
 Anas M. Al-Oraiqat et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 6995 –
7005

Model Optimization for A Dynamic Rail Transport System on
an Asymmetric Multi-Core System

Anas M. Al-Oraiqat*1, Alexander Y. Ivanov2, YuriyA. Ivanov2

*1Onaizah Colleges, College of Engineering & Information Technology,
Department of Cyber Security

Onaizah, Kingdom of Saudi Arabia, P.O. Box 5371
anasoraiqat@oc.edu.sa

2Donetsk National Technical University, Department of Computer Engineering,Ukraine
 alex.ivanov.35a@gmail.com, e-mail: yuriy.o.ivanov@gmail.com

ABSTRACT

The problem of optimization of the rolling dynamics
model is considered. That providing safe movement at
high frequency when interacting with the railway.
Moreover, allowing to evaluate the dynamic parameters
when designing new and modernizing existing
locomotives. The object of this research is a rail transport
dynamic system model. The article subject is the
optimization methods of the real-time software model. The
article's purpose is to increase the efficiency of the digital
hardware in the rolling stock loop model by optimizing the
organization of the computing process. Furthermore, we
take into account the different-frequency parameters of the
model. Also, based on the principles of design the
microarchitecture of modern multicore systems.
The mathematical model analysis of the object made it
possible to attribute it to the class of hard real-time
systems. The computation of the model phase variables
with different frequencies is necessary to optimize the
simulation time of the train movements and is performed
by splitting the original algorithm into parallel threads.
The NP-problem of nonlinear integer schedule
optimization, which is solved by the metaheuristic
algorithm, is posed. The developed planning algorithm
and the cyclic schedule implementation for the model of a
dynamic real-time object consider microarchitecture
solutions of symmetric multiprocessor systems with shared
memory and methods for optimizing software tools.
The experiments confirmed the operability of the
optimized model. Also, allow us to recommend it for
practical use in studying objects and determine the
dynamic force of trolley structural elements during
operation. These processes are necessary for the optimal
choice of the scheme and rolling stock equipment
parameters, as well as to reduce the dynamic forces acting
on the structural elements of the train and the rail track.
Prospects for further research may consist of optimizing
the distribution of program threads by the criterion of
connectivity of the model phase variables, as well as an

experimental study of the proposed methods while
expanding the class of problems being solved.
Analysis of the optimized model simulation results, using
cyclic schedules shows the correspondence of the obtained
simulation results to the standard. The main advantage of
the model is the increase in productivity when performing
data processing by reducing the processor time. The
optimized cyclic schedule algorithm of the semi-natural
modeling platform is used for the subsequent development
of the control system in real and accelerated time scales.

Key words: real-time dynamic model; multi-core system;
optimizing; rolling stock.

1. INTRODUCTION

The main tasks of the rail vehicle dynamics are to study
the processes of oscillations caused by the interaction of
the railway trolley (cars, locomotives) and tracks [1].When
solving them, the Hardware/Software in the Loop (HIL)
technology is used, which allows testing control
algorithms together with the control object model in the
Real-Time(RT) mode at the initial stages of design
[2].Besides, software/hardware simulation provides
constant verification of the model-oriented process design,
including technical specifications, modeling, and rapid
prototyping[3]of the elements' optimal parameters of the
control system [4].
The RT model under consideration belongs to the class of
models whose mathematical description contains systems
of stiff Differential Equations (DEs) [5].The phase
variables frequencies of hard RT models vary over a wide
range. Providing such characteristics requires a special
organization of computations when creating RT models
[6].
To increase the efficiency of controlling the process of
modeling the dynamics of rail vehicles, high-performance
multi-core Chip Multi-Core (CMC) processors,
asymmetric multi-core (AMC), and distributed simulators
are used. When designing a parallel multi-threaded model,

ISSN 2278-3091
Volume 9, No.5, September - October 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse18952020.pdf

https://doi.org/10.30534/ijatcse/2020/18952020

 Anas M. Al-Oraiqat et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 6995 – 7005

6996

the hardware platform, the data model corresponding to
the code architecture and memory organization are taken
into account [7].The microarchitecture of modern multi-
core chips supports hardware shared memory. In a system
with shared memory, system performance is determined
by the cache hierarchy, which allows it to base on the
principles of data-oriented design [8]. Task scheduling
policies used in modern concurrent programming
environments may not improve concurrent application
performance or provide RT mode. The optimal planning of
a hard dynamic system model for the CMC architecture is
based on solving the NP-task of integer programming.
When preparing an information model, it is enough to use
the static load balancing method to distribute the
computational load for the system integrating parts of
Ordinary Differential Equations (ODE) between
processors.
The article's goal is to optimize the software model of the
RT dynamic system in the architecture of a standard
CMC-based system. Whither all cores of the parallel
architecture have the same performance.
The second section discusses the features of the
mathematical model of the HIL rail transport system. In
the third section, the analysis of known tools for studying
the model is carried out, the criterion for the existence of
real-time, the choice of the structure of parallel hardware
is substantiated, and the problems encountered during
optimization are indicated. Section 4 proposes a method
for implementing multithreading during parallelization
using flow blocks and optimization of the main stages of
the organization of computations in the model. Section 5
presents the results of experiments into consideration, the
microarchitecture features of modern computers. Section 6
is devoted to conclusions.

2. TASK FORMULATION

When moving, the locomotives make complex linear and
angular movements. The study is divided into vertical,
transverse horizontal movements and longitudinal
vibrations in the train [9].The locomotive’s mechanical
model, the design scheme that is shown in Figure 1, is
considered as a three-solid system.

Figure 1: The wagon (locomotive) mechanical model in the ZX

plane

Accepted Assumptions:
1. The carriage mass centers and the trolley coincide with

their geometric centers.
2. Irregularities of both rail tracks are assumed to be the

same.
3. Stiffness values and damping factors are the same for

different wheelsets.
4. Elastic and dissipative forces act along the axis of the

corresponding element.
5. The spring and the hydraulic vibration damper parallel

to it are fixed at one point.
6. The wheelset and the mass of the path interacting with

it do not take into account the stiffness of the wheel-
rail contact and move continuously.

As a perturbation in the study of the model, geometric rails
of the rails are taken. For the generalized coordinates of
the model area translational movement of the entire system
along the axis of the path, vertical movements of the

carriage kz , trolleys 21, zz , carriage turning angles k ,

and trolleys T (1 and 2).

To describe the vertical vibrations of a locomotive with
springs and dampers, a mathematical model is used that
includes 38 second-order DEs [10].The system
linearization leads to the main phase coordinates, and its
order decreases to the second. The vertical oscillations
motion’s equations of a locomotive with two-tier
suspension are described by the following DEs [11].

Carriage vibration equations:
݉ ∗ ᇱᇱݖ + ܾ ∗ (2 ∗ ᇱݖ − ଵᇱݖ − ଶᇱݖ) + ܿ ∗ 2

∗ ݖ) − ଵݖ − (ଶݖ = 0

(1)

ܬ ∗ ߮ᇱᇱ + ܽ ∗ ܾ ∗ (2 ∗ ܽ ∗ ߮ᇱ − ଵᇱݖ + ଶᇱݖ)
+ܽ ∗ ܿ ∗ (2 ∗ ܽ ∗ ߮ − ଵݖ + (ଶݖ = 0

(2)

Oscillation equations of the first trolley:

்݉ ∗ ଵᇱᇱݖ − ்ܾ ∗ ᇱݖ) − ଵᇱݖ + ܽ ∗ ߮ᇱ) − ܿ
∗ ݖ) − ଵݖ + ܽ ∗ ߮) + 2 ∗ ்ܾ ∗ ଵᇱݖ + 2 ∗
்ܿ ∗ ଵݖ = ்ܾ ∗ ଵᇱߟ) + ଶᇱߟ) + ்ܿ ∗ ଵߟ) + (ଶߟ

(3)

)21()'
2

'
1([

1
22'

1
22''

1

TcTbTa

TcTaTbTaTJ (4)

Oscillation equations of the second trolley:
்݉ ∗ ଶᇱᇱݖ − ்ܾ ∗ ᇱݖ) − ଶᇱݖ + ܽ ∗ ߮ᇱ) − ܿ

∗ ݖ) − ଶݖ + ܽ ∗ ߮) + 2 ∗ ்ܾ ∗ ଶᇱݖ + 2 ∗ ்ܿ
∗ ଶݖ = 	 ்ܾ ∗ ଷᇱߟ) + ସᇱߟ) + ்ܿ ∗ ଷߟ) + (ସߟ

(5)

)43()'
4

'
3([

22'
12''

2
22

TcTba
TcaTbaTJ

T

TT

(6)

with the following notations and their meanings:
mk = 57tcarriage weight, Jk = 70 carriage moment of

 Anas M. Al-Oraiqat et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 6995 – 7005

6997

inertia, mT = 9ttrolley weight, aT= 3,725 m half carriage
base, cT = 3040 kN/m, bT = 30 kN*s/m stiffness and
damping in the first tier (trolley), ck = 2660 kN/m, bk = 100
kN*s/m stiffness.And damping in the second tier
(carriage),zi, zi

’, zi
’’, φk, φk

’, φr
’’ generalized coordinates and

their derivatives concerning time, ηj(t)indignation from the
side of the path underj wheelset. The external kinematic
disturbance of the system is unevenness on the side of the
path.As a perturbation, we used the averaged geometric
model of roughness [11], described by the following
equation:

)2sin(2)sin(1)(wtAwtAt (7)
whereА1andА2the amplitudes of the first and second
harmonics of the sinusoidal irregularities along the length
of the rail link, and are selected depending on the type and
condition of the track.Roughnesses of rails for the system
with a transport delayτ = 2ܽ/v between trolleys is
determined:

)/2)(()(
)/2)(()(
)/2)(()(

)(sin)(
/2

2114

213

112

01

Vaattntn
Vattntn
Vattntn

wtntn
LVw

(8)

)./2)(()(
)/2)(()(

)/2)(()(
)(cos)(

211144

21133

1122

011

Vaattntn
Vattntn

Vattntn
wtwntn

The displacement i and acceleration
'
i are determined

with the delay at the moments Va /2 1 , Va /2 2 ,

 Vaa /2 21 for the corresponding wheels, where 1a
=0.005m and 2a =0.002m are the amplitudes of flatness.
The solution of a simplified system of DEs can be
obtained analytically. However, given the subsequent
development and addition of the model with the
introduction of nonlinear functions, more efficiently are
performed by modeling. An analysis of the solutions
shows that the natural oscillations of the masses of the
wagon and the trolley are the sum of two harmonic
oscillations: high-frequency mass oscillations on a rail
base and carriage vibrations on springs. The second type
frequencies of oscillation vary in the range of 0.2-2.6 hertz
and significantly lower than the frequencies of the first
type of oscillation 11.2-21.7 hertz [12]depending on the
weight of the locomotive, the load weight, carriage type,
and the stiffness of the spring set of the carriage. Thus, the
presented object is multi-inertial with different directive
periods for computing the right-hand sides of the equations
of the RT model. Moreover, for this object the proposed
optimization methods are relevant.

The execution time optimization of the object parallel
program model under consideration should include the
steps:
1. Choosing a hardware structure with a modern

microarchitecture for developing a data model.
2. Organization of the computational process of a system

model numerical integration and resource allocation.
3. Creation and research of a simulation program into

consideration, the data decomposition, and operating
system features.

3. RELATED WORKS

The standard for software verification of rail locomotive
models is currently the Manchester test [11]. Methodology
for evaluating mathematical models USDOTVolpe
National Transportation Systems Center [13].One of the
most functional and widely used in the industry is the
ADAMS/Rail system [14].The closest tasks to be solved
for studying longitudinal vibrations of locomotives are
works [15, 16].This work, in addition to optimization, is
distinguished by into consideration, the locomotive’s
vibrations concerning the y-axis (galloping), which affects
the ergonomic characteristics of the train.
A necessary condition for the existence of a cyclic
schedule RT:∑ (߬ ܶ) ≤ 1	⁄ே

ୀଵ [17],set policy terms ܶand
computation times ߬for N phase variables, determines the
choice of the modeling system architecture.If the condition
is not fulfilled or complication (increase ߬) of the model is
expected in the future, it is advisable to use the
parallelization of the program algorithm. For models with
long policy terms ܶand small ߬RT can also be provided on
a single-processor system.
The choice of a universal CMC for modeling is most
consistent with the structure of the HIL system [18], in
which digital processors behold the general memory
address space and exchange variables on a general bus.
Also, support for such a subclass of SM-MIMD systems,
in the Flynn classification, is available in leading operating
systems. Into consideration, the different inertia in the
model is based on hardware [19] and the special
organization of the computing process. Computations are
planned by static cyclic time schedules[20]that satisfy RT
conditions [21].
Organization of the computational process of a system
model numerical integration and resource allocation for
CMC is a mixed problem of non-linear integer
programming of NP- difficulties.To solve it, it is advisable
to apply the methodology of metaheuristic
algorithms[20]and, in particular, an artificial bee colony
[22].Along with algorithms (numerical integration) and
thread processing methods in parallel programming, it is
accepted [23]. The speed of high-performance applications
will be higher if all available cores of modern processor
systems are used and the main memory requests are

 Anas M. Al-Oraiqat et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 6995 – 7005

6998

executed in the nearest cache. In this case, the model
developer must take into allow the principles of parallel
programming and use one or several methods of the
OpenMP, MPI, POSIX, or Win32 API threads.
Using well-known low-level optimization methods:
compiling a program by an optimizing compiler, system
measurements, and profiling a program also improves the
overall performance of the model. Should be considered,
the modern programming systems for parallelism can
create models with unpredictable behavior due to data
races and locks [24]. The tasks solution with considering
the analysis of the related works will improve the
efficiency of the updated parallel model.

4. METHODS

Multithreading implementation methods used by Intel [25]
include analysis, development, implementation, and
program specialization. The evaluation criterion for
parallel RT software models is runtime. During
development, the program model is described in terms of
parallel control models and data-parallel utilization,
oriented to scientific applications may differ from general-
purpose architectures.

4.1. A Mathematical Model for Optimizing a
Computing Process.

Each RT model is unique and requires a sound
implementation of the modeling process. The main
influence on the organization of computations of the
program model is exerted by the particularities of solving
systems of hard ODEs that describe the object of study.
The HIL model of DEs [5] cyclically operates: entering
information into the digital part of the system, computing
each ith phase variable for integration over time ߬, and
outputting computed values to the hardware of HIL
models. The phase variables of a hard control system have
different frequencies. Also, they must be cyclically
computed with periods ܶ by parallel program threads.This
requires controlling the integration of N phase variables as
a static cyclic schedule with differing guide dates [26] at
each integration step. In models of important dynamic
systems that have been developed and used for a long
time, information on the intervals of work is known in
advance. The choice of parallel threads for model
development is explained as follows: threads of one
process are created with their context and have common
resources. Switching between threads is quick compared to
task switching, which takes about a thousand processor
cycles.
DE models are transformed into a system of first-order
equations. For numerical integration of phase variables in
threads, the Euler method is chosen. This minimizes the
computation time of the right-hand sides of the DEs
system and the memory amount in the inline substitution
case. Instructions going beyond the cache limits of the first

level L1i causes a significant decrease in performance,
much more than when processing data. For processors, the
execution time of instructions when leaving the L1i cache
is increased three times [27].It should also be noted, that
the second level L2 cache stores both code and data that
can claim the same cache lines, as a result of the
performance will drop when the L2 size is exceeded. Thus,
the proposed choice solves the problem of algorithmic
optimization.
The planning of numerical integration threads is carried
out based on the Earliest Deadline First (EDF)and
Proportional Fair (PF) approach [28]. The purpose is the
proportional parallel execution of all task threads during
the base period. In this case, the cyclic execution of the
computation thread of each phase variable over the entire
integration interval occurs with a constant frequency. The
Easy Release (ER) effect planning is achieved by dividing
the program threads into blocks. The proportional
execution idea of parallel flow blocks at the integration
step of the DE system is used in this work. For equable
execution of the entire thread, blocks should be executed
during time intervals of approximately equal length. To
control the computational threads of the dynamic system,
model Synchronous Data Flow (SDF) is used.
In the general case, for a multi-core system, the problem
arises from the program blocks’ optimal distribution of DE
integration threads into cores while providing RT, which is
a nonlinear integer optimization problem. Let the
executive part of the modeling system be characterized by
the following conditions: the computer performs M threads
with a period ܶ(݅ = 1,2, … following the time(ܯ,
sequence. The processing periods values of the threads can
be sorted in ascending order: ଵܶ < ଶܶ <. . . < ܶ . Each
thread needs processor time ߬(݅ = 1,2, … and each ,(ܯ,
thread must be executed before the next request arrives.
All threads must be executed once until the next thread
execution cycle arrives after the full period ܶ =
)	݈݁݅ݐ݈ݑ݉݊݉݉ܿݐݏ݈ܽ݁ ܶ), (ܶ 	 ∈ ܰ). Let ܮ	ܮ) ∈ ܰ)be
the duration of the cycle RT, during which a certain
fraction ∆	(0 < ∆≤ 1) of each thread is executed.Thus,
the execution of each thread will synchronize with the
value L. The window for executing the block of each
thread is defined as ∆߬.In this case, the execution of the
thread will be completed in ݇ = ቃ்

ቂ, RT-cycles,

where]ݔ[is the operation of the largest integer, which is
less than or equal to x. With the introduction of the RT -
cycle, the system replaces the periods of the threads with
values of ܶ

ᇱ, multiples of L and not exceeding ܶ :	 ܶ
ᇱ =

݇ܮ ≤ ܶ .As a result, the value of the full period ܶ
ᇱ =

)	݈݁݅ݐ݈ݑ݉݊݉݉ܿݐݏ݈ܽ݁ ܶᇱ) will also change. Then in

the complete cycle, there will be ݇ = ቃ ்

ቂ RT-cycles.

The computation scheme implementation in the CMC
system is complicated by the distribution of threads across
specific cores. The mathematical structure analysis of this

 Anas M. Al-Oraiqat et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 6995 – 7005

6999

problem allows us to attribute it to the problem of
combinatorial optimization [29].
To schedule the computational process of processing flow
blocks for a multicore system, a parameter that displays
the splitting of threads into groups is introduced [30].
Let be0 if i thread is not executed on the jth core:

,ݔ = ൜ 0, ݆	݊	݀݁ݐݑܿ݁ݔ݁	ݐ݊	ݏ݅	݀ܽ݁ݎℎݐ	݅	݂݅ − ,݁ݎܿ
	1, (9) 																																																	.݀݁ݏݏ݁ܿݎ	݀݁ݐݑܿ݁ݔ݁	݂݅

Based on the necessary condition for the existence of a
cyclic schedule RT, the load on each core cannot exceed
100%:

(∀݆)
߬,
ܶ
,ݔ ≤ 1

ெ

ୀଵ

 (10)

Moreover, each thread can run on only one core:

(∀݅)ݔ, = 1

ୀଵ

 (11)

When constructing a schedule, all M modeling threads are
considered:

ݔ, = ܯ
ெ

ୀଵ

ୀଵ

 (12)

Each RT-cycle in such a model has its period ܮ , which is
a natural number and cannot exceed the value of the
minimum period of the processed threads ܶ

min on the
j-core of the processor.The effectiveness of the entire
system, as a solver of the simulation task, is the sum of its
RT-cycles and is determined by the following function:

ܨ = ∑ ∑ 〈൬ఛ,ೕ
்
ᇲ −

ఛ,ೕ
்
൰ݔ,〉ெ

ୀଵ +
∑ ௫ೖ,ೕ
ಾ
ೖసభ

ೕ
൨

ୀଵ (13)

where(∀݆, ݅) ܶ
ᇱ = ܶ − ൨்

ೕ

The access time to the system memory at this stage is not
reviewed in the model, considering it to be a constant.
Thus, a model for optimizing a computational process, that
processes M threads of a simulation task on n cores, can be
written as follows:

arg minܨ൫ܮ , ,൯ݔ
ܮ(݆∀) ∈ ܰ, ܮ ≤ ܶ

(∀݆, ,ݔ(݅ ∈ ܼ, 0 ≤ ,ݔ ≤ 1

ܨ = 〈ቆ
߬,
ܶ
ᇱ −

߬,
ܶ
ቇݔ,〉

ெ

ୀଵ

+
∑ ,ݔ
ெ
ୀଵ
ܮ

൩

ୀଵ

(∀݆)
߬,
ܶ
,ݔ ≤ 1

ெ

ୀଵ

(∀݅)ݔ, = 1

ୀଵ

(14)

ݔ, = ܯ
ெ

ୀଵ

ୀଵ

(∀݆, ݅) ܶ
ᇱ = ܶ − ൨்

ೕ
,

where ݅ = ݆ .തതതതതതܯ,1 = 1,݊തതതതത.

The type of the proposed combinatorial model is
determined by the objective function F, which depends on
 ,.The first part of the sum F determines theݔ andܮ
increment of the processor usage due to a change of the
base periods of the threads, when the RT cycle is
introduced. The computation of ܶ

ᇱis a nonlinear function,
as well as a graph (hyperbole) of the change in the sum
second part of the objective function, that reflects a
decrease in CPU time for switching between threads with
increasing ܮ .In addition, the objective function of the
computation model for the CMC system includes Boolean
variables̅ݔ.The graph of the function F is a set of n-
dimensional nonlinear discrete planes, that number is
equal to the number of cores. Note that the overall
performance indicator will correspond not to the minimum
total of expenses on each core, but the sum of the
minimum. This is since different values of the RT cycle
period on each core are selected. At the same time, there is
no accumulation of expenses introduced by changing the
period when using the parameterܮ .
The main features of this optimization task are multi-
criteria and multi-extreme. The optimized function and the
range of its admissible values do not change in time. So
that it can be assigned to the class of statistical
combinatorial optimization problems. The problem of
nonlinear integer optimization is solved using the artificial
bee colony (ABC) algorithm [31], designed to find global
extrema of complex multidimensional functions.
The proposed parallelization of control using flow blocks
and the proposed organization optimization of
computations in the model, have the greatest effect on
increasing the productivity of the model. The
parallelization procedure is difficult to automate and
therefore, for complex and important dynamic systems, the
best results are achieved by manual programming
according to the logical structure of the model.

4.2. The Allocation of the Model System for the
Implementation.

Design solutions for creating a model should take into
account the implementation features of multithreading on
a hardware platform. The hardware scheduler of the
processor core queues microoperations on the
corresponding port for execution by processor modules
[32].With Hyper-Threading (HT) technology, threads from
one core can simultaneously perform several operations,
but cannot simultaneously save data from the core to the
L1d data cache via the Store Data port. This disadvantage
is absent in the separation of threads between different
physical cores. Further, when running threads on the core,

 Anas M. Al-Oraiqat et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 6995 – 7005

7000

buffered writes can over thread core write buffers. It will
block the cache until the data upload that caused the cache
miss is completed [33].To ensure the equable execution of
threads from both inputs, the HT core tries to balance the
values of its counters. Which tracks the number of clock
cycles of code execution from each of the inputs.
Additionally, one of the reasons for switching threads on
the core is missing the necessary data in the cache. While
the data will be read into the cache from the next memory
level, the core switches the pipeline and execution devices
to another input. If during the execution of the thread from
the second input a cache miss also occurs, then the core
will switch back to the first input. There may be a case
where the core will constantly switch between two inputs.
In this case, for each thread, it is required to reload the
cache filled with the previous thread, i.e. data in the cache
will be reloaded all the time. This applies to both the L1
cache and the L2 cache, as it will take longer to reload.
Thus, when developing a model of a hard RT dynamic
system to reduce the overhead of processor time, it is
proposed to hardly fix threads to physical poisons and
refuses to use the HT mode. To control HT technology,
each thread uses an API affinity mask, the
SetThreadAffinityMask function, wherein one logical bit
corresponds to each logical processor. To turn off HT on 4
logical processors of the platform, mask 0101b allows the
use of one logical processor in each physical core. While,
the Operating System (OS) will assign the computational
thread to the first logical core, and will assign an idle cycle
to the other and prevent migration of threads from busy
cores to free ones. In this case, the core will consider that
only one input should be executed, and will not switch the
pipeline between the two inputs.
To reduce memory access operations outside the processor
core, using the static load balancing method [7], pre-
determining the part of the DE processed by each
processor core. This balancing is effective due to the
presence of a priori information about the object. Opposite
distribution options are the implementation of all model
equations on one or each physical node of the model on a
separate processor core. This is determined by the criterion
of feasibility in real or accelerated time scale, as well as
providing opportunities for complicating the model in the
future. The model proposes to distribute the computational
usage equally between processor cores: Carriage
oscillation equations (1) and (2), oscillations equations of
the first trolley(2) and (3), assign the oscillation equations
of the second trolley (4) and (5) for execution by separate
threads, respectively, Thread 0, Thread 1,and Thread 2.
The distribution criterion also allows the connectedness of
the model equations in variables:
 Equable loading of ߬cores by threads.
 RT cycle scalability margin.
 Compliance with the structure [19] of the HIL platform.
In the studied model, flow blocks in the RT cycle operate
with a working data set. That fits in the cache, and the

processor will practically not swap data from memory. In
addition, not all read-only access to global variables
requires synchronization. Due to the separation of the
integration cycles of phase variables into program blocks,
there is no simultaneous recording from threads into
related variables.
The use of parallel separation in the model with data
decomposition provides an increase in the volume of
processed data when refining and complicating the model.
To do that, established all calls of threads to global
variables, assigned all phase variables and their derivatives
Zk, Z1,Z2, Z1

’, Z2
’./Zk,	߮,	߮ᇱ as shown in Figure 2.

Figure 2: Scheme of accessing threads to global variables

The slash (/) symbol separates variables that are written to
and read from the cache. The Figure shows that no
conflicts are overwriting to the same variable.

4.3. Methods of Low-Level Model Optimization.
Low-level optimization of the software model is based
mainly on the methods collected in [27]. Focus on
optimizing data access, since the code between the
transition operations is linear and the processor efficiently
preloads the memory.
Access of parallel threads to shared phase variables is
protected by synchronization means implemented in
hardware or software. Due to the parallelism in the
developed model, atomic operations are used that ensure
data coherence [33].For modern processors, 32-bit read
and write are atomic if the variables are aligned
(padding).However, during synchronization, such access is
not guaranteed. For 64-bit variables, operations are atomic
in 64-bit Windows. Reading/writing to variables of other
sizes is not guaranteed to be atomic on any platform
[34].The use of atomicity eliminates the possibility of
proactive execution and prevents false memory allocation.
Also, the advantage of atomic operations is that they are
faster compared to locks and are not dependent on
deadlocks. When developing a software model, it is
decided to align the initialized phase variables at addresses
that are multiples of eight (__attribute__ ((aligned
(64)))).Data management after reading/writing to the L1d
cache is performed by the hardware negotiation protocol.
The compiler and the operating system provide software
coherence support methods. When developing a model for
preserving RT, it is necessary to take into account the
optimizing transformations of a compiler performing

 Anas M. Al-Oraiqat et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 6995 – 7005

7001

software optimization. When executing the model, modern
processors with hardware can rearrange the instructions
for reading/writing memory to optimize. Command
reordering occurs when compiler optimization is
enabled. The .NET platform has its memory model, which
is independent of the memory model of a particular
processor [35].In the .NET memory model permutation is
allowed to read and read/write operations. For write-write
operations, it is prohibited. However, for the accepted
distribution of equations between the cores in this model,
this situation does not arise. Most compilers do data
alignment on their own, but the strategy they use to create
RT models may not be effective. The higher the spatial
locality in the model, that provided by the proactive
sampling mechanism during execution, the less is the load
on the bus for writing data to the cache. Microsoft Visual
C++ places the variables in memory in the order of
declaration in the program, and the global variables are
aligned according to their size. In this case, the compiler
will place them close to each other, which can lead to their
getting into one cache bank. On Intel processors, an
associative data cache is available for reading/writing data
if accesses to different cache banks.When placing data in
the developed model, it planed so that there are no delays
due to simultaneous access to the same cache banks.This
ensures that frequently modified data does not fall into the
same cache line.In addition, using alignment eliminates
the problem of false separation and the phenomenon of
"flushing the cache".
Hardware methods solve the coherence problem more
efficiently. On Intel processors, each local cache controller
contains a bus tracking unit. Monitoring and managing all
transactions on the shared bus according to the
MESI/MESIF protocols. The protocol defines general
rules; specific situations are not specified by it and this is
determined by specific implementation, processor model.If
the program issues a lock, then global synchronization
does not occur, the core flushes the Store buffer to its local
cache.In the main memory and caches of adjacent
processors, data is not immediately written. Thus, the data
exchange between the model threads with shared memory
takes into account two operations: direct data transfer
between the cores and ordering of this transfer
[36].Coherence in the model program may be violated as a
result of model recording phase variables, although they
occur much less frequently than reading.However, given
that write buffers are available not only for writing but
also for reading data, using store forwarding [37] by the
core reduces the access time to phase variables in the
model.Using write buffering when creating a model allows
you to defer physical data upload to the L1d cache, but
requires that the data be atomic.
For the model under development, a significant part of the
data exchanged by the cores is used at one time by one of
the threads. The individual phase variables recording of
only one of the corresponding threads performs the

model.Each quantity and size of the core write buffers, for
a given distribution of the model between the cores, a
small amount of data for exchange between threads, and
sufficient L1d cache for the model under study, allow
variables to be stored without cache misses on the RT
cycle.Given the continuous and smooth nature of the
change in the model phase variables, can assuming that if
the result is computed by some processor core and became
visible to other cores, then it will be used immediately at
the iteration of numerical integration.Thus, thread
execution will keep these models internally consistent.
When developing a simulation program, it was decided not
to use software prefetching. Since its optimal strategy
depends on many factors: the memory type, its latency and
access time to it, the clock frequency of the system bus
and the core frequency of the processor, cache policies,
and cache-line lengths.

5. EXPERIMENTS

To determine the optimal distribution of equations over
control threads, the memory allocation of a multi-threaded
application, it is necessary to determine information about
the target system.The identification scheme of logical
processors in the Intel architecture is contained in sheets 1,
4, and 11 of the CPUID instruction.
The modeling system based on the Sandy Bridge
microarchitecture has 4 cores (see Figure 3a), and a three-
level subsystem cachememory (see Figure 3b), defined by
these well-known utilities.

a b

Figure 3:Results of the utilities

L1 first-level cache memory has an 8-channel 32-kilobyte
data cache (L1d), a 4-channel 32-kilobyte instruction
cache (L1i): it is included in the processor core and
simultaneously supports two memory read operations (on
ports 2 and 3) and one record in memory (on port 4).Each
processor core has a unified 8-channel cache of the second
level (L2) of 256 KB in size, with two pairs of cores
sharing L2. Layer 3 cache (L3 / LLC) is 16-channel,
shared by four processor cores, and connected to a ring
interconnect.Moreover, the algorithm for filling the cache
memory is inclusive (L3 cache - including relations to L1
and L2).The size of the cache line in the processor family
does not change and is 64 bytes. All three caches are 8-
channel dial-associative.The degree of associativity (8
way) and the size of the cache bank are one of the

 Anas M. Al-Oraiqat et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 6995 – 7005

7002

important characteristics when implementing threads.
Physically, the L3 cache is divided into banks, while you
can write or read in each bank individually. The entries
quantity in L1d is 32kb / 64 = 512 and the number of
banks is 512/8 = 64.To avoid thrashing during model
implementation, variables should not be located at
addresses that are a multiple of the cache bank size.
Additionally, the following necessary data on the target
system were obtained from the technical documentation.If
there is a competition between the main memory addresses
for the same cache lines, the MESI coherence protocol
provides a response to the coherent (snoop) request of
another Central Processor (CP). When a query crosses a
cache line, getting a 5-step penalty.The L1d cache is non-
blocking and, after a miss, it can accept further requests
during the pre-load data. Processor caches operate by the
exchange protocol of the modified version of the
QuickPath Interconnect (QPI) bus. Using the forward
write mode with buffering and write back.
To determine the RT fulfillment criterion during system
development, it is necessary to determine the maximum
iteration time for each parallel model thread, in the Worst-
Case Execution Time (WCET), i.e.߬(݅ = 1,2, … , ݊).
Although invariant Time Stamp Counter (TSC) queries
allow getting the processor ID simultaneously with the
counter value, and having much lower overhead for multi-
core processors, Microsoft does not recommend using
RDTSCP calls for synchronization with high resolution
[38].In addition, the introduction of energy-saving
technology in modern processors introduces additional
requirements for software measurements, and there are no
guarantees that the processor cycles on all the cores of one
system will be synchronized.On the instrumental CMC, by
the criterion of resolution and accuracy, the hardware used
High Precision Event Timer (HPET) of the processor
Southbridge with equal access from any core and
independent of the core frequency. Before using it in
Windows 10, checking HPET via the command line as
administrator after entering the command: bcdedit/set
using platform clock true, and it is accessed in the model
using the time-stable QueryPerformanceCounter Win32
API functions.When measuring in the developed software
model, the overhead of these functions at the beginning
and end of the measured code was taken into account.For
an instrumental system, the total average performance of
two functions is 6,000 ticks of HPET.The measurements
used an unprivileged serialization instruction CPUID,
forcing the CP to complete each previous code instruction
before continuing with the program.This ensures that only
the measured code will be executed between calls.The
threads single execution (iteration) times of model 1.2 are
approximately equal and amounted to 0.018 ms, and for
thread 3, the time is 0.017 ms.Thus, the condition for the
existence of the cyclic schedule RT is fulfilled with a
margin and does not require splitting the threads into
blocks.

When developing a model program for a CMC system, the
tools that the programmer uses are important. The class of
development tools that generate native code in comparison
with the generation of bytecode occupies a large share of
modeling RT systems. Automatic parallelization tools,
when used in optimizing compilers, are more difficult to
determine the correctness and efficiency of optimizations
compared to a programmer [39].Despite the availability of
the best parallelism languages for data management, for
the current level of scientific computing, RT uses versions
of the C language [40], which less isolate the problematic
programmer at all stages of the model from the compiler to
the processor.During the research, the model is
implemented in C++ in the Visual Studio (VC)
environment.TheVS choice is explained by the presence of
multithreaded profiling tools based on Spatio-temporal
locality.
To synchronize the integration steps, the
WaitForMultipleObjects function was used, which puts the
thread in the standby state and, unlike the
SuspendThread/ResumeThread functions, is designed
specifically for organizing synchronization. When
choosing an event as the simplest and most fundamental
synchronizing object from two of its types, one is selected
whose state is manually controlled by the
SetEvent/ResetEvent functions.In this case, in comparison
with the use of mutexes, there is no effect of flipping the
cache.To suspend a thread and put it in a waiting state for
an object to be released, use the WaitForSingleObject
function.The phase variables behavior, as modeling result,
based on accepted design decisions, using the Gnuplot
utility, is shown in Figure 4.For the above results, when
controlling threads by the cyclic schedule, a thread 2 call
was made with the computation of Zk,߮five times less
than others.This ensures the implementation of different
inertia in the model.The results obtained coincide with the
simulation results by all threads with the same frequency.

Figure 4: The result of modeling a dynamic system

 Anas M. Al-Oraiqat et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 6995 – 7005

Verifying the model, based on only the summary
data of the built-in performance counters, is not enough; it
is also necessary to visualize the profiling data [41].To
measure the quality of the software model, the authors
used the built-in profiler of the development environment
After analyzing the trace, Concurrency Visualizer
displayed the results on the trace report page, as shown in
Figure 5.

Figure 5: The Concurrency Visualizer core view for the model

The “core” representation when displayed, confirms the
planned execution of the model threads on the cores of
logical processors and the absence of the multi-core
migration problem. The result "Legend" is sorted by the
context switches quantity of the threads, due to the
synchronization of integration steps between the cores in
descending order. When migrating threads, context
switches between thecores would be more expensive,
because cache data is not valid for this thread in another
core.If a thread resumes on the core it was running on
before, the payload is still in its cache.
To represent “Threads” as shown in Figure 6, the channels
for each model thread in the process are presented on the
Y-axis scale.Logical threads are not filtered and sorted in
the order they were created, so the main application thread
takes first place. Timelines indicate in green the status of
the thread's execution at a given point in time. Using a
timeline, an approximately equal working balance is seen
between threads that participate in parallel loops.In
addition, there is a lack of interference from other
processes, which are running in the system and the time it
takes to lock synchronization.

Figure 6: The “Threads” view of the Concurrency Visualizer for

the model

6. CONCLUSIONS

The scientific novelty of the results is the consistent
methodology development for optimizing computations.
The stages are based on the method proposed by the
authors: organization of parallel threads, in a dynamic
object complicated model, with various inertia, and
differing into consideration of the microarchitecture
features of modern computers.
The developed model is a platform for researching both
existing and developing rail vehicles.The algorithmic and
software tools used in the model that is based on the
architecture of CMC systems provide RT mode.Using a
programming template in the model with shared memory
allocation for child threads working independently of each
other is effective.The solution of the problem posed in the
article, nonlinear integer optimization, provides a
mathematical justification for expanding the criterion for
the RT mode existence by dividing the parallel model
program flows into blocks.The model reasonably uses
cache-friendly access methods. Into consideration, the
modeling object features, and providing spatial and
temporal locality of the program code during
implementation. The practical value of the work lies in the
fact that the proposed approach to algorithmic and
software-hardware optimization, when building a model
with different inertia, is universal.It can be used for the
efficient modeling of various dynamic objects. The
optimized model will be developed and supplemented via
complicating the mathematical description of the object
and automating the distribution of parallel implementation
threads.

ACKNOWLEDGEMENT

The authors would like to thank Onaizah Colleges and
Donetsk National Technical University for supporting
thisresearch.

REFERENCES

1. A.Anyakwo, C Pislaru, A.Balland and F. Gu,

“Modelling and simulation of dynamic wheel-rail
interaction using a roller rig.,” 25th International
Congress on Condition Monitoring and
Diagnostic Engineering, UK, Conference
Series, Vol. 364, 2012.

2. J. Bélanger, P. Venne and J.-N. Paquin, “The
what, where and why of real-time simulation,”
Opal-RT Technologies, Montreal, pp. 37-49,
2010.

3. Rajesh T. Jadhav and Dr.Vikram S. Patil,“A
Real-Time Hardware Co-Simulation of
Linearization of Nonlinear Sensor using ANFIS
Linearizer,” International Journal of Advanced
Trends in Computer Science and Engineering.
Volume 9, No. 3, pp. 2550-2556, May-June 2020.

4. D. Abel and A. Bollig,“Rapid control
prototyping,” Springer, P. 400,2006.

 Anas M. Al-Oraiqat et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 6995 – 7005

7004

5. E.Hairier, S. P.Norsett&G.Winner, “Solving
ordinary differential equations I:
NonstiffProblems,” Heidelberg: Springer,2009.

6. A. M. Al-Oraiqat, Y. O. Ivanov and A. M.
Amro,“Model-Oriented Scheduling Algorithm for
The Hardware-In-The-Loop
Simulation,”International Journal of Electronics
Communication and Computer Engineering, P.
10, 2016.

7. U.Drepper,“What Every Programmer Should
Know About Memory,” Red Hat, P.114,2007.

8. R. Fabian,“Data-oriented design: software
engineering for limited resources and short
schedules,”2018, (Accessed on 15 Oct. 2019).

9. “Handbook of railway vehicle dynamics,” Edited
by Simon Iwnicki, Publishedin by CRC Press
Taylor&Francis Group, ISBN-13: 978-0-8493-
3321-7, 2006.

10. S. Kоstrica, Y.Sobolevska, A. Kuzyshyn, and А.
Batih,“Mathematical model of DPKR-2 Dyzel
train car,”Science and progress of transport,
VisnikDnipropropetrovsk National University of
Railway Transport,pp. 56-
65,DOI: 10.15802/stp2018/123079, 2018.

11. V. Ruban andA. Matva,“Solving the dynamics
problems of railway crews in the Mathcad
package,”Rostov State University of Transport
Communication, Rostov-on-Don, Russian
Federation, P. 99,2009.

12. P. Shackleton and S. Iwnicki,“Comparison of
wheel-rail contact codes for railway vehicle
simulation,” an introduction to the Manchester
Contact Benchmark and initial results, Vehicle.

13. Call for Simulations,“Dynamic Wheel/Rail
Benchmark Single Wheelset without Friction,”
US DOT Volpe Center, 2005.

14. https://www.mscsoftware.com/assets/1708_ADM
6_02DAT_RAIL_CIN_r4.pdf,(Accessed on
15Jan. 2020).

15. Y. Ivanovand A. Y. Ivanov,“Dynamic model of
rolling stock on a multicore computing
system,”DonNTU, 15(203), 2011.

16. Anas M. Al-Oraiqat,“Parallel implementation of
a vehicle rail dynamical model for multi-core
systems,” International Journal of advanced
studies in computer science and engineering,Vol.
6, 01, рp. 34-41,2017.

17. C. Liu and J. Layland,“Scheduling Algorithms
for Multiprogramming Hard Real-time
Environment,” Journal of the ACM, 20(1): pp.
46-61, Jan. 1973.

18. E. Bashkov, A. Ivanov and G.Shavulia,“Device
for analog and digital computer links,”USSR
copyright certificate. №1140135SSSR, Russia,
1983.

19. I.Vitenberg, A. Ivanovand V. Svjatnij,“Device for
exchanging information between analog and
digital output machines,”USSR copyright
certificate.№1221666 SSSR, Russia, 1983.

20. HaleemaEssaSolayman,“A Comparison of
Scheduling parallel program tasks based on Java
Applet,” International Journal of Advanced
Trends in Computer Science and Engineering.

Volume 9 No.2, pp. 1394-1403, March -April
2020.

21. A. Srinivasan andJ. Anderson,“Optimal Rate-
based Scheduling on Multiprocessors,” Chapel
Hill: University of North Carolina, Elsevier
Science, P. 38,2004.

22. D. Pham,“The bees algorithm novel tool for
complex optimization problems,” Proceedings of
the 2nd International Virtual Conference on
Intelligent Production Machines and Systems, pp.
454-459,2006.

23. “Intel Guide for Developing Multithreaded
Applications,”(Accessed on 15Apr. 2020).

24. H. Sutter,“Exceptional C++,” Addison-Wesley,
ISBN 0-201-77581-6, 2001.

25. “Intel® 64 andIA-32 Architectures Optimization
Reference Manual,” Order Number: 248966-042b
Sep. 2019.

26. R. Conway,“Theory of Scheduling2nd Ed.”
Addison-Wesley Educational PublishersInc.,P.
294, 1967.

27. K. Kaspersky,“Code оoptimization: Effective
memory usage,”Published by BPB
PUBLICATIONS Paperback ISBN 1931769249,
2004.

28. J.Anderson and A. Srinivasan, “Pfair Scheduling:
Beyond Periodic Task Systems,”In Proceedings
of the Seventh International Conferenceon Real-
time Computing Systems and Applications,pp.
297-306, 2000.

29. Christos H. Papadimitriou and Kenneth Steiglitz,
“Combinatorial optimization: algorithms and
complexity,” P.496, 1998.(Accessed on 15 Jan.
2020).

30. B.Yao, P. Hu, M. Zhang and S. Wang,“Artificial
bee colony algorithm with scanning strategy for
the periodic vehicle routing
problem,”SIMULATION, Vol. 89, 6: pp. 762-
770. April, 2013.

31. Y. Ivanov,“Optimization of the computational
process on a multi-core system using the artificial
bee colony algorithm,”Informatics, cybernetics
and technology, No. 2 (18), pp. 19-25. ISSN
1996-1588, 2013.

32. A. Fog,“Instruction tables: Lists of instruction
latencies, throughputs and micro-operation
breakdowns for Intel, AMD and VIA
CPUs,”(Accessed on 15 Feb. 2020).

33. J. Hennessy andD. Patterson,“Computer
Architecture: A Quantitative Approach,”4 Ed.,
2006, (Accessed on 1 March 2020).

34. https://docs.microsoft.com/ru-ru/windows/win32/
sync/interlocked-variable-access, (Accessed on
15 March 2020).

35. J. Duffy,“Concurrent Programming on
Windows,” Addison-Wesley Professional; 1 ed,P.
514, 2008.

36. Akhter and J.Roberts,“Multi-CoreProgramming-
Increasing Performance Through Software Multi-
threading,”IntelPress, April 2006.

37. Agner Fog,“The microarchitecture of Intel, AMD
and VIA CPUs/An optimization guide for
assembly programmers and compiler

 Anas M. Al-Oraiqat et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 6995 – 7005

7005

makers,”Copenhagen University College of
Engineering, 2012/2.

38. “Intel® 64 and IA-32 Architectures Software
Developer's Manual: Volume 2A”.

39. “Acquiring high-resolution time stamps.
Windows Dev Center,”(Accessed on 25Apr.
2020).

40. R. Allen and K.Kennedy,“Optimizing compilers
for modern architectures a dependence-based
approach,” Publisher: Morgan Kaufmann, P. 833,
ISBN 13:9780585456997, 2001.

41. Anthony Williams,“C++ Concurrency in Action:
Practical Multithreading,” Manning Publications
Co, P. 506, ISBN 9781933988771, 2012.

