misuse the access provided for
running the cloud functions.

 Access Control Lists (ACLs) are used to control access
to various components of the GCP like Datastore,
Buckets, Cloud Scheduler, Pub Sub, etc. E.g. The
buckets are used for various purposes like ingesting
data, job configurations, storing intermediate outputs,
maintenance etc. Need based ACLs are created in
Cloud Identity and Access Management (IAM) and
appropriate access is granted to them for the buckets.

 Cloud Firestore (Datastore) Security Rules allow
control of access to documents and collections in
the database. The flexible rules syntax allows
creation of rules that match anything, from all
writes to the entire database to operations on a
specific document.

6 EVALUATION AND RESULTS
A prototype tool using the framework was implemented on
Google Cloud Platform for an organization.
 Before the tool - The organization followed monthly budget

allocation to different sub-teams. The performance of the
data analysis activities before the use of the tool was
recorded for 3 months. The team was using Airflow on
Cloud composer for data orchestration. The data
transformation tasks within the data pipelines were
submitted on cloud manually. There were no priorities,
budgets, and schedules set for the data pipelines.

 Using the tool - In the subsequent 3 months, the
performance using the tool was recorded. The existing
transformations built in Airflow were used as it is, to
ensure exact comparison. Data pipelines were defined
using these transformations and budgets were assigned to
them. Priority 1 was reserved for external revenue earning
requests, while priority 2 to 5 were used for internal data
pipelines. There was no use case for priority 6 and 7. For
routine runs, schedules were pre-built by sending advance
schedule requests.

The performance evaluation results are summarized in Table
4, Table 5, and Figure 2. Following points (A to E) based on
Table 4 indicate the effectiveness of the new framework.
A.Failed runs came down from 90 per month to single digit.

The failures came down mainly due to –
i. Avoiding overloading of shared cloud resources by

the transformations
ii. Reuse of tested transformations across pipelines

B.The Budgeted cost overrun which was in the range 8% to
15%; came down to 9% “balance” in 3rd month using new
framework. Main contributors were –

i. Reduced failed runs
ii. Budget restrictions on Pipeline types

iii. Priority setting for data pipelines
C.Average turn-around time for revenue earning P1 requests

halved due to prioritization.
D.The P1 runs increased from average 10 per month to 35.

This was due to –
i. Reduced load on data engineers due to reduced total

runs
ii. Improved turn-around time resulted in additional

requests from customers
E. Backlog of 4-5 days’ worth runs came down to half days’

worth runs. This can be attributed to prebuilt schedules.

Table 4: Automation Framework Evaluation

Parameter
Without

Framework
With

Framework

Month M1 M2 M3 M1 M2 M3
Cost Overrun (%)
(P2-P5)

10 15 8 -1 -5 -9

Failed Runs 82 91 80 23 10 8
Successful Runs
(P2-P5)

402 415 395 413 408 393

Successful Revenue
Earning Runs (P1)

10 9 12 12 27 35

Total Runs 494 515 487 448 445 436
Avg Turnaround time
(P1) (Business Hours)

16 17 16 8 8 9

Avg Daily Backlog
(P2-P5)

95 89 84 9 10 5

Figure 2: Duration Variance of Successful Runs

Sumant Kulkarni et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5547 – 5554

5553

Table 5: Duration Variance Evaluation

Parameter
Without

Framework
With

Framework

Median 118 % 97 %
Mean 117 % 98 %

Standard Deviation 23.98 14.75
Coefficient of Variance 20.44 % 14.98 %

F. As seen in Figure 2 and Table 5 –
i. The median duration variance (Actual duration /

Estimated duration), which was at 118%
“without framework”, has come down to 97%
“with framework”. This indicates better
adherence to the duration estimates.

ii. The Coefficient of Variance “without framework” is
20.44 % indicating higher level of dispersion,
while “with framework” is 14.98 % indicating
lower level of dispersion. Hence the
predictability of actual duration is better “with
framework”.

iii. The range “without framework” is from 30% to
197%. However, “with framework” range
narrows down from 62% to 148%.

Out of 22 data pipelines defined, 8 have shared
transformations with other pipelines. All transformations are
added to the reuse repository which is a set of airflow DAGs.
Building new data pipelines will be faster and less error
prone, due to the reuse of these transformations

7 CONCLUSION AND FUTURE WORK
In this paper we have presented a “Cloud Data Pipeline
Automation Framework” with several checks and controls to
address challenges related to budget management, use-case
prioritization, and reuse of transformations. The framework
was evaluated on GCP and the results establish the
effectiveness of the framework. Organizations may build in
house applications using this framework or the Data Pipeline
tools may consider incorporating this framework in their
tooling.By using this automation approach, organizations
would realize the true benefits offered by the “pay-as-you-use”
cloud platforms. In future, we plan to verify the framework on
AWS and Azure cloud platforms. We also aim to improve the
estimation process for the Data transformations and pipelines
as estimation accuracy continues to be a challenge.

REFERENCES
1. Michael R. Berthold, Nicolas Cebron, Fabian Dill,

Thomas R. Gabriel, Tobias Kötter, Thorsten Meinl,
Peter Ohl, Kilian Thiel, and Bernd Wiswedel. 2009.
KNIME - the Konstanz information miner: version
2.0 and beyond. SIGKDD Explor. Newsl. 11, 1 (June
2009), 26–31.
DOI:https://doi.org/10.1145/1656274.1656280

2. Maria A. Rodriguez and Rajkumar Buyya. 2017.
Budget-Driven Scheduling of Scientific Workflows in
IaaS Clouds with Fine-Grained Billing Periods. ACM
Trans. Auton. Adapt. Syst. 12, 2, Article 5 (May 2017),
22 pages. DOI:https://doi.org/10.1145/3041036

3. L. Zeng, V. Bharadwaj, and X. Li, “Scalestar: Budget
conscious scheduling precedence-constrained many-
task workflow applications in cloud,” in Int. Conf. on
Advanced Information Networking and Applications,
vol. 0, Los Alamitos, CA, USA, 2012, pp. 534–541.

4. Karthik Raman, Adith Swaminathan, Johannes Gehrke,
and Thorsten Joachims. 2013. Beyond myopic
inference in big data pipelines. In Proceedings of the
19th ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD ’13).
Association for Computing Machinery, New York, NY,
USA, 86–94.
DOI:https://doi.org/10.1145/2487575.2487588

5. Fei Cao, Dabin Ding, Dunren Che, Michelle M. Zhu,
and Wen-Chi Hou. 2013. Scheduling data processing
flows under budget constraint on the cloud. In
Proceedings of the 2013 Research in Adaptive and
Convergent Systems (RACS ’13). Association for
Computing Machinery, New York, NY, USA, 69–74.
DOI:https://doi.org/10.1145/2513228.2513250

6. Omran Saleh and Kai-Uwe Sattler. 2015. The pipeflow
approach: write once, run in different stream-
processing engines. In Proceedings of the 9th ACM
International Conference on Distributed Event-Based
Systems (DEBS ’15). Association for Computing
Machinery, New York, NY, USA, 368–371.
DOI:https://doi.org/10.1145/2675743.2776774

7. Mukund Deshpande, Dhruva Ray, Sameer Dixit, and
Avadhoot Agasti. 2015. ShareInsights: An Unified
Approach to Full-stack Data Processing. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’15).
Association for Computing Machinery, New York, NY,
USA, 1925–1940.
DOI:https://doi.org/10.1145/2723372.2742800

8. Jürgen Cito, Philipp Leitner, Thomas Fritz, and Harald
C. Gall. 2015. The making of cloud applications: an
empirical study on software development for the
cloud. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE
2015). Association for Computing Machinery, New
York, NY, USA, 393–403.
DOI:https://doi.org/10.1145/2786805.2786826

9. Tarek M. Ahmed, Farhana H. Zulkernine, and James R.
Cordy. 2016. Proactive auto-scaling of resources for
stream processing engines in the cloud. In

Sumant Kulkarni et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5547 – 5554

5554

Proceedings of the 26th Annual International
Conference on Computer Science and Software
Engineering (CASCON ’16). IBM Corp., USA, 226–
231.

10. Fábio Oliveira, Sahil Suneja, Shripad Nadgowda, Priya
Nagpurkar, and Canturk Isci. 2017. Opvis: extensible,
cross-platform operational visibility and analytics for
cloud. In Proceedings of the 18th ACM/IFIP/USENIX
Middleware Conference: Industrial Track (Middleware
’17). Association for Computing Machinery, New York,
NY, USA, 43–49.
DOI:https://doi.org/10.1145/3154448.3154455

11. Yanzhe Cheng, Fang Cherry Liu, Shan Jing, Weijia Xu,
and Duen Horng Chau. 2018. Building Big Data
Processing and Visualization Pipeline through
Apache Zeppelin. In Proceedings of the Practice and
Experience on Advanced Research Computing (PEARC
’18). Association for Computing Machinery, New York,
NY, USA, Article 57, 1–7.
DOI:https://doi.org/10.1145/3219104.3229288

12. Victor Giannakouris, Alejandro Fernandez, Alkis
Simitsis, and Shivnath Babu. 2019. Cost-Effective,
Workload-Adaptive Migration of Big Data
Applications to the Cloud. In Proceedings of the 2019
International Conference on Management of Data
(SIGMOD ’19). Association for Computing Machinery,
New York, NY, USA, 1909–1912.
DOI:https://doi.org/10.1145/3299869.3320240

13. Mainak Adhikari, Tarachand Amgoth, and Satish
Narayana Srirama. 2019. A Survey on Scheduling
Strategies for Workflows in Cloud Environment and
Emerging Trends. ACM Comput. Surv. 52, 4, Article
68 (September 2019), 36 pages.
DOI:https://doi.org/10.1145/3325097

14. Mutaz Barika, Saurabh Garg, Albert Y. Zomaya, Lizhe
Wang, Aad Van Moorsel, and Rajiv Ranjan. 2019.
Orchestrating Big Data Analysis Workflows in the
Cloud: Research Challenges, Survey, and Future
Directions. ACM Comput. Surv. 52, 5, Article 95
(October 2019), 41 pages.
DOI:https://doi.org/10.1145/3332301

15. El Kindi Rezig, Lei Cao, Michael Stonebraker, Giovanni
Simonini, Wenbo Tao, Samuel Madden, Mourad
Ouzzani, Nan Tang, and Ahmed K. Elmagarmid. 2019.
Data Civilizer 2.0: a holistic framework for data
preparation and analytics. Proc. VLDB Endow. 12, 12
(August 2019), 1954–1957.
DOI:https://doi.org/10.14778/3352063.3352108

16. Simon Eismann, Johannes Grohmann, Erwin van Eyk,
Nikolas Herbst, and Samuel Kounev. 2020. Predicting
the Costs of Serverless Workflows. In Proceedings of
the ACM/SPEC International Conference on
Performance Engineering (ICPE ’20). Association for
Computing Machinery, New York, NY, USA, 265–276.
DOI:https://doi.org/10.1145/3358960.3379133

17. Shirly Wang, Matthew B. A. McDermott, Geeticka
Chauhan, Marzyeh Ghassemi, Michael C. Hughes, and
Tristan Naumann. 2020. MIMIC-Extract: a data
extraction, preprocessing, and representation
pipeline for MIMIC-III. In Proceedings of the ACM

Conference on Health, Inference, and Learning (CHIL
’20). Association for Computing Machinery, New York,
NY, USA, 222–235.
DOI:https://doi.org/10.1145/3368555.3384469

18. D. Wu, L. Zhu, X. Xu, S. Sakr, D. Sun and Q. Lu,
"Building Pipelines for Heterogeneous Execution
Environments for Big Data Processing," in IEEE
Software, vol. 33, no. 2, pp. 60-67, Mar.-Apr. 2016
doi: 10.1109/MS.2016.35.

19. O. Dawelbeit and R. McCrindle, "CloudEx: A Novel
Cloud-Based Task Execution Framework," 2016
IEEE Globecom Workshops (GC Wkshps), Washington,
DC, 2016, pp. 1-5.
 doi: 10.1109/GLOCOMW.2016.7848860.

20. Huiyan Cao and Chase Q. Wu. 2018. Performance
optimization of budget-constrained mapreduce
workflows in multi-clouds. In Proceedings of the 18th
IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid ’18). IEEE Press, 243–
252. DOI:https://doi.org/10.1109/CCGRID.2018.00039

21. Syed.Karimunnisa and Dr.Vijaya Sri Kompalli, 2019.
Cloud Computing: Review on Recent Research
Progress and Issues. In International Journal of
Advanced Trends in Computer Science and Engineering,
Volume 8, No. 2, March-April 2019, DOI:
https://doi.org/10.30534/ijatcse/2019/18822019

22. Abhikriti Narwal and Sunita Dhingra, 2020. Credit
Based Scheduling with Load Balancing in Cloud
Environment. In International Journal of Advanced
Trends in Computer Science and Engineering, Volume
9, No. 2, March-April 2020, DOI:
https://doi.org/10.30534/ijatcse/2020/34922020

23. G. Kiruthiga, Dr. S. Mary Vennila, 2019. An Enriched
Chaotic Quantum Whale Optimization Algorithm
Based Job scheduling in Cloud Computing
Environment. In International Journal of Advanced
Trends in Computer Science and Engineering, Volume
8, No. 4, July-August 2019.
DOI: https://doi.org/10.30534/ijatcse/2019/105842019

24. Apache Airflow, https://airflow.apache.org/
25. “Cloud Function Documentation” Google Cloud

Platform https://cloud.google.com/functions/docs
26. “Cloud Scheduler Documentation” Google Cloud

Platform https://cloud.google.com/scheduler/docs
27. “Cloud Pub/Sub Documentation” Google Cloud

Platform https://cloud.google.com/pubsub/docs
28. “Cloud Datastore Documentation” Google Cloud

Platform https://cloud.google.com/datastore/docs
29. “Cloud Composer Overview” Google Cloud Platform

https://cloud.google.com/composer/docs/concepts/overv
iew

30. “Cloud Storage Documentation” Google Cloud
Platform https://cloud.google.com/storage/docs

https://doi.org/10.30534/ijatcse/2019/18822019

