
Vu Ngoc Son et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8285- 8294

8285



ABSTRACT

The trend of cyber-attacks through end-users is currently
widely used by attackers. One of them is the attack form by
spreading malware on users' computers to steal data or
escalate the privilege higher. The attack technique by
spreading malware is a dangerous attack method that difficult
to detect and prevent. Therefore, the task of detecting and
alerting users or the system about signs of malware is very
necessary today. The current studies and proposals on
malware detection are usually based on two main methods:
using signs, and analyzing abnormal behavior based on
machine learning or deep learning machine techniques. In this
paper, we propose a method of detecting malware on users'
computers using the Event ID profile analysis technique.
Event IDs that are signs and behaviors of malware are tracked
and collected on the operating system kernel of the
workstation. The difference between our research with other
published methods is that we collect malware behavior
directly on processes on the operating system kernel, not
through virtualized systems. Therefore, even though the
malware uses techniques to conceal itself, their behavior when
executed is recorded by the operating system kernel. Based on
those processes, we use Event ID analysis techniques to
conclude the existence of malware in the system.

Key words: machine learning, malicious URLs, TF- IDF.

1. INTRODUCTION

The document [1] presented the concept, characteristics, and
classification of malware. In the study [2], the authors statistic
and explain why spreading malware is becoming the trend of
current cyber-attack types. Therefore, the problem of
detecting malware in the system has become a problem that
needs to be concerned today. The study [1] listed two main
current methods used to detect malware that are detection
techniques based on signs and based on machine learning.
However, one common characteristic of these methods is
using the method of extracting behaviors and signs of

malware based on sample datasets. These datasets are built
based on virtualization tools or network monitoring and static
analysis tools. For virtualization tools, studies often use the
Sandbox tool [3] to execute and extract malware behavior.
The disadvantage of Sandbox tools is that they only record
behaviors in a certain time, so they will not be able to fully
statistic malware behavior. For datasets collected during static
analysis, only detect anomalies when malware has spread and
connected to steal data. Therefore, these traditional
approaches are always overtaken by malware. In addition, the
tendency of malware spreading attacks is the attack on the
user in order to escalate privileges into the system. From the
above reasons, in this paper, we propose a method to detect
malware on Workstation. Our proposed method will directly
monitor and detect malware on Workstation based on Events
collected on the operating system kernel using sign set and
behavior analysis.

2. RELATED WORKS

Currently, the theoretical research related to malware
detection on Workstations is very limited. Concerning the
problem of detecting malware on a workstation, besides some
antivirus software, there are some Endpoint Detection &
Response (EDR) support products. The EDR product has the
function of detecting and tracking anomalous incidents on
Enduser in order to give out the incident response scenarios.
According to the publication [4], there are some solutions and
products of EDR as follows: Trend Micro EDR Apex One
product [5] has the ability to automatically detect and prevent
many threats on the endpoint as possible, without any manual
user intervention. Apex One also detect and prevent
exploitation of vulnerabilities in the operating system before
threats gain access to the endpoint with virtual patches that are
constantly updated with artificial intelligence from Trend
Micro’s Zero Day Initiative. Similarly, the Palo Alto
Networks Traps product [6] of Palo Alto prevents threats on
endpoints, coordinates with cloud security and network
security to prevent cyber-attacks. Traps prevent the execution
of the malicious executables, DLLs, and Office files with
many methods of preventing, reducing attack surfaces, and
increasing the accuracy of malware blocking. This approach
prevents known and unknown malware from infecting the
endpoint by combining some methods: WildFire threat

Detecting behavior of malware using MITRE ATT&CK

Vu Ngoc Son1, Tisenko Victor Nikolaevich2,Le Duong Anh Tuan3, Nguyen Tung Lam4, Pham Thi Thuong5,
Dong Xuan Anh6

1,3,4,5,6Information Assurance dept. FPT University, Hanoi, Vietnam, sonvnse04460@fpt.edu.vn ,
TuanLDAHE130230@fpt.edu.vn, LamNTHE130587@fpt.edu.vn, ThuongPTSE05856@fpt.edu.vn,

AnhDXSE06086@fpt.edu.vn
2Department Quality Systems, Peter the Great St. Petersburg Polytechnic University, Russia, St.Petersburg,

Polytechnicheskaya, 29, v_tisenko@mail.ru

ISSN 2278-3091
Volume 9, No.5, September - October 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse198952020.pdf

https://doi.org/10.30534/ijatcse/2020/198952020

Vu Ngoc Son et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8285- 8294

8286

intelligence; Local analysis via machine learning; WildFire
inspection and analysis; Granular child process protection;
and Periodic scanning for dormant malware. Kaspersky EDR
[7] can continuously monitor and analyze anomalies,
suspicious processes on employee workstations, and response
to threats in both manual mode and passive mode. In addition,
Kaspersky EDR enables the control of incidents on endpoints
of the network, detecting malware and unrecognizable

unauthorized behaviors at the level of network protection, and
responding quickly to them. There are also a number of other
solutions such as VMware Carbon Black EDR [8], Falcon [9],
Malwarebytes Endpoint Detection and Response [10].

3. PROPOSING DETECTION MODEL

3.1. Model architecture

Fig. 1. Proposed model of malware detection on the workstation

Figure 1 shows our proposed model of malware detection
on the workstation. The main components in our proposed
model include:

- Workstation is the user's computer that needs to
monitor. Accordingly, in this paper, to collect
processes on the operating system kernel of a user's
machine, we need a tool to collect, process, and
transfer processes to the analysis center. Thus, each
user using different operating systems will have
different collection and processing tools. We will

collect processes on the Windows and Ubuntu
operating system kernels by using the Sysmon tool
[11].

- Event ID is process collected by the Sysmon tool on
the operating system kernel. According to the
document [11], the Sysmon tool collects a total of 21
processes from the operating system kernel. Table 1
below describes the 21 processes that were
collectedCrawling data: This module collects the
URL data from different sources.

Table 1. List of processes collected on the operating system kernel by Sysmon tool
No. Name and notation of Event Description
1 Event ID 1: Process creation This event shows additional information about a newly created process. The full

command line returns the execution process context. Besides, this event has the
ProcessGUID and HashType field.

2 Event ID 2: A process changed a file
creation time

This event helps to track the real creation time of a file. When a process
modified explicitly a file creation time, this event is registered. For example, to
make a backdoor look normal, attackers may change its file creation time.

3 Event ID 3: Network connection This event contains logs of TCP/UDP connections. By using ProcessId and
ProcessGUID fields, a connection and a process are linked together.

4 Event ID 4: Sysmon service state
changed

This event logs the Sysmon service state (started or stopped).

5 Event ID 5: Process terminated When a process terminates, this event logs UtcTime, ProcessGuid, and
ProcessId of the process.

6 Event ID 6: Driver loaded This event records information about a driver being loaded, hashes and
signature.

7 Event ID 7: Image loaded This event records the module loading process, Hashes, and signature.

8 Event ID 8: CreateRemoteThread

When a process creates a thread in another process to inject code and conceal,
the event logs the source and target process and information on the code that will
be run in the new threads.

Workstation

Detecting malware using
Event ID analysis

Detecting malware
based on IoC

Event ID

Malware Normal

MITRE
Database

IoC
Database

Vu Ngoc Son et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8285- 8294

8287

9 Event ID 9: RawAccessRead This event logs the source process and target device when a process reads from
the drive using the \\.\ denotation. Malware often uses this technique to filter
data of locked files and avoid auditing tools.

10 Event ID 10: ProcessAccess This event is recorded when a process opens another process. This event is used
for detecting malicious tools that read process memory data. However, enabling
it can generate significant amounts of logging.

11 Event ID 11: FileCreate This event logs when a file is created or overwritten. This event is used in
autostart location monitoring.

12 Event ID 12: RegistryEvent (Object
create and delete)

This event maps to operations that create and delete the Registry key and value.

13 Event ID 13: RegistryEvent (Value Set) This event records the Registry values (with type DWORD and QWORD) in
order to identify Registry value modifications.

14 Event ID 14: RegistryEvent (Key and
Value Rename)

This event records the new name of the renamed key and value.

15 Event ID 15: FileCreateStreamHash When a named file stream is created, this event logs the hash of contents of both
unnamed and named streams.

16 Event ID 17: PipeEvent (Pipe Created) When a named pipe is created, this event is generated. This pipe is often used by
Malware.

17 Event ID 18: PipeEvent (Pipe
Connected)

When between a client and a server has a named pipe connection, this event
logs.

18 Event ID 19: WmiEvent
(WmiEventFilter activity detected)

This event records the filter name, expression, the namespace of WMI when a
WMI event filter is registered.

19 Event ID 20: WmiEvent
(WmiEventConsumer activity detected)

This event records the registration of WMI clients.

20 Event ID 21:
WmiEvent(WmiEventConsumerToFilter
activity detected)

When a client uses a filter, this event logs the name and filter path of the client.

21 Event ID 22: DNSEvent (DNS query) This event is created when a DNS query is executed by a process, whether the
result is successful or fails, cached or not. This event is available for win 8 and
later.

22 Event ID 255: Error This event is created when a system overloads, a task is not performed, or having
a bug in the Sysmon.

- IoC database is a database about Indicators of

compromise (IoC) of known malware including IP
blacklist, malicious URL, C&C server, Virus
signatures, MD5 hashes, botnet command, etc.

- Detecting malware based on IoC: This is a
function block that is responsible for comparing each
collected Event ID with the malware's IoC database.
The result of the Event ID comparison show which
Event is malicious.

- MITRE database is a database that we built on the
collected malware samples. Accordingly, we will
experiment with malware samples in a virtualized
environment to obtain Event ID groups as well as
behaviors of each the Event ID groups.

- Detecting malware using Event ID
analysis: Based on the Event profiles we built as
well as the weights of each Event in
the Event profile, we will evaluate these Event
profiles using the Event ID analysis technique.
From Figure, 1 we propose the operating procedure
of the system as follows:

- Step 1: Collecting and processing Event ID on
Workstation. As shown in Section 3.1, the malware
detection system is responsible for detecting and
monitoring the signs and behaviors of malware based
on the processes that they recognized in the
operating system. To perform the task of collecting
and extracting these processes, we will install and
configure 2 main tools: Sysmon and Linux Auditing
System [12] corresponding to 2 current popular
operating systems as Windows and Linux. These
tools collect the processes logged by the operating
system and transfer them to the processing and
monitoring center.

- Step 2: Detecting malware based on Event ID using
the IoC database. After the processes are collected
and transferred to the processing and monitoring
center, the system will check the Event IDs based on
the IoC database of previously collected malware. If
an Event ID is found in the IoC database, the system
will immediately alert the user to the existing
malware. If no anomalies are found in the Event ID,

Vu Ngoc Son et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8285- 8294

8288

the system will transfer monitoring of this Event ID
to the next step.

- Step 3: Detecting malware based on Event profile
analysis. At this step, to check whether the newly born Event
ID is an abnormal event or not, we perform the following 2
main stages:

o Stage 1: Building behavior profiles of Events.
Accordingly, the Events generated from the
operating system will be checked and evaluated
to know whether an Event is related to the
processes that were previously collected or not. If
true, the Event will continue to be appended to
the behavior profile of the previous Events. If
false, the Event will be built into a new Event
behavior profile.

o Stage 2: Detecting malware based on analyzing
the behavior of processes using the MITRE
attack. Accordingly, based on Event profiles
collected in stage 1, we will evaluate each Event
profile to conclude about the signs of malware in
the system. In order to accomplish this task, in
this paper, we will use the ruleset of the MITRE
attack [13]. Details of the process of building
rules and methods of detecting abnormal
behaviors of malware will be described in section
3.2 of the paper.

3.2. Malware detection method using MITRE attack

3.2.1. Introduction to MITRE attack

In fact, malware will have many different ways and processes
to hide and bypass surveillance systems. In recent studies, our
team often focuses and extracts the properties and behavior of
the malware based on data collected from the sandbox.
However, we realize that collecting malicious behavior will
not be able to guarantee all of their behavior is fully
documented. Also, quick detection time is not guaranteed.
Therefore, in this project, we will not directly extract
anomalies of malware based on data analysis and evaluation
from the sandbox. Instead, we use MITRE ATT&CK to
define and behave malicious behavior.
MITRE ATT&CK is a knowledge base of attack tactics and
techniques gathered on observations of actual attacks. Each
attack tactic represents a target or a certain stage in the attack
(How to escalate privileges, how to fix malware on the
victim's system). And attack techniques, which describe
methods to achieve those goals. MITRE ATT&CK currently
has 11 popular attack tactics including Initial Access,
Execution, Persistence, Privilege Escalation, Defense
Evasion, Credential Access, Discovery, Lateral Movement,
Collection, Exfiltration, Impact [13]. Table 2 below lists
tactics of the MITRE attack.

Table 2. List of all MITRE ATT&CK Tatic

No. Attack tactic Description

1 Initial Access This is the first step for a hacker to get into your network.

2 Execution After access to your network, attackers will run malware to gain more data on your system.

3 Persistence This step is usually used to maintain the control of the hacker after access to the
information system. Such as a backdoor.

4 Privilege Escalation Hackers try to gain more permission for deeper access to sensitive data.

5 Defense Evasion Attackers avoid being detected.

6 Credential Access Attackers are trying to steal login credentials such as username and password.

7 Discovery The adversary is trying to understand network elements. Such as how many computers are
in the network?

8 Lateral Movement The adversary is trying to move through your environment such as, from this computer to
another computer.

9 Collection In this tactic, the attacker is trying to gather data that they are interested in.

10 Command and Control The adversary is trying to remote control a hacked computer system.

11 Exfiltration All techniques of this tactic are dangerous, the attacker is trying to steal the data.

12 Impact Attackers are trying to make data corruption. Such as delete or modify valid data and even
destroy all systems.

3.2.2. The principle of building the ruleset based on

MITRE

a) The structure and components of the ruleset

Table 3 below lists some main components of a rule that
is built from MITRE attack.

Vu Ngoc Son et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8285- 8294

8289

Table 3. Some components of the ruleset

Elements Type Description

Title String A brief title for the rule that should contain what the rules is supposed to detect

Description String Short description of malicious rules and practices that can be detected

References Array

Reference to the source derived from the rule. These could be blog articles, technical articles,
presentations, or even tweets.

Status any Declare the state of the rule

Log Source record This section describes the log data that is applied to detection. It describes the log source, platform,
application, and type required when detected.

Detection record A set of search-identifiers that represent searches on log data

Condition any The condition is the most complex part of the specification and will be subject to change over time
and arising requirements. In the first release, it will support the following expressions.

Fields array A list of log fields that could be interesting in further analysis of the event and should be displayed
to the analyst.

Level any The level field contains one of four string values. It describes the criticality of a triggered rule.
While low and medium level events have an informative character, events with high and critical
levels should lead to immediate reviews by security analysts.

Tags array A rule can be classified by tags

a) Definition of components of the ruleset

1. Title
A brief title for the rule that should contain what the rules

is supposed to detect
2. Description

Short description of malicious rules and practices that can
be detected

3. References

Reference to the source derived from the rule. These
could be blog articles, technical articles, presentations, or
even tweets.

4. Status

 Declare the state of the rule:
- stable: the rule is considered stable and can be used

in production systems or control panels.
- test: a quasi-stable rule might require some

tweaking.
- experimental: a test rule can lead to false or noisy

results, but can also identify events.

5. Log Source
 This section describes the log data that is applied to

detection. It describes the log source, platform, application,
and type required when detected. It includes three properties
that are automatically evaluated by the converter and some
optional elements.

- category - examples: firewall, web, antivirus. The
"category" value is used to select all log files that are written
by a certain product group, such as a firewall or web server
logs. Automatic conversions use the keyword as a selector for
multiple metrics.

- product - examples: windows, apache, checkpoint
fw1. The "product" value is used to select all log outputs of a
certain product, e.g. all Windows Eventlog types including
"Security", "System", "Application" and the new log types
like "AppLocker" and "Windows Defender".

- service - examples: sshd, applocker. Use the "service"
value to select only a subset of the product's log, such as
"sshd" on Linux or the "Security" event log on Windows
systems.

- Definition: The "definition" can be used to describe
the log source, including some information about the
granularity of the log or the configurations that must be
applied. It is not evaluated automatically by the converter but
gives helpful advice to the reader on how to configure the
source to deliver the necessary events used in detection.

6. Detection
 A set of search-identifiers that represent searches on log

data:
- Search-Identifier: A definition that can consist of two

different data structures - lists and maps
- General:

● All values are treated as case-insensitive strings
● Can use wildcard characters '*' and '?' in strings

Vu Ngoc Son et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8285- 8294

8290

● Wildcards can be escaped with \, e.g. *. If some
wildcard after a backslash should be searched,
the backslash has to be escaped: *.

● Regular expressions are case-sensitive by
default

- Lists: The list contains strings that apply to the full log
message, and are reasonably linked with 'OR', for example:

● Match on 'EvilService' OR
'svchost.exe -n evil':

Detection:
 Keywords:
 -EvilService
 - svchost.exe -n evil

- Maps: Maps (or dictionaries) consist of key/value
pairs, in which the key is a field in the log data and the value
of a string or integer value. Lists of maps are joined with a
logical 'OR'. All elements of a map are joined with a logical
'AND', for example:

Matches on EventLog 'Security' AND (EventID ‘X’ OR
EventID ‘Y’):

Detection:
 Selection:
 EventLog: Security
 EventID:
 - X

-Y
condition: selection
Matches on EventLog 'Security' AND EventID ‘X’
AND TicketOptions 0x40810000 AND
TicketEncryption 0x17:
Detection:
 Selection:
 -EventLog: Security
 EventID: X
 TicketOptions: '0x40810000'
 TicketEncryption: '0x17'
condition: selection

- Special Field Values: There are special field values
that can be used.

● An empty value is defined with ''
● A null value is defined with null
● OBSOLETE: An arbitrary value except null or

null cannot be specified with non-null anymore

- Value Modifiers: Values contained in a rule can be
modified with value modifiers. The value modifier is added
after the field name with the pipe character | as a separator and
can also be strung, for example, the field name | mod1 | mod2:
value. The value modifier is applied in the order given the
value.

- Currently Available Modifiers

● endswith: The value is expected at the end of the
field's content (replaces e.g. '*\cmd.exe')

● startswith: The value is expected at the
beginning of the field's content. (replaces e.g.
'adm*'

7. Condition

 The condition is the most complex part of the
specification and will be subject to change over time and
arising requirements. In the first release, it will support the
following expressions.

- Logical AND/OR

keywords1 or keywords2
- 1/all of search-identifier. Same as just 'keywords' if

keywords are defined in a list. X may be:

● 1 (logical or across alternatives)
● All (logical and across alternatives)

Example: ‘all of the keywords’ mean that all items
of the list keywords must appear, instead of the default
behavior of any of the listed items.

- 1/all of them: Logical OR (1 of them) or AND (all of
them) across all defined search identifiers. The search
identifiers themselves are logically linked with their default
behavior for maps (AND) and lists (OR). Example: 1 of them
means that one of the defined search identifiers must appear.

- 1/all of search-identifier-pattern: Same as 1/all of
them, but restricted to matching search identifiers. Matching
is done with * wildcards (any number of characters) at
arbitrary positions in the pattern. Examples:1of selection*
and keywords

any of selection* and not filters
- Negation with 'not'

keywords and not filters
- Brackets

selection1 and (keywords1 or keywords2)
- Operator Precedence (least to most binding)

● or
● and
● not
● x of search-identifier

If multiple conditions are given, they are logically linked with
OR.

8. Fields

A list of log fields that could be interesting in further
analysis of the event and should be displayed to the analyst.

Vu Ngoc Son et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8285- 8294

8291

9. Level

 The level field contains one of four string values. It
describes the criticality of a triggered rule. While low and
medium level events have an informative character, events
with high and critical levels should lead to immediate reviews
by security analysts.

- low: Interesting event but rarely an incident. Low
events are relevant in high numbers or combined with others.
A security analyst has to review the events and identify
anomalies or suspicious indicators. Use them in a dashboard
panel, e.g. in the form of a chart.

- medium: The relevant event that should be reviewed
manually on a more frequent basis. A security analyst has to
review the events and identify anomalies or suspicious
indicators. List the events in a dashboard panel for manual
review.

- high: The relevant event that should trigger an internal
alert and requires a prompt review.

- critical: The highly relevant event indicates an
incident. We recommend critical events for immediate
response actions and external notifications (E-Mail, Ticket).

10. Tags
 A rule can be classified by tags. Tags should generally

conform to the following syntax:
- Character set: lower case, underscore and hyphen
- There are no spaces

Cards have a namespace, dots are used as separators. For

example. attack.t1234 refers to technique 1234 in the

namespace attack; Namespaces can also be nested.

b) The architecture of the ruleset

" Field name Data type
title:
 type: str
 length:
 min: 1
 max: 256
description: str
references:
 type: arr
 contents: str
status:
 type: any
 of:
 - type: str
 value: stable
 - type: str
 value: testing
 - type: str
 value: experimental
logsource:
 type: rec
 optional:
 category: str
 product: str
 service: str
 definition: str

detection:
 type: rec
 required:
 condition:
 type: any
 of:
 - type: str
 - type: arr
 contents: str
fields:
 type: arr
 contents: str
level:
 type: any
 of:
 - type: str
 value: low
 - type: str
 value: medium
 - type: str
 value: high
 - type: str
 value: critical
tags:
 type: arr
 contents: str

3.2.3. Principle of detecting abnormal behavior of

malware using MITRE attack

To detect malware based on its abnormal behavior by using
the MITRE attack, we will focus on building its behavior
profiles and then compare and analyze these behavior profiles.
The principle of detecting malware by the MITRE attack
technique is presented in algorithm 1 below.

Algorithm 1: detection_operator

Function detection_operator():
 selections = {}
 For each key, value is in detection field:
 if key is not ‘condition filed’
 result = Check selection_operator is True or False

Put the result into a dictionary
selections[key] = result
 else:
 Get condition
 For each key, value in selections:
 if key in condition:
 Alter key in condition is value of each selection
 Return condition

The selection_operator function will be responsible for
checking whether the selection is True or False and returning
the result to check against the condition, the content inside the
selection is a series of conditions according to the rule if
dictionaries - condition AND, If the list - condition OR.

Vu Ngoc Son et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8285- 8294

8292

Algorithm 2: selection_operator

Function selection_operator():
If selection is lits:
 list_selection = []

 For each element inside the selection:
 result = selection_operator (element)
 //Recursively call function A again until get the result
from the leaf Add result to list_selection
 Return check or_operator(result)
 If selection is dictionaries: list_selection = []
 For each element inside the selection:
 If key is ‘condition field’:

 continue
 If value is list
 result is return of check_many(key,

value)
 Add result to list_selection
 else:
 result is return of check_sigle(key,

value)
 Add result to list_selection
 Return check and_operator(result)

This function executes in case a key has a list of many
different values, in order to be able to check, you need to take
each value inside and check with each value in the field of the
log message, the check_many function will get Each value
entered into the check_single function waits for the return
result, as mentioned in the form of a key with multiple values,
the or_operator function will perform the test with the OR
condition.

Algorithm 3: selection_operator

Function check_many(key, values)
 List_value_check = []
 For each value inside the values:
 result is return of
check_sigle(key, value)
 Add result to
List_value_check
 Return check or_operator(result)

The check_single function references each value in the rule in
turn with the reference value having the same key as the field
from the message, each key has a way to compare the value
from the log message like contains, endswith, startswith or
nothing, the test and return results are done in the
simple_operator function.

Algorithm 4: simple_operator function

Function check_sigle(key, value)
 elements = number return by split key with “|”

field = element[0]
 If elements == 1:
 Return simple_operator(message[field], value, “=”)
 condition = elements[1]
 Return simple_operator(message[field], value, condition)
Function simple_operator(left, right, operator)
 If operator is “=”:
 If operator is String:

 if appears "*" at the beginning and end:
 simple_operator(left, right[1:-1], "contains")
 if appears "*" at the end:
 simple_operator(left, right[1:], "startswith")
 if appears "*" at the beginning:
 simple_operator(left, right[1:], "endswith")
 If left is None:
 Return False
 If operator is “endswith”:
 Return left endswith right
 if operator is “startswith”:
 Return left startswith right
 if operator is “contains”:
 Right in Left

4. Experiments and evaluations

4.1. Experimental ruleset
In this paper, we collect samples of malware in [14]. Here we
obtained about 4,847 behavior profiles of different types of
malware including Emotet, Remcos, Lokibot, Njrat, etc.
Combining the behavior of the above malware types with
MITRE attack, we built and implemented this rule. At the
same time, we collected more ruleset also built according to a
strategy of the MITRE attack that is Sigma [15]. Accordingly,
the rules at Sigma provide 68 different rulesets:
4.2. Example of malware detection results
Now recently, the COVID-19 pandemic has been complicated
in many countries, some hacker groups have taken advantage
of this situation to launch and conduct targeted cyber-attack
campaigns on agencies and organizations in the world,
including Vietnam. Specifically, in recent days, hackers have
spread malware via email with an attached word file with the
title "Chi Thi of Thu tuong nguyen xuan phuc.lnk" which
disguised the Prime Minister's announcement about the
COVID-19 pandemic.

Figure 2. Contents of the malicious file
Table 4. Details of the malware used

Malware file bbbeb1a937274825b0434414fa2d9ec629ba8

46b1e3e33a59c613b54d375e4d2.rar

Hash 60C89B54029442C5E131F01FF08F84C9

Vu Ngoc Son et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8285- 8294

8293

File format After extracting the rar file obtained the file

“Chi Thi cua thu tuong nguyen xuan

phuc.lnk”

URL to download

malware

https://app.any.run/tasks/dd877b4d-8b36-48c

0-af07-ce37fd9fee7b/

After conducting a test run of this malware, we obtained the
progress tree of the malware as shown in Figure 3.

Figure 3. Behavior profile of malware

When checking the details of this event, we notice that after
running the malware file, the malware created 2 new files
including 3.exe and http_dll.dll at the path
C\users\Admin~1\AppData\Local\Temp\ as shown in
Figure 4.

Figure 4. Information about the malware process that

creates 02 files
When checking the details of the 3.exe file, we found that the

file 3.exe created a registry and called unsecapp.exe file as

shown in Figure 5.

Figure 5. Details for the file 3.exe

 The details about the event of the 3.exe file show clearly the

file's Hash code as well as the parent process that called this

file.

Figure 6. Information about the event of 3.exe file

Thus, through collecting and monitoring information about
Event IDs from Sysmon, we succeeded in building behavior
profiles as well as detecting anomalies of malware based on
obtained behaviors. Obviously, without using this behavior
analysis technique and Miter attack, the system is very
difficult to detect the signs of malware.

5 CONCLUSION AND FUTURE DIRECTION
Detecting and classifying malware has been a current very
necessary task. Meanwhile, problems related to detecting
malware using behavior analysis techniques and machine
learning algorithms have yielded good results. However, this
approach also has the disadvantage that is requiring large
amounts of data to train. In this paper, based on malware
behaviors and the strategy of the MITRE attack, we have
partially solved the disadvantages of the malware detection
approach using machine learning. The Malware detection
approach based on the MITRE attack that proposed in our
research has great coverage and is effective when they are
able to detect malware in real-time, as soon as the malware
starts spreading. In the future, we will conduct research and
propose additional malware detection methods based on
processes using graph analysis techniques.

REFERENCES
[1] Alireza Souri, Rahil Hosseini. A state�of�the�art

survey of malware detection approaches using data
mining techniques(2018) 8:3. pp 1-22.
https://doi.org/10.1186/s13673-018-0125-x.

[2] YANFANG YE, TAO LI, DONALD ADJEROH, S.
SITHARAMA IYENGAR. A survey on malware
detection using data mining techniques. ACM
Comput. Surv. Vol, 50, No 3, Article 41 (June 2017),
40 pages. DOI: http://dx.doi.org/10.1145/3073559.

[3] IMPORTANT INFORMATION REGARDING
SANDBOXIE VERSIONS.
https://www.sandboxie.com/. [Last accessed 26
August 2020]

[4] Endpoint Detection and Response Solutions Market-
https://www.gartner.com/reviews/market/endpoint-de
tection-and-response-solutions. [Last accessed 26
August 2020]

[5] Endpoint Security with Apex One Endpoint security
redefined.
https://www.trendmicro.com/en_us/business/products
/user-protection/sps/endpoint.html [Last accessed 26
August 2020]

Vu Ngoc Son et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8285- 8294

8294

[6] Palo Alto Networks Traps Endpoint (EDR).
https://paloaltofirewalls.co.uk/palo-alto-traps-endpoin
t/ [Last accessed 26 August 2020]

[7] Kaspersky Endpoint Detection and Response-
https://www.kaspersky.com/enterprise-security/endpo
int-detection-response-edr [Last accessed 26 August
2020]

[8] VMware Carbon Black EDR -
https://www.carbonblack.com/products/edr/ [Last
August 26 February 2020]

[9] Falcon Insight: EDR -https: //www.crowdstrike .com /
endpoint-security-products /
falcon-insight-endpoint-detection-response /[Last
accessed 26 August 2020]

[10] https://www.malwarebytes.com/business/endpointdet
ectionresponse/ [Last accessed 26 August 2020]

[11] Sysmon v10.42.
https://docs.microsoft.com/en-us/sysinternals/downlo
ads/sysmon [Last accessed 26 August 2020]

[12] Auditd Linux Tutorial.
https://linuxhint.com/auditd_linux_tutorial/. [Last
accessed 26 August 2020]

[13] ATT&CK for Industrial Control Systems.
https://attack.mitre.org/.[Last accessed 26 August
2020]

[14] Malware hunting with live access to the heart of an
incident. https://app.any.run/ [Last accessed 26
August 2020].

[15] Neo23x0/sigma.
https://github.com/Neo23x0/sigma/blob/master/tools/
README.md [Last accessed 26 August 2020]

