
Mercy Burawis et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 102 - 109

102

ABSTRACT

Nowadays, data aggregation is becoming the concern of the
financial institution because this is very useful to answer the
series of data over the years and at present. Big data is
described as a large set of data at a different level that becomes
a concern to which it is difficult to manage. It is a problem for
most businesses to achieve better query performance while
generating and analyzing large data by way of, data
aggregation and such an exponential increase of data size
makes a query to take a large amount of time and space. The
data cube is a widely used tool to provide an efficient way to
compute the data into a small data set. In this paper, the query
optimization technique is to address the prolonged execution
of the query by applying one of the data reduction strategies
called numerosity reduction methods; slice and dice data cube
operation is to reduce and efficiently aggregate yet maintains
the accuracy of the data. The nonclustered index is to quickly
retrieve the data without scanning the whole fact table and
very useful for some repeated values. MapReduce based
approach is for handling large scale data, in which it is of
great help to enhance the data cube computation and achieve
optimal time over large data set. The technique improves the
response time by an average of 94%, and the availability of
the memory space becomes 91%. With this, a timely increase
in query performance could mean better use of data in
operation and timely decision making for management.

Key words : NonClustered Index and MR Data Cube
Computation, Numerosity Reduction Method, Query
Optimization, MapReduce based approach.

1. INTRODUCTION

Nowadays, data aggregation is a predominant operation used
in making business decisions [2]. The financial institution
finds the importance of analyzing fund data as it will provide
different views that help managements to gain valuable
insight and used for decision making in their business. Data
becomes “bigger” and the prediction about the size in the next
year becomes more difficult, and means to the query for long
response time and space. The uncontrollable size of data has

been realized as it is now more difficult to produce because of
the massive changes in data size over the years. Analyzing
large data becomes one of the challenges. The company needs
to ensure that the integrity of the data will not compromise
and be able to produce correct and reliable insight reports for
decision making in a real-time manner, but as it grows,
eventually not easy to handle and manage.

Data Reduction is a technique used to reduce the data.
Reducing the number of data set into small sets, yet the
quality of the original data is maintained [1]. One of the data
reduction strategies used is called the Numerosity Reduction
method by applying the data cube aggregation model. In a
typical database warehouse design, On-Line Analytical
Processing (OLAP) is used to provide a summary report at
different data levels and attributes [2]. Data Cube is one of the
important technology and widely used for data analysis in
support of decision making [3]. Aggregation is a common
operation used in decision support database systems [2]. The
Standard Group-By is significantly scanned the data set to be
used for aggregation while in Data Cube, it reduces data for
aggregation. Standard Group-by is not a simple operation but
also has a significant pattern for the abstraction of data
aggregation [4].

In Data Cube, Slice and Dice is one of the types of OLAP
operation, embraces the multidimensionality paradigm to
provide fast access to data sets when analyzing it from
different views [5]. To make reasonable views, the slice-dice
operation in a data cube can return a specific subcube to get a
certain dimension. Slice and Dice operation can be useful to
get only a certain portion of the cube of data for analysis.
However, in outsized data, data cube alone is sometimes not
enough to obtain significant query performance. A large
number of data can be supported by applying an index in
which can help to speed up the retrieval of data.

The index is commonly used in a Database management
system that organizes the data records on disk and helps to
improve the forms of the data retrieval operation [6].

Query Optimization: Fund Data Generation Applying NonClustered Indexing
and MapReduced Data Cube Numerosity Reduction Method

Mercy Burawis1, Rosmina Joy Cabauatan2
1Technological Institute of the Philippines, Philippines, msb815@yahoo.com

2Technological Institute of the Philippines, Philippines, rjmcabauatan@yahoo.com

 ISSN 2278-3091
Volume 9, No.1.1, 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse1991.12020.pdf

https://doi.org/10.30534/ijatcse/2020/1991.12020

Mercy Burawis et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 102 - 109

103

NonClustered uses the keys which are not assigned as a
primary key and to help to retrieve the row quickly from the
table. A nonclustered index is very useful for attributes that
have some repeated values [7]. This type of index is useful
when searching in large data sets. Exploiting of index
structure means a successful way to speed up the query
processing [8]. And by implementing indexes means to
improve the performance of the system [9].

To find the appropriate match for the query from a database
with millions of records, and reduce into small tasks to
compute, MapReduce (MR) is a popular model used for
handling large datasets [10]. The MapReduce model is
simple, scalable, and fault tolerance; many companies have
adopted it for their business analytics applications [10].
MapReduce model can apply to handle a large number of data
with many calculations, and the interesting properties of this
model are load balancing and better managing of data [11].
MapReduce (MR) is a software framework build for parallel
processing for large datasets [12]. MapReduce based
approach is one of the big help in Big Data to improve the
performance, there are several studies, and prove that have
been work in query optimization by using MapReduce.
MapReduce is an easy-to-understand model in which
becomes the most recommended alternative in designing
scalable and distributed algorithms [13].

In the next section, the combine MapReduce and Data Cube
Numerosity Reduction method (MRDCNRD) will
demonstrate the efficient way to handle data cubes for large
datasets rapidly and cost-effectively. The nonclustered index
(NCI) role is to speed-up the searching data. Optimizing the
existing query to efficiently handle the processes and
generation of fund value data within a tolerable time with the
low-cost process, no additional resources needed, no delays in
terms of operations, and can produce insights to be used for
decision making in a real-time manner.

2. METHODOLOGY

2.1 Fund Value Data
The Fund value data used in this paper is conducted from one
of the local financial institutions, covering the period from
2005 to 2019 data. The company provides the participant, and
member’s data, however, the names were not disclosed in this
paper to fulfill the data privacy. The Statement of Member’s
Data is the fact table that comes from different dimensions
such as participant, member, fund value, and claim. The
fiscal year is a period table contains the return of investment
percentage and will use in Statement of Member’s Data to sort
the data for cube aggregation.

2.2 Concept of the Study
The concept of the study is divided into three major phases, as
shown in Figure 1. The first phase is the data collation where
the source tables are identified-Fund Data, Participant
Information (PI Info), Participant’s Member Information
(Member Info), Claim, and Return of Investment Percentage
(ROIP) that will use to generate a Fact table called a statement
of member’s data.

The second phase is the optimization query techniques that
will perform the following steps; (1) identified the missing
index key by generating the estimated query execution cost
(2) Implement the nonkey attributes, and (3) Map the input
value and search it from sliced and diced data cube, and
reduce it by applying the appropriate operation and aggregate
the data sets with the help of the nonclustered index for fast
data retrieval.
The final phase is the performance evaluation of the query in
terms of time and space complexity.

Figure 1: Conceptual Framework

Mercy Burawis et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 102 - 109

104

2.3 Procedure

A. Data Collation
 The First Phase is to extract and integrate the rows from the
data source. It will improve the quantity of the data and
choose the appropriate rows to support the mapping phase
and eliminate the redundant values; in fact table, there are
some of the data which is not necessary for data aggregation.
The following are several steps to eliminate duplicate records.

Step 1: Identify the Fiscal Year based on the input period and
find the match month m and year y from the Fiscal Year table.

Algorithm 1: Identify the Fiscal Year

Input : Period
Output : Fiscal Year From, Month to, Month from , Year
from and Year to

1 Declare variables for [Year To], [Year From], [Month

To] and [Month From]
2 Get [Year To] from the input period
3 Get [Month To] from the input period
4 Set [Month From]= (ρ month ← month(Period Start) π

month(Period Start) σ cast([Month To] as varchar) + ‘01’ + cast([Year

to] as varchar) between [Period start] and [Period End]
(Fiscal Year))

5 Set [Year From]= (ρ year ← year(Period Start) π year(Period

Start) σ cast([Month To] as varchar) + ‘01’ + cast([Year to] as

varchar) BETWEEN [Period start] AND [Credit End]
(Fiscal Year))

6 Declare variables for Fiscal Year Period End
7 Set [Fiscal Year Period End] = (ρ [period end] ← [period

end] π [period end] σ cast([Month To] as varchar) + ‘01’ + cast([Year

to] as varchar) BETWEEN [period start] AND [period End]
(Fiscal

Year))

Step 2: To have an effective distribution of data this step will
provide the list of the claimed member in the data group,
which is not needed for aggregation.

Algorithm 2: Exclusion of the Member’s Claim in fact
table
Input : Member’s Claim Data and period
Output : List of Claimed Member

1 Let c as Period
2 Let T be the temporary table
3 Select the value from
4 π id (σ(date≥ S and date ≤ e)and Status='Approved')(Claim) U π id

(σ(left(right(id,6,2) =' 01')(Participant)
5 Insert the List into T ;

Step 3: Get the unique identity of all active participants and
eliminate the redundant key value in a data group.

Algorithm 3: Unique identity key for fact table
Input : Parameter for Participant ID
Output : List of active participant p

1 Let T be temporary table for active participant list
2 Select p = (π P

(Participant))
3 Insert p into T cursor table

B. Query Optimization

Step 1: Generation of Estimated Query Execution Cost.

This section is to perform the execution query cost by using
the MS SQL Server Management Studio to identify the
missing index key in fact table that affects the performance of
data retrieval. In figure 2, it shows, by implementing the
nonclustered index, the query will improve by 59.0773%.

Figure 2: Estimated query execution cost

Indexing should be done on large databases where retrieval of
data is performed very frequently[14]. This will provide
detailed information such as the estimated cost of operation,
CPU, and I/O usage that is relative to the rest of the query’s
operations. The execution plan is used to refined and suggest
how to reduce the processing query cost [15]. This tool will
suggest what keys need to be part of the nonclustered index.
Figure 3 is the SQL syntax to create a nonclustered index.

Figure 3: SQL Syntax to create nonclustered index

Step 2: NonClustered Indexing. The identified missing index,
as shown in figure 2, is needed to be first resolved by
implementing the recommended index type called
nonclustered index for specific keys. The nonclustered index
is a balanced tree structure from a root node and includes the
intermediate nodes and leaf nodes [9]. The nonclustered

Mercy Burawis et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 102 - 109

105

index helps to improve aggregate query processing and will
be efficient in a single cube. The index is used for storing
aggregate data for a specified nonkey attribute, which is not
necessarily needed to be part of the primary key attribute, as
shown in figure 4, and only implies that it dynamically
depends which selected view we focus on and becomes suited
in this design.

Figure 4: NonClustered index in fact table

Step 3: MapReduce Data Cube Numerosity Reduction. It is
possible to implement large scale cube materialization of
similar interesting in data cube groups [3],[16]. As
illustrated, in figure 5, the fact table can be used to construct a
slice and dice cube into smaller called subcube, to efficiency
distributing the task and gives different data views and level.
Data cube can slice by period and participant and will give
different numbers of records as listed in table 2. By selecting a
subcube, dice cube can easily now analyze and aggregate the
funds by a participant. This particular cube has four attributes
– period, participant, and member and fund.

Figure 5: Fact table showing the sliced and diced data cube

The slice and dice cube will be used to relate the different
processes to understand, for example, how much the
Participant and Member Fund in period 1, like in table 1.

Table 1: N- Dimensional Cube
Period Participant Member Fund

1 P1 M1 1,000,000
1 P1 M2 780,00

1 P1 M3 2,500,00

...

ALL ALL ALL

Constructing data cube needs to generate the power set of the
aggregation attributes, the CUBE is a relational operator, and
this can be conveniently specified by the SQL GROUP BY
[17] as shown below:

SELECT participant, period, sum (member’s fund), and sum
(participant’s fund)
FROM fact table
WHERE period = period
GROUP BY CUBE (participant, period)

A typical data for analysis can involve the different numbers
of records like in table 2. Numerous analysis tasks are then
concerned as it needs to specify the actual values for a subset
of the attributes and aggregating over the other attributes
[18].

Table 2: Number of records per period
Period No. of records

1 566,949
2 528,445
3 422,983
4 526,087
5 2,255,059

In MapReduce data cube they are several algorithms have
been developed [19]. In this approach, SQL will be used to
manipulate and manage the data cube. Users have to write two
functions, the Map and Reduce. MapReduce based approach
supports holistic measures as the best option for data analysis
[20].

Algorithm 4: MapReduce Data Cube

Input: List of active participant p, period c, Month m and
Year y
Output: SUM for all Participant based on the period c and
Participant p
Additional Input: Exclusion of Claimed Members

1 WHILE minimum p is less than or equal to maximum p
2 BEGIN
3 Remove the existing batch group from the Final table
4 Map for Phase: Get the minimum (key) p and find the
pair value p in data cube (stored in the batch group).

Mercy Burawis et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 102 - 109

106

 (a1…an),
 sum(a1),
 π σ(p≥0)γ sum(a2), (f)
 count(a3)

Slice and Dice Cube Phase in partial materialization based

on the period and matched pairs value from map phase
Reduce for Phase: p1….pn in partial materialization based
on p1….pn , period, month, year and excluding the
claimed members
5 Output Phase for Phase p1….pn: all a1…an aggregate in
batch b1…bn with sum and count
6 Set new pminimum =pminimum + 1
7 Repeat until pmaximum is reached
8 END

In MapReduce based approach, it consist the following

steps:
(1) map phase, the input [key,value] and will locally map in

the subcube and match the pair [key,value] in a batch group;
and

(2) reduce phase by means of evaluating the measure in the
subcube and will be loaded into result table for further
exploration [15].

Once the selection and execution of the user query are done,
the appropriate cubes in the database are now taking place.
The algorithm takes an input where it processes all
participants by a batch group. Each participant will get the
pair attribute and the summation of the specific attribute.

C. Performance Evaluation
 The last phase is where the result is evaluated in terms of
time and space complexity

Table 3: Complexity Analysis

Time Space
O(log(N)) O(N)

Where: N is the size of result table

In this section, the approach will evaluate if the execution

of the optimized query reaches its optimal time. The space
will evaluate in terms of memory consumption from different
input period. And time complexity is to get the total minutes
of execution of the query. Complexity analysis is used to show
the outcomes of the study and evaluate the improvement of the
query compared to the previous state.

3. RESULT AND DISCUSSION

In this section, the comparative method is to present the query
response time [21], space and evaluate the improvements in
query performance implemented in Microsoft SQL on a
desktop with 8GB memory, Intel Core i5-7400 CPU
@3.00Ghz and 1 TB HDD under Windows Server 2008
Standard Edition. The query performance is analyzed using
the varying numbers of records based on the period presented
in table 2.

The effect of the data size on memory space and response time
is also observed. The experiment verifies the different results:
(1) How responsive is the query if the approach were only
used the nonclustered index against having no nonclustered
index; (2) and by using two combine approaches –
NonClustered Index (NCI) and the MapReduce Data Cube
Numerosity Reduction Method (MRDCNR) against the
normal data aggregation.

Table 4: Data aggregation result using nonclustered index and without having nonclustered index
 Response Time (seconds) Available Memory (MB)

Description
Period Improve

average
Period Improve

average 1 2 3 4 5 1 2 3 4 5
Non NCI 4769 3867 3871 4998 4650 23.33% 124 245 216 10 10 11.32%
NCI 2242 1106 1221 1326 847 76.67% 1698 931 985 796 329 88.68%

Total number of time execution

2889
7 Total number of space memory

534
4

*Time Complexity = O(log(N)) *Space Complexity = O(N)

1.) NonClustered Index versus Without NonClustered Index
 Table 4 shows the time execution and availability of the
memory by using NCI in fact table. The response time
measure where N can be seen as the total number of execution
time per period. For period 1, the total number of run time is
N=2242 seconds, and the time complexity will be O(log(N))

because it considers how many N loops run inside the query.
And as for memory space, N is the total memory space
available during the execution of the query per period,
regardless of the data size.
The space complexity will be O(N) because it will count how
many memory available, and in the experiment for period 1

(a1…an)
sum (a1),
sum (a2),
count(a3)

c≥cast(cast(isnull(m,’’)
as varchar(2) + ‘01’+
cast(y as varchar(4) as
date) and c≤c and p=
(p1…pn) and m not in
(m1…mn)

Mercy Burawis et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 102 - 109

107

N=1698 megabytes available. Figure 6 presented the
graphical representation of the query response time by using a
nonclustered index, which improves by an average of 76.67%,
compared to without having a nonclustered index, which
required approximately 77% more time to search the data
based on the 23% average response time as shown in table 4.

Figure 6: Nonclustered index and without having nonclustered

index in terms of response time in seconds

And as for data that was exponentially increased based on the
period, it became more critical at some point and requires
more time to execute in data cube and was significantly

slower than having a nonclustered index. The fact table
generally contains a big volume of data, and it costs in time
and storage space [22].

 Figure 7: Nonclustered index and without having nonclustered

index in terms of memory space available in MB size

Figure 7 shows that the availability of the memory is
decreased based on 11.32% average result, as shown in table
4. And without using nonclustered index (NCI) resulting in
high memory usage and consumption. Implementing a
nonclustered index helps to speed-up the data retrieval in the
data cube and increase the availability of memory by 89%.

Table 5: Combined MapReduce Data Cube Numerosity Reduction and NonClustered Index (MDRCNR_NCI)
versus Standard Group-by (Non_MDRCNR_NCI)

 Response Time (seconds) Available Memory (MB)

Description Period Improve
average

Period Improve
average 1 2 3 4 5 1 2 3 4 5

Non_MDRCNR_NCI
4768.

8
3867.

6
3870.

6 4998.6 4651 5.92% 1037 745 713 271 263 8.75%
MDRCNR_NCI 301.8 283.2 274.2 282.6 251.4 94.08% 6399 6390 6332 6289 6167 91.25%

Total number of time execution 23549 Total number of space memory 34606

*Time Complexity = O(log(N)) *Space Complexity = O(N)

2.) MapReduce Data Cube Numerosity Reduction Method
and NonClustered index
The combined approach shows the significant result in data
cube as it was radically improved even at the higher number
of records presented in table 2. The time measure where N is
to quantify the amount of time in seconds taken by the query
per period; and for memory space N is to quantify the amount
of space available in megabytes (MB) per period which was
not taken by the query.

Figure 8: Comparison result between MRDCNR_NCI and
NonMRDCNR_NCI in terms of response time in seconds

Table 5 presented the result of the two combined approaches.
MDRCNR_NCI has improved the response time by an
average of 94%. The query response time for period 1 is 301.8
seconds that is equivalent to 5.030 minutes compare to 4768.8
seconds equivalent to 79.48 minutes to get the data
aggregation result. The graphical result can be seen in figure
8. The queries with thousands or millions of records mostly
consume the memory to search the data based on 8.75%
average availability of memory for NonMDRCNR_NCI.

Figure 9: Comparison result between MRDCNR_NCI and

NonMRDCNR_NCI in terms of memory space availability in MB
size

Mercy Burawis et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 102 - 109

108

In the experiment, the memory consumption is only used 9%,
resulting in higher memory space available by an average of
91%. Figure 9 illustrates how much the memory space is
available during the execution of the query. The MRDCNR
and NCI overcome the higher usage in computing data cube
and not even reached the critical threshold which means, the
improvement in response time remains stable, and the
average execution of the query can now be completed within 4
to 5 minutes considering the volume of the data.

3. CONCLUSION

The proposed approach is effective as it does dramatically
improve the performance of the query. The intensive
experiment validates by applying NonClustered Indexing;
speed up the performance of data retrieval. As we cover the
index, the query performance is now improved because all the
data needed is within the index itself [23].

MapReduce based approach in data cube computation is to
load and balance the data by distributing it into a small task
and efficiently aggregates the data. And based on the
experiment, the combine approaches are considered strong
and effective solutions to resolve the prolonged execution of
the query and able to complete the task in a reasonable
amount of time, reduce memory usage, and the memory space
becomes balanced and not over in the stated condition.

ACKNOWLEDGEMENT
The researchers appreciate the PERAA Fund for the support
to make this a good one and useful to other institutions.

REFERENCES
[1] J. Han, M. Kamber, and J. Pei, Data Mining Concepts

And Techniques, 3rd edition, Elsevier, Waltham, MA
02451, USA, pp. 135-164,2000.

[2] A. Ivanova and B. Rachev, “Multidimensional
models - Constructing Data Cube,” International
Conference on Computer Systems and Technologies,
pp. 1–7, 2004.
https://doi.org/10.1145/1050330.1050444

[3] D. Puspa, S. Ghazali, R. Latip, M. Hussin, M. Helmy,
and A. Wahab, “A review data cube analysis method
in Big data environment,” ARPN Journal of
Engineering and Applied Sciences, volume 10, issue
19, pp. 8525–8532, 2015.

[4] A. Savinov, “From Group-by to Accumulation : Data
Aggregation Revisited,” Proceedings of the 2nd
International Conference on Internet of Things, Big
Data and Security (IoTBDS), pp. 370–379, 2017.

[5] T. Mamaliga, “Realizing a Process Cube Allowing
for the Comparison of Event Data Master Thesis,”
Master Thesis, Technische Universiteit Eindhoven,
University of Technoogy., August, 2013.

[6] M. Patel, B. Parmar, Y. Patel, and H. Joshi, “Efficient

Dynamic Index Structure for Natural Number
Intensive Application,” International Journal of
Computer Applications (0975 – 8887), volume 109,
issue. 4, pp. 13–20, 2015.
https://doi.org/10.5120/19176-0650

[7] Q. Optimization, S. M. Mahajan, and P. Vaishali,
“Analysis of Execution Plans in Query
Optimization,” International Journal of Scientific &
Engineering Research, volume. 3, issue 2, pp. 1–4,
2012.

[8] G. Moerkotte, “Small Materialized Aggregates: A
Light Weight Index Structure for Data
Warehousing,” Proceedings of the 24th VLDB
Conference New York, USA, 1998.

[9] C. Cioloca and M. Georgescu, “Increasing Database
Performance using Indexes,” Database Systems
Journal, volume II, issue 2, pp. 13–22, 2011.

[10] H. G. Kim, “SQL-to-MapReduce Translation for
Efficient OLAP Query Processing with MapReduce,”
International Journal of Database Theory and
Application, volume 10, issue 6, pp. 61–70, 2017.
https://doi.org/10.14257/ijdta.2017.10.6.05

[11] A. D. Arasteh, D. Mohammadpur, and M. Meghdadi,
“MapReduce Based Implementation of Aggregate
Functions on Cassandra,” International Journal of
Electronics Communication and Computer
Technology (IJECCT), volume 4, issue 3, May 2014,
2014.

[12] S. Lee and J. Kim, “Performance Evaluation of
MRDataCube for Data Cube Computation Algorithm
Using MapReduce,” 2016 International Conference
on Big Data and Smart Computing (BigComp), pp.
325–328, 2016.

[13] B. Wang, H. Gui, M. Roantree, and M. F. O. Connor,
“Data Cube Computational Model with Hadoop
MapReduce,” Proceedings of the 10th International
Conference on Web Information Systems and
Technologies, Barcelona, Spain, 3-5 Apr 2014.

[14] M. K. Gupta, “Comparative study of indexing
techniques in dbms,”
https://www.researchgate.net/publication/333844844
, no. June, 2019.

[15] S. Wu, F. Li, S. Mehrotra, and C. Ooi, “Query
Optimization for Massively Parallel Data
Processing,” Proceedings of the 2nd ACM
Symposium on Cloud Computing, October 2011.
https://doi.org/10.1145/2038916.2038928

[16] P. P. Patil, P. Kotian, A. Gaonkar, S. Wani, and P.
Gaikwad, “Map-Reduce for Cube Computation,”
International Journal of Scientific Research
Engineering & Technology (IJSRET), ISSN 2278 –
0882, volume 4, issue. 4, pp. 299–303, 2015.

[17] J. Gray, A. Bosworth, F. Pellow, and H. Pirahesh,
“Data Cube : A Relational Aggregation Operator
Generalizing Group-By , Cross-Tab , and
Sub-Totals,” Data Mining Knowledge Discovery,
volume 1, Issue 1, 1997.

Mercy Burawis et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 102 - 109

109

[18] M. Sundararajan and Q. Yan, “A Simple and
Efficient MapReduce Algorithm for Data Cube
Materialization,”
https://arxiv.org/abs/1709.10072v1, 2017.

[19] T. Milo and E. Altshuler, “An Efficient MapReduce
Cube Algorithm for Varied Data Distributions,”
Proceedings of the 2016 International Conference on
Management of Data, pp. 1151–1165, 2016.

[20] N. R. Bhosale and H. K. Chavan, “Map Reduce
Approach for computing interesting,” International
Journal Advance Computing Engineering Network,
volume 3, issue 12, pp. 106–110, 2015.

[21] H. Zhao, S. Yang, Z. Chen, S. Jin, H. Yin, and L. Li,
“MapReduce model-based optimization of range
queries,” 2012 9th International Conference Fuzzy
Sysem Knowledge Discovery, pp. 2487–2492, 2012.
https://doi.org/10.1109/FSKD.2012.6234050

[22] V. Phan-luong, “A Simple Data Cube Representation
for Efficient Computing and Updating,” International
Journal on Advances in Intelligent Systems, volume
9, issue 3, pp. 255–264, 2016.

[23] S. Mukherjee, “Indexes in Microsoft SQL Server
Indexes in Microsoft SQL Server,” PhD student
University Cumberlands Chicago, United States, pp.
1–16.

