
Anmol Mishra et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3776  – 3782 

3776 
 

 
ISSN 2278-3091              

Volume 9, No.3, May - June 2020 
International Journal of Advanced Trends in Computer Science and Engineering 

Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse194932020.pdf 
https://doi.org/10.30534/ijatcse/2020/194932020 

 
ABSTRACT 
 
Blockchain is a secure and distributed ledger structure and 
each block is a cryptographic hash of some other factors like a 
timestamp. The chain is formed by linking the blocks and 
distributed data is present on multiple computers. The 
blockchain made system are more fault-tolerant and has high 
availability even in times of database failures. Though Linux 
is considered a benchmark for security, it is susceptible to 
various attacks. With the use of blockchain, Linux logs can be 
made more transparent among multiple root users and 
secured by hosting the logs on a decentralized Ethereum 
blockchain which is customized as per the requirement. It has 
been observed that in a scenario with multiple root users 
working simultaneously on same system, transparency 
between multiple root users can be compromised if some 
appropriate changes are made in few lines containing the 
history, Hence, with the help of Ethereum blockchain and log 
monitoring using log monitors, it is much easier to track the 
intrusions to identify the source of unauthorized access to logs 
or changes in them. 
 
Key words : Linux Security, Blockchain, Smart Contracts, 
Ethereum, Linux Vulnerabilities 
 
1. INTRODUCTION 

In a decentralized system, data is maintained independent of 
any central hub, unlike centralized systems that govern the 
whole network. This leads to a system that is less vulnerable 
to hacking attempts that can be managed from any specific 
location, as the system in itself is a cluster rather a specific 
node. This makes it almost impossible to bring down the 
entire redundant cluster. Also, any failure to any single node 
restricted to a specific locations makes the uptime of the 
whole network more effective. In a decentralized system, data 
is distributed as well as synchronized on several locations and 

 
 

this redundancy adds up to the increased difficulty to hack the 
entire system. Due to distributed networks, people don’t have 
to put their focus and faith on a single central authority. 
Moreover, there is a very less probability of a single point of  

 

 
 

Figure 1: Various applications of Blockchain 

failure due to its characteristics which makes the system more 
integral. In a blockchain [1], individual records, called 
blocks, are linked together in a single list, called a chain. It is 
used for recording transactions made with cryptocurrencies, 
for example Bitcoin, and have many other applications. 
Figure 1 shows various already existing solutions using 
blockchain. In a blockchain, each hash is calculated and 
verified, making it more trustworthy. Since all miners are 
involved in the evaluation and commit process, the 
blockchain systems have high data integrity. The underlined 
peer-to-peer system makes the blockchain a cost effective 
solution for a distributed environment. An important 
component of the blockchain is a Smart Contract, an account 
that is managed by code and easily programmable. Smart 
Contracts [3] are self-verifying due to automated possibilities, 
self-enforcing when the rules are met at all stages and 

 
Linux Security using Blockchain 

Anmol Mishra1, Dr. Charu Gandhi2, Mayank3, Aman Sharma4  
1Jaypee Institute Of Information Technology, India, anmolmishra.jiit@gmail.com 

2Jaypee Institute Of Information Technology, India, charu.gandhi@jiit.ac.in 
3Jaypee Institute Of Information Technology, India, mayankapex3@gmail.com 

4Jaypee Institute Of Information Technology, India, amanharitsh123@gmail.com 
 

 

 



Anmol Mishra et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3776  – 3782 

3777 
 

 

tamper-proof, as no one can change what’s been 
programmed. Security and Privacy via Optimised Blockchain 
[4] also supports for IoT based computing architectures as 
well. Lightweight scalable blockchain is one of the future 
application of blockchain as well which can help in 
communication in a network with limited bandwidth as well. 
International roaming services optimisation [5] is also an 
application of blockchain and smart contracts. Procurement 
fraud [6] is also an application of blockchain as well. 

Figure 2: Working of Smart Contract [7] 

Figure 2 show above reflects the basic working of the Smart 
Contract. One of the popular blockchain based platform these 
days is Ethereum [8] Blockchain, which allows blocks to have 
code snippets that can take care of the transactions and helps 
to control the system more efficiently than the earlier version, 
Blockchain 1.0. Since, the attack mechanism is evolving in 
technological ecosystem, even one of the most secure 
computers that run on Linux is not secured. Vulnerabilities 
and threats can be found on machines and if they are 
exploited, they will create huge risks. Any penetration to the 
system can be made from inside or outside the organization 
and their attacks can be either active or passive. An attack that 
attempts to alter the system resources or affect their operation 
is called an active attack. Such attack compromise the system 
Integrity and Availability. The denial of service [9] is a very 
popular attack these days. An attack that attempts to learn or 
make use of information from the system is called a passive 
attack. It does not affect the system resources. Hence, it 
compromises the confidentiality. For example, the 
Wiretapping using the Wireshark [10]. Thus, the security of 
the Linux logs can be insured by hosting them on a 
decentralized ethereum blockchain. This is achieved by using 
a daemon that continuously monitoring the log files. 
Whenever a change is made, it creates a block on the existing 
blockchain. The daemon is immutable, hence, even a root 
user cannot delete it to evade the effect. The intrusions can be 

detected by a governing authority by simply checking the 
various blocks generated. This paper is organized as follows. 
Literature Survey is described in the Section II. The 
experimental setup is explained in Section III. Section IV 
elaborate the experimentation done and various outcomes. 
Section V concludes the paper and Section VI discusses the 
future scope of the work done. 

2. LITERATURE SURVEY 
 
The various Linux vulnerabilities like privilege escalation, 
Linux kernel hash algorithm exploitation i.e. time complexity 
of algorithm shoots up to O(n2) from O(n) and IP Spoofing 
have been discussed in [11]. Some Linux distributions have 
default passwords which are vulnerable in reference to a guest 
account. This enables attackers to gain unauthorized access 
via secure shell or telnet service, which leads to the loss of 
integrity and purge of confidentiality. The process of 
Operating System hardening helps in securing a system by 
decreasing the number of accessible vectors of attack. It 
involves the dismissal of unwanted software like bloatware, 
unwanted usernames or logins and the disabling of unwanted 
services. Furthermore, there are some measures of hardening 
the Linux operating system. It mainly comprises of applying a 
patch to the kernel into the upstream, closing unwanted open 
network ports from iptables or other user firewalls, and 
setting up intrusion-detection/ prevention systems like snort. 
Various vulnerabilities like kernel omits, access ok checks 
and miss applying the functionality like get user are discussed 
in [12]. These do not verify the user entered indexes or other 
system variables which ensure the boundary of user-space is 
not crossed and permission check. The exploitation of such 
vulnerability is directly proportional to the policy adopted by 
security team, like code execution under presumptions 
(CVE2010-4347). Memory tagging systems, such as Raksha, 
can identify the untrusted input in case, the kernel tries to use 
these input and it is not from the required network or user 
process. With SecVisor, certain types of exploits are restricted 
which rely on taking over kernel control flow. In [13] the 
various common types of Linux vulnerabilities which may 
lead to attacks like Race Condition, memory corruption, 
denial of service, infinite loop, Integer Overflow, Null Pointer 
Dereferences, Divide by Zero, Use After Free, information 
disclosure, Buffer Overflow are defined using CVSS. The 
vulnerability score defined by CVSS can be used as reference 
to analyses the impact and severity of threat. The developers 
can prioritize their responses accordingly. Segmentation 
faults are the result of null pointer dereferences or bad 
memory access inside the kernel space. Divide by Zero is an 



Anmol Mishra et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3776  – 3782 

3778 
 

 

error thrown by the operating system during division when 
the divisor is zero. As a reason for this mistake, the program 
continues to use the free pointer. Denial of service overflow is 
a common scenario which an attacker tries to generate since 
the request for a process is never expected to be fulfilled. The 
race condition is the processing of instructions in incorrect 
order between processes. Its output is dependent on sequence 
of execution, which creates loss of integrity. In reference to 
the Common Vulnerability and Exposures [14] a study of 157 
cases mentioned in CVE was conducted. Various dimensions 
of the file system were taken into consideration to include 
common vulnerabilities based on causes and methods of 
implementation and its way of mitigation. A file system is 
prone to Denial of Service (DoS), system crashes, data leaks 
and the entire lockdown of the system. The file system in 
Linux is a composition of inodes that is similar to file pointer 
reference in Linux kernel which once compromised makes 
the whole file system easy to break. Moreover, if the memory 
objects are not freed, situations like memory leaks are easily 
available to exploit. Since an I/O call scheduler can reorder 
inode blocks, data rearrangement is easily possible, breaking 
the integrity of the file system model like JBD2. For 
optimization, kernel page cache is taken into consideration 
and page cache can block the file accesses as reported in 
CVE-2015-8839, page faults are increased by at least 35% 
than usual degrading the performance. The authors [15] 
discussed Linux Network Security and various network 
threats and vulnerabilities in great depth. The Physical and 
Application Level Security is also a major concern nowadays, 
along with the secured Operating System and Servers. 
Network logs help in securing the system as they can provide 
vital information about the network access. OpenSSH is still 
vulnerable to attacks and people doing some malicious 
activities and deleting the bash logs to erase the whole activity 
is a major concern. Another major problem discussed in this 
work the DNS Server. Hackers can attempt a DDoS attack on 
the DNS Servers (they are centralized as of now) which will 
create websites being down due to lots of traffic. The 
blockchain solution can provide a distributed DNS Server 
which will prevent DDoS attacks. The authors [16] presented 
research on Smart Contract developers and trending topics on 
analyzing this over StackOverflow. They found various use 
cases, security threats, blockchain in education and various 
other smart contract terminology. As the blockchain provides 
reliability, integrity, audit, and Bitcoin, Ethereum provides 
the distributed computational platforms, developers are more 
delving in this field to find the solution to problems using 
blockchain. Some issues are still there in the smart contract, 
one of them being some of the security vulnerabilities but as 

the community is growing most of these vulnerabilities are 
getting solved. The authors [17] made a hypervisor and 
named it SecVisor which helps in code integrity for the 
kernels of the Operating System. For the entire lifetime, 
hypervisor allows only those code to be executed at kernel 
which are user-approved. To prevent the system against 
attacks like code injection, etc this system will be helpful. 
Users will set own user policy to check against the code 
entered in the kernel and the SecVisor will check every time 
user enters a new code in the OS against the policy. The 
system checks that the code once checked and verified cannot 
be edited by the attacker at any later stage. There are currently 
three ways in which an attacker can inject attacks into the 
system:  
 
1) Modularization Support: Allows privileged users to add 
code to the existing, running kernels.  
2) Software Vulnerability: An attacker can exploit the 
software vulnerability.  
3) Capable Devices: Capable Devices can write into the kernel 
memory. An attack was demonstrated by Becher.  
Due to the increase in the complexity and size of the kernel 
OS, security vulnerability increases exponentially. The 
drawback of the SecVisor is that they are not able to prevent 
attacks done via control-flow. The authors [18] analyzed 
more than 80,000 security advisories. They collected data and 
information on known vulnerabilities and analyzed discovery 
date, disclosure date, exploit date and the patch availability 
date. They analyzed the data statistically and provided new 
parameters for distribution functions to extend the study. For 
security investments, few business decisions need to be taken 
and a model need to be built to control risk exposure. They 
also provided a tool to check the security and differentiate 
between patch exploit and patch-availability. The first 
security-oriented coding guidelines for Linux were developed 
in [19]. They also found around 290 Common Vulnerability 
and Exposures (CVE). The Linux Kernel development team 
use security practices like precondition validation, ensuring 
atomicity, capability validation, error handling, freeing 
resources, zeroing memory, etc. On the basis of the security 
advisory, the team developed a new mechanism for solving a 
security issue and to track the patch of the issue. The 
guidelines included various categories like, System Software 
Design Guidelines, General Code Guidelines, Privileged 
Code Guidelines, Concurrent/Parallel Code Guidelines, 
Performance Coding Guidelines, Resource Management 
Code Guidelines and Debug/ Log Code Guidelines. After 
analyzing the literature, the various Linux vulnerabilities as 
identified are privilege escalation, Linux kernel hash 



Anmol Mishra et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3776  – 3782 

3779 
 

 

algorithm exploitation, IP Spoofing Vulnerability, Null 
Pointer Dereferences, Divide by Zero, Use After Free, Infinite 
Loop, Double Free, Buffer Overflow, Integer Overflow, Race 
Condition and Array Index Error. The privilege escalation 
vulnerability has a sub-domain of privilege sharing, which 
has an undetected vulnerability. It has been observed that in a 
scenario with multiple root users working simultaneously on 
the same system, transparency between multiple root users 
can be compromised if some in-appropriate changes are made 
in the system and Linux logs are tampered to hide the 
changes. The solution we proposed will store four types of log 
files into the smart contract so deleting the logs will not be 
possible for now. The power to deploy general-purpose 
computational code into a decentralized and trustworthy 
system attracted us to use blockchain as the right fit for our 
work.  
 
3. EXPIREMENTAL DESIGN 

 
The findings from the literature reflect that the current 
standing of the Linux system has its vulnerabilities and no 
existing solution is available to keep them in check. Hence by 
using the ethereum blockchain in conjunction with logs 
monitors it is possible to secure one of the current 
vulnerabilities i.e. Privilege Escalation. Here the ethereum 
blockchain acts analogous to immutable databases. Privilege 
Escalation is an act of exploiting a design flaw, bug, or 
configuration oversight in software application or operating 
system to obtain elevated access to resources that are normally 
protected from user or an application. The solution to this 
problem is achieved by developing an application that can 
support the whole architecture under a hood. Moreover, the 
application comprises of the main four components:  
• Main application - The main application acts as an 
intermediate between collecting the data and writing it into 
the blockchain. It initiates the write queue and all the threads 
that watch over the log files for any new appended logs. It also 
contains hash addresses of the smart contracts on the 
blockchain and other important parameters like the path to 
abi.json file which has been generated using online solidity 
IDE named Remix. The working of main application is 
depicted in figure 3.  
• Personal Ethereum blockchain - Ganache [20] is a one click 
Blockchain solution provided by Truffle Suite. After the 
execution of the Main application, Ganache blockchain is 
updated by the numerous transactions that are taking place 
every second. It continues until the total available logs are 
transferred to the blockchain.  

• Log grabbers - Log grabbers are responsible for collecting 
important logs throughout the system and will place them on 
a write queue. All the threads monitor different files for the 
changes made and the log grabbers reflects it. We have used 
python [21] for log monitoring. It is a method to generate or 
keep logs in the blockchain to prevent any mistakes.  
• Abstract Functions - They act as a wrapper around the web3 
API [22] for writing and reading data from the blockchain. 
This wrapper API is the bridging element between the write 
queue and Ganache blockchain 

4. METHODOLOGY  

Main Application: This is a multi-threaded application that is 
coded in Python3. The application has three main parts: 

 i) A Daemon [23] for monitoring files and grabbing the latest 
log. Daemon is a process that runs in the background and 
performs a specified operation at predefined times or in 
response to certain events. Here the daemon is coded using 
python file handling function and multi-threading modules. 
A thread is initialized by the main application for each log file 
which writes a newly appended log to the work queue. 

ii) Wrapper around web3.py API [22] to read and write data 
from the blockchain.Web3.py is a python library for 
interacting with ethereum. Its API is derived from the 
Web3.js JavaScript API and should be familiar to anyone who 
has used web3.js. 
 
iii) Menu-driven program to start monitoring and collecting 
the changes.  
A work queue is set up between all the running threads. As 
soon as new logs are appended threads register new data onto 
the work queue. Another writer thread continuously monitors 
the work queue and sends new data to the blockchain. The 
main application also provides an on-demand functionality of 
reading data from the blockchain using the initial menu. 
Figure 3 represents workflow of main application and Figure 
4 depicts the Main Application Dashboard. The figure 5 
represents the updated logs being written on the blockchain. 
The blockchain used to realize the solution is created using 
Ganache [21]. It is a one-click blockchain solution provided 
by Truffle Suite. It is a personal blockchain for ethereum 
development that can be used to deploy contracts, develop 
applications, and run tests. It is available as a desktop 
application and provides 10 addresses and ethereum test 
accounts to use with a huge amount of ether. It connects well 
with Online Remix IDE [22], which makes it a perfect 
solution to deploy smart contracts on the go. The smart 
contracts for designing blockchain are created using Solidity 
[25]. Solidity is used mainly due to its advantages like 



Anmol Mishra et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3776  – 3782 

3780 
 

 

security, less testing required, easy to read, easy to implement, 
bounds and overflow checking, strong typing, decorators 
available. Logs are generated and they act as one of the 
transaction commodities i.e. any transaction in the block 
occurs only when the log is changed. The log changes lead to  

 
Figure 3: Workflow of Main Application  

 

 
 

Figure 4: Main Application Dashboard 
 

 
 

Figure 5: Writing Data to Blockchain 
 

a generation of blocks forming a blockchain. Smart Contracts 
are written using solidity and act as a schema to store data 
sent from the Main application to the blockchain. Figure 6 
depicts Smart Contract created using Solidity. To compile 
and deploy smart contracts on personal blockchain created 
using Ganache, an online Remix IDE [24] is used. It 
generates all necessary information like address of deployed 

contract, abi.json, etc. after the deployment of the Smart 
Contract. Figure 7 shows the Remix IDE used to compile and 
deploy the Smart Contract.  

 
 

Figure 6: Solidity-Smart Contract 
 

Figure 8 depicts the process of securing various Linux logs 
using the main application, blockchain and Smart Contracts 
as defined above.  

 
 

Figure 7: Remix IDE 

 
Figure 8: Process of securing logs 

 



Anmol Mishra et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3776  – 3782 

3781 
 

 

From the experiment, the various vulnerabilities in action 
among multiple root users in a Linux environment were 
found. The logs stored in /var/log/auth.log, /.bash history, 
/var/log/httpd/ and /var/log/dmesg were being secured by 
constant monitoring. Whenever other user make a change in 
the log file at any point of time, a transaction was generated. 
Due to fix architecture of files i.e. filesystem in Linux, these 
files are independent of the Linux distribution and solution 
can be widely acceptable. The proposed solution makes a 
transaction in blockchain whenever logs are altered. Thus, 
preventing any unauthorized user to escalate to the root level 
and hence, using the privileges of the root user. 
 
5. CONCLUSION 

This paper outlines the working of a smart contract based 
ethereum system and its use to tackle various security 
vulnerabilities. The application developed in this work can be 
used for securing various log files like secure shell logs, disk 
logs, network logs, etc. of a Linux system by moving them on 
a decentralized blockchain. The proposed solution also 
improves the transparency of the system. 

6. FUTURE SCOPE 
Since we can mine the log files and put that on the distributed 
blockchain solution, our future goal is to find more 
vulnerabilities present in the Linux system and kernel and try 
to solve them using blockchain. There is also a scope for 
securing specific ports and sockets for the system. This will be 
explored in the future research. 
 
REFERENCES 
 
1. Techterms.com. 2020. Blockchain Definition. [online] 

Available at: https://techterms.com/definition/blockchain 
[Accessed 18 March 2020].  

2. Medium. 2020. 6 Emerging Categories For Blockchain 
Use Cases. [online] Available at:  
https://medium.com/@sergiomarrero/6-emergingcategor
ies-for-blockchain-use-cases-4650f824d130 [Accessed 19 
March 2020]. 

3.  Blockgeeks. 2020. What Are Smart Contracts? 
[Ultimate Beginner’S Guide To Smart Contracts]. 
[online] Available at:  
https://blockgeeks.com/guides/smart-contracts/ 
[Accessed 18 March 2020]. 

4. Monica Thomas and Dr. Varghese S Chooralil “Security 
and Privacy via Optimised Blockchain”, Published in 
International Journal of Advanced Trends in Computer 
Science and Engineering (IJATCSE), ISSN 2278-309, 
Volume 8, No. 3, May- June 2019  
https://doi.org/10.30534/ijatcse/2019/14832019 

5. Mark Renier M. Bailon, Lawrence “International 
Roaming Services Optimization Using Private 
Blockchain and Smart Contracts”, Published in 
International Journal of Advanced Trends in Computer 
Science and Engineering (IJATCSE), ISSN 2278-309, 
Volume 8, No. 3, May-June 2019 
https://doi.org/10.30534/ijatcse/2019/32832019  

6. A. Thio-ac, A. K. Serut, R. L. Torrejos, K. D. Rivo, J.  
Velasco “Blockchain-based System Evaluation: The 
Effectiveness of Blockchain on E-Procurements” 
Published in International Journal of Advanced Trends in 
Computer Science and Engineering (IJATCSE), ISSN 
2278-309, Volume 8, No. 5, September-October 2019 
https://doi.org/10.30534/ijatcse/2019/122852019  

7. Ganpatigraphics.com. 2020. Bitcoin Related Jobs 
Ethereum Watch Contract – Ganpati Graphics. [online] 
Available at:  
http://ganpatigraphics.com/library/nem-market/bitcoin-r
elated-jobsethereum-watch-contract/ [Accessed 19 March 
2020]. 

8. ethereum.org. 2020. Home — Ethereum.Org. [online] 
Available at: https://ethereum.org/ [Accessed 19 March 
2020].  

9. En.wikipedia.org. 2020. Denial-Of-Service Attack. 
[online] Available at:  
https://en.wikipedia.org/wiki/Denial-of-service attack 
[Accessed 19 March 2020].  

10. Wireshark.org. 2020. Wireshark · Go Deep.. [online] 
Available at: https://www.wireshark.org/ [Accessed 19 
March 2020].  

11. Niu, Shuangxia Mo, Jiansong Zhang, Zhigang Lv, Zhuo. 
(2014). Overview of Linux Vulnerabilities. 
10.2991/scict-14.2014.55. 

12. Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, 
Nickolai Zeldovich, and M. Frans Kaashoek. 2011. Linux 
kernel vulnerabilities: state-of-the-art defenses and 
open problems. In Proceedings of the Second 
Asia-Pacific Workshop on Systems (APSys ’11). ACM, 
New York, NY, USA, Article 5, 5 pages. 

13. Supriya R., Geetika M., Shagun ”Analysis of Linux 
Kernel Vulnerabilities ” Published in Indian Journal of 
Science and Technology (IJST), ISSN: 0974-5645, Vol 
9(48), Issue: 10.17485, December 2016.  
https://doi.org/10.17485/ijst/2016/v9i48/105819 

14. Miao Cai, Hao Huang, and Jian Huang. 2019. 
Understanding Security Vulnerabilities in File 
Systems. In Proceedings of the 10th ACM SIGOPS 
Asia-Pacific Workshop on Systems (APSys ’19). ACM, 
New York, NY, USA, 8-15.  

15. Mukesh Kumar Mishra and Dinesh Goyal, ”Security 
Analysis in Open Source Linux Network”, 
International Journal of Computer Science and Network 
Security, Vol.14, No.8, August 2014. 

16. Afiya Ayman, Amna Aziz, Amin Alipour, Aron Laszka,” 
Smart Contract Development in Practice: Trend, 
Issues, and Discussions on Stack Overflow”, arXiv: 
1905.08833v1[cs.CY] May 15, 2019. 



Anmol Mishra et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3776  – 3782 

3782 
 

 

17. Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. 
2007. SecVisor: a tiny hypervisor to provide lifetime 
kernel code integrity for commodity OSes. In 
Proceedings of twenty-first ACM SIGOPS symposium on 
Operating systems principles (SOSP ’07). ACM, New 
York, NY, USA, 335-350. 
https://doi.org/10.1145/1294261.1294294 

18. Stefan Frei, Martin May, Ulrich Fiedler, and Bernhard 
Plattner. 2006. Large-scale vulnerability analysis. In 
Proceedings of the 2006 SIGCOMM Workshop on 
Large-scale attack defense (LSAD ’06). ACM, New York, 
NY, USA, 131-138. 

19. Mokhov S.A., Laverdiere MA., Benredjem D. (2008) 
Taxonomy of Linux Kernel Vulnerability Solutions. In: 
Iskander M. (eds) Innovative Techniques in Instruction 
Technology, E-learning, E-assessment, and Education. 
Springer, Dordrecht.  

20. Truffle Suite. 2020. Ganache — Truffle Suite. [online] 
Available at: https://www.trufflesuite.com/ganache 
[Accessed 18 March 2020]. 

21. Python.org. 2020. Welcome To Python.Org. [online] 
Available at: https://www.python.org/ [Accessed 19 
March 2020]. 

22. Web3py.readthedocs.io. 2020. Web3.Py — Web3.Py 
5.7.0 Documentation. [online] Available at: 
https://web3py.readthedocs.io/en/stable/ [Accessed 18 
March 2020].  

23. En.wikipedia.org. 2020. Daemon (Computing). [online] 
Available at: https://en.wikipedia.org/wiki/Daemon 
(computing) [Accessed 18 March 2020].  

24. Remix.ethereum.org. 2020. Remix - Ethereum IDE. 
[online] Available at: https://remix.ethereum.org/ 
[Accessed 18 March 2020].  

25. Solidity.readthedocs.io. 2020. Solidity — Solidity 0.6.4 
Documentation. [online] Available at: 
https://solidity.readthedocs.io/en/v0.6.4/ [Accessed 18 
March 2020]. 

 
 
 

 
 


