
Balika J Chelliah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2089 – 2095

2089


ABSTRACT

Natural Language Processing is one of the major techniques
in Artificial Intelligence which is used for processing,
analysis and conversion of text from one language to another.
It is used to process human language in a way machines can
analyze. Test case generation is one of the most important
parameters in determining the fitness value of the algorithms
and to determine what test cases are accepted by the
algorithms. The necessity to generate automatic test cases
arises from the need to produce generations of test cases for
complex algorithms. The main objectives of this paper
include generating test cases automatically by the means of
methodical practice and trail enhancement and defining test
strategy for any software application which will not only
reduce the long man hour needed to create the manual test
cases but also help in searching the bugs and technical errors
quickly, efficiently and accurately. The sole purpose of this
paper is to automatically generate test cases on the basis of
available test resources. In current scenario, the generation of
most test cases is done manually. The manual generation of
test cases is prone to human errors. The other test case
generation systems do not rely upon NLP due to which
ambiguous use cases often lead to incorrect generation of test
cases. Due to the possibility in human error and having room
for improvement in the other documented test case generation
method for software application , the proposed system not
only generates automated test cases according to the use cases
but also makes use of ONTOLOGY and NLP UMTG
TOOLKIT for overcoming ambiguous problem statements. In
software development and testing, the main purpose is to
produce high software with high quality output while
optimizing the cost and the time needed to complete the
application development. To achieve this goal, software

teams will perform the test on their application before live
production. For Test Automation, documentation plays a
crucial role. To test the software output, functionality and
quality, different kinds of documentation will be developed
1. Test Script
2. Test Case
3. Test Scenario
The proposed system ensures efficient test coverage where the
key functionality will not be missed in the automatic test case
generation. In this proposed system, test cases can be
generated after a feature or a set of features are finished in the
application development. The NLP not only helps in
developing better and automated test cases but also gives
maximum and efficient output in case of ambiguous
statements.

Key words: Natural Language Processing (NLP), Test
Automation, Test Case, test coverage, Use Case Modelling for
System Tests Generation (UMTG).

1. INTRODUCTION

In Software Engineering, the only aim is to produce high
quality output while optimizing the cost and the time needed
to complete the application development. To achieve this
goal, software teams will perform the test on their application
before live production. Currently Test Cases are generated
manually. Therefore, there is always a possible chance of
human error. Plus, there is always a room for improvement in
documenting the test cases of the software application. Test
case writing is major activity and a time consuming process.
Test cases are key components of the entire testing process.
Test cases are ground-breaking antiquities that work as a
decent source of truth for how a framework and a specific
component of programming works. The proposed system
involves automated test case generation using Natural
Language Processing (NLP). NLP is one of the most

An Optimized and Unique Methodology for Software Test
Case Automation Strategy

Dr. Balika J Chelliah1, K. Shreya2, Arka Raha3, M. Sravya4
1Department of Computer Science and Engineering, SRM Institute of Science and Technology, Ramapuram,

Chennai, India, balika888@gmail.com
2Department of Computer Science and Engineering, SRM Institute of Science and Technology, Ramapuram,

Chennai, India, shreyakrish1308@gmail.com
3Department of Computer Science and Engineering, SRM Institute of Science and Technology, Ramapuram,

Chennai, India, arkaraha96@gmail.com
4Department of Computer Science and Engineering, SRM Institute of Science and Technology, Ramapuram,

Chennai, India, madithatisravya1998@gmail.com

 ISSN 2278-3091
Volume 9 No.2, March - April 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse183922020.pdf

https://doi.org/10.30534/ijatcse/2020/183922020

Balika J Chelliah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2089 – 2095

2090

important techniques in AI which is used for analyzing,
processing and conversion of text from one language to
another. It is used to process human language in a way
machine can analyze.
Our aim in this paper is to generate test cases according to the
use case and with the help of Ontology, Decision tree
algorithm using machine leaning and NLP UMTG toolkit for
overcoming ambiguous problem statements. The proposed
system believes improvements can be made in the existing
state of research in software test case generation which is
semantic-based. Ontology is a key element and should be also
considered in the design of our framework. Ontology is an
important element of the semantic web. With the help of
ontology, the complex structure of natural language (i.e. user
requirements) is reduced to a simpler format. This simpler
format can be used as a use case in UMTG. By using use case
specifications, Use Case Modelling for System Tests
Generation (UMTG) generates the OCL constraints and the
test inputs are generated from OCL constraints. Cohesion
metric is used to check the correctness of code generated by
UMTG.

2. BACKGROUND

In the existing system, test cases are generated manually. Test
case generation techniques usually generate test cases from
the following resources:
1. Requirement specification document
2. UML diagram
3. Source code

Test Case Generation Techniques has two processes:
1. Define
2. Design

In the Define Process, test engineers collect, evaluates and
identify all required information and also the pre-requisites.
In the Design Process, test engineers aims to construct,
organize and produce all components in a series of tests, such
as test series, test data, and the need for each test case. A test
case consists of parts that depict information, activity and a
normal reaction, in order to ensure efficient working of any
element of the application. A test case specifies more about
"HOW" to approve a specific target, which when approved
will depict whether the normal conduct of the framework is
fulfilled or not. One significant inspiration is to guarantee
detectability among necessities and framework test cases.
Therefore, the meaning of test cases is tedious and testing,
particularly under time imperatives and when there are
successive changes to necessities. In this unique situation,
programmed test age decreases the expense of testing as well
as helps ensure that test cases appropriately spread all
necessities. This section elaborates the overall sequence of the
proposed system and the purpose of the UMTG toolkit.

The testing process is categorized into static and dynamic
testing. The performance indicators consist of software and
hardware performance indicators. These is a need and
possibility to improve the process of semantic-based software
test case generation. Ontology is an essential element of the
current approaches to the semantic representation of Unified
Modelling Language models. The process sequence during
and after the use of ontology in the proposed system, is as
follows.

1. Conversion of conditions and requirements, which are
complex, provided by the user, into simple use cases.

2. The generated use cases are utilized by the UMTG
toolkit to generate test input data.

Software testing is the most important parameter to ensure
that the software systems are coherent with their
requirements. Complex procedures of testing are used to
ensure that every requirement is covered by the test cases. The
test input data must be generated using the following steps:

1. Identify of all the representative test execution
scenarios from requirements

2. Determination of the runtime conditions that trigger
these scenarios

3. Generation of input test data.

The generation of test cases is error-prone considering the
fact that the requirement specifications are very large for any
software. Moreover, the specifications are represented in
natural language in most cases. This makes the process of test
case generation highly expensive and non-feasible. We use
Ontology to simplify the complex requirements and
conditions, provided in natural language and to convert them
into simple use-cases. The main aim of the UMTG approach
is the generation of executable system test cases. UMTG
ensures requirement coverage and also reduces the manual
effort required to generate these test cases. In conventional
systems, restrictions are imposed on the template of use case
specifications. This drawback is eliminated in UMTG. Using
recent advances, to generate test data, UMTG

1. Automatically identifies test scenarios
2. Generates formal constraints that identify conditions

triggering the execution of the scenarios

A domain model and use case specifications for the system
under test are produced. The generation of test cases is
automated by UMTG based on these. UMTG also generate
test cases which involves critical scenarios which was not
done in conventional systems. Checking the correctness and
efficiency of the test case generator plays an important role. In
the next section, we have discussed the use of cohesion metric
which test the efficiency of the code.
Software designers and developers have always aimed at
producing high quality software systems. The parameters
which influence the quality of software are complexity,
coupling and cohesion. High cohesion is considered as an
essential characteristic of a well-designed and well-structured

Balika J Chelliah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2089 – 2095

2091

software system. Generally, cohesion metric is used for
testing of modules within the software. We propose the use of
cohesion metric to evaluate the test case generator program. It
determines the degree to which the modules in the software
test case generator program relate to each other. Modules with
high cohesion are usually efficient, robust, reusable, reliable,
and understandable. On the other hand, modules with low
cohesion are difficult to understand, test, have maintenance
issues, and lead to problems while reusing.

The different approaches to the test case generation process,
test case prioritization, effect of testing on code quality,
software [1]-[5] were studied to develop an efficient system.
The various applications of the software testing processes
[6]-[13] were also studied to understand the practical
applications of testing. Comparison between existing models,
approaches, surveys and analysis of the existing approaches
[14]-[21] aided in developing the proposed system. The
prioritization approaches in different types of testing
[22]-[24] and the various test case generation methods
[25]-[27] were thoroughly understood to develop an efficient
system.

3. PROPOSED SYSTEM

We have studied current approaches to semantic
representation of Unified Modelling Language models. The
following sections give a detailed outline of the proposed
system and system architecture.

3.1 Ontology

For understanding the domain ontology already have been
recognized as a prerequisite for conceptualizing the domain
and processing the information. The ontology is a powerful
tool which is mainly used to gather and share knowledge
while the explicit specifications of the domain are provided.
In the recent years, the realm of machine learning has seen
the development of ontology in explicit formal specification
of the terms within the domain. The case studies and the
knowledge about the related rules of software were extracted
from the case library and knowledge base for inference and
interpretation by the inference engine, so that judgment
predicates can be extracted from the production rules .The
biggest advantage in ontology is that it creates sub categories
under the domains and each sub-category is categorized
according to the specific requirements. Due to this, the
process of extracting information by processing natural
language becomes smoother and efficient. The process of
categorizing the domain for processing of natural language is
crucial for the generation test cases for the software.

Ontology has five uses:
1. Ontology helps to have an understanding of the
information structure among the software agents.
2. It is used for reuse of domain knowledge.

3. Domain assumptions could be made explicit.
4. Operational knowledge can be separated from the domain
knowledge.
5. It is used to analyze domain knowledge.

3.2 Generation of Test Cases using Ontology

The main purpose of ontology in this paper is to convert
complicated and complex natural language into simpler
format while removing all the ambiguity. The main aim of
processing and converting natural language into simpler
format is to create use case with simpler formation with
extraction of all the information from the condition and
requirements provided. Simpler use cases will create better
test cases for the software. While developing a system based
on Ontology, according to the implementation and its
requirements, we must keep in mind a few goals. Firstly, it is
open-ended. We should get facts about all types of domains.
Secondly, with a large corpus, this extraction technology
involves building a large knowledge base. That is, the task
should be dominated by precision, and not recall. Thirdly, the
results must not be extracted from only one specific text.
Rather, they must be statistical aggregates collected from
various sources. For example, Hearst (1992) analyzed the
concept of learning an ontology of concept categories and
subcategories from a large corpus. (In 1992, a large corpus
meant 1000-page encyclopedia. Today a large corpus would
be a 100-million-page Web corpus.) The work focused on
general templates which have high precision and which are
not tied to a specific domain; this means they almost always
match; but they had low recall; that is, they do not always
match. Figure 1 is an example of one of the most productive
templates.

Figure 1: Example of a high-precision template

Here the words specified in bold and the commas must appear
literally in the text. The asterick indicates that the elements
can be repeated zero or more times. The parentheses are for
grouping. Question marks indicate optional elements. NP
stands for a noun phrase and indicates a variable. This above
mentioned template can be matched with the texts "subjects
such as Science increase your knowledge" and "programming
languages such as Java". From this, we can draw a conclusion
that Science is a subject and Java is a programming language.
Using key words like "which includes," "mainly," and
"especially," other templates can be constructed. These
templates will fail to match many relevant passages, like
"Science is a subject." However, this is intentional. The "NP is
a NP" template does not always indicate a subcategory
relation. It often means something else. For example,
consider the lines, "There is a cat" or "She is a too tall." When
we have a large corpus, we can afford to ensure that we use

Balika J Chelliah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2089 – 2095

2092

only those templates which have a high-precision. Many
statements of the subcategory relation might be missed.
However, it is definitely possible to find a paraphrase of the
statement elsewhere in the corpus in a usable form. The
extracted simplified information now can be use as user case
in UMTG software.

3.3 UMTG

Use Case Modelling for System Tests Generation (UMTG) is
a technique that uses the domain model and use case
specifications to automatically generate test cases. Use case
specification is a document that captures the requirements of
a use case. UMTG uses the system’s domain model to define
the constraints which will be used to generate the test input
data. Restricted Use Case Modelling (RCUM) introduces
templates with keywords and also restricts rules to reduce
ambiguity in the requirements and to permit the automated
evaluation of use case specifications. By retaining precision,
consistency and completeness in use case specifications,
RCUM can extract behavioral information. From RCUM
specifications, UMTG uses NLP to create Use Case Test
Models (UCTMs).By capturing control flow defined in
RCUM specification, UCTM allows the model-based identity
of use case scenarios (Use case scenarios refer to the
sequences of use case steps in model). UMTG consists of 3
model-based, coverage techniques to generate use case
scenarios from the UCTMs: branch, def-use, and subtype
coverages. In each use case specification a list of conditions
such as pre, post and guard are extracted which enables
UMTG to define the constraint that the test inputs must satisfy
in order to cover a test scenario. Each extracted condition is
translated into an OCL (Object Constraint Language)
constraint which describes the conditions in the form of entity
in domain model. UMTG exploits the abilities of NLP
techniques such as Semantic Role Labeling (SRL) to generate
OCL constraints. Then the generated constraints are used to
automatically generate test input data.

Three assumptions that are used to generate OCL constraints
are:
Assumption 1: The concepts that appears in the requirement
specification are modeled as attributes or classes or
associations in domain model
Assumption 2: (OCL constraint pattern): The conditions in
the use case specifications are very simple and they captures
information regarding the states of domain entities (That is,
classes in the domain model).
Assumption 3 (SRL): To correctly generate an OCL
constraint, an SRL toolset is used that identifies the semantic
roles in a sentence.

Semantic Role Labeling (SRL) is a NLP technique, used to
determine the various roles played by the words in a given
sentence. The words are marked with various keywords (For
example, A0, A1, A2, …. AN) to indicate their roles. A0
indicates the subject or the one performing the action,

whereas A1 indicates the actor who/which is most directly
affected by the performed action. The constraint generation
process is depicted in Figure 2.

Figure 2: Constraint Generation Process

Identification of the Left-hand Side Variables: An algorithm
is followed by the transformation rules(i.e., verb rules) which
use the similarities in the strings between domain model
elements’ names such as classes, attributes, associations and
the phrases in the use case step marked with the entity and
support role to identify LHS-variable.

Identification of the Right-hand Side Terms: Based on the
LHS-variable and based on the support roles that have not
been used to select the LHS-variables, the RHS-terms are
identified. An RHS-term can be a literal or a variable.

3.4 Use of Cohesion Metrics to check code Correctness

Cohesion determines to what degree the elements of a class or
an object are related together. There are various
object-oriented cohesion metrics which are based on the
degree of similarity of methods. It has not been determined
which of the above methods best measure cohesion. There are
a wide range of suggested metrics. This is a huge challenge
for software developers because it is very hard to make an
informed choice. A non-cohesive class may need to be divided
into smaller classes. For the following cohesion metrics, an
assumption is made that methods are related if they function
on the same class-level variables. On the other hand, they are
unrelated if they work on variables on different levels.
Methods in a cohesive class work with the same set of data. In
case of a non-cohesive class, there are methods which work on
different variables. Only one function is performed by a
cohesive class. A class performing more than one function
denotes a lack of cohesion which is undesirable. It is
necessary for a class to split up if it performed a large number
of unrelated functions. High cohesion is desirable for
encapsulation. However, a limitation is that, for a class
having high cohesion, the coupling between the class
methods is very high, which denotes a high testing effort for
that class. Low cohesion indicates high complexity and
improper design. It also indicates a high possibility of errors.
The class must be divided into two or more smaller classes.

There are two types of cohesions, namely TCC and LCC.
TCC stands for Tight Class Cohesion and LCC stands for

Balika J Chelliah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2089 – 2095

2093

Loose Class Cohesion. In order to determine the difference
between good bad cohesions, TCC and LCC metrics are used,
wherein large values indicate good cohesion and low values
indicate bad cohesion. The idea of LCOM4 can be highly
related to the TCC and LCC Metrics. Higher cohesiveness of
the class can be associated to the higher values of LCC and
TCC.

A Visible Method is the one that is not private and has an
interface implementing it and such are the methods which are
used for TCC and LCC. If any two methods, such as a and b,
are able to access the same class-level variable, or if their call
trees start at a and b then such methods are said to be related.
All the methods, including the private methods are
considered for the call trees. A call branch needs to stop being
followed when there is a call going outside the class. Directly
connected methods are those which are connected in the
above manner. An indirectly connected method is one
wherein the two given methods have a connection through
other methods. Example: A, B and C are three methods
wherein, the connections made from A to B to Care direct ,
that is AB are directly connected and so are BC. However, the
connection to C from A is indirect. The TCC and LCC
definitions are given in Figure 3.

Figure 3: TCC and LCC definitions

Higher TCC and LCC would lead to an increase in the
cohesiveness of the class .The non-cohesive classes are those
where the value of TCC and LCC are lesser than 0.5 .While,
quite cohesive classes are those where the value of LCC is
equivalent to 0.8 and when the values of TCC and LCC are
equivalent to 1, then this is considered as a maximally
cohesive class which means that all the methods present in it
are connected. LCC is an indication of the overall
connectedness, which depends upon the number of methods
and how they are grouped together. When the value of LCC is
equivalent to 1, it is an indication that all the methods in the
class are connected, either directly or indirectly. This is
known as the cohesive case. Whereas, when the value of LCC
is lesser than 1,it is an indication that there may be two or
more unconnected method groups, which might be because
the methods might be having access to totally different
variables. The class is further known as “ not cohesive “.
Further, such classes need to be reviewed in order to check
why they are not cohesive. The non-cohesive case is the one

where the value of LCC is equivalent to 0. TCC is an
indication of the "connection density".

Moreover, when all the existing connections are direct, then
the values of TCC and LCC evaluate to a value lesser than 1.
Furthermore, the connection density is said to be lower when
the value of TCC is lesser than that of LCC. In the example
that follows, it is being proven that all methods are not
directly connected with each other. Let A and B be the two
points which are to be connected through variable x and B and
C which are to be connected through y. Therefore, A and C
are indirectly connected through B, even though they do not
share a variable. Thus, the non-cohesive classes are those in
which the methods are totally unconnected and TCC and LCC
are equivalent to 0.

The overall system architecture of the proposed system is
depicted in Figure 4.

Figure 4: System Architecture

4. CONCLUSION
This paper sets up an automatic test case generation system
based on knowledge base, case study library, solution space
tree and testing weight technique. In this system, test cases
are generated from the large number of rules which are
established for the tested program. The knowledge base
ensures the reliability of the tests. The case study library
ensures the reusability for testing. The traversal inference

Balika J Chelliah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2089 – 2095

2094

technique of the solution space tree ensures test adequacy.
Hence, the testing weight technique can apply the skills,
experience and knowledge of the test engineer for the
generation of test cases. This enhances the efficacy of the test
cases. Moreover, the use of simple use cases generated using
ontology and the processing of these use cases in the UMTG
toolkit to generate the test cases leads to the generation of a
much more efficient set of input test data.

5. FUTURE WORK
Our future studies will focus on combining other technologies
of Artificial Intelligence such as Artificial Neural Network
(ANN), Genetic Algorithm (GA) and Simulated Annealing
Algorithm (SAA).

REFERENCES

1. J. F. Chen, L. L. Zhu, T. Y. Chen, D. Towey, F. C. Kuo, R.

B. Huang and Y. C. Guo. Test case prioritization for
object-oriented software: An adaptive random
sequence approach based on clustering, Journal of
Systems and Software, 2018, 135: 107-125
https://doi.org/10.1016/j.jss.2017.09.031

2. T. H. Chen, S. W. Thomas, H. Hemmati, M. Nagappan and
A. E. Hassan. An Empirical Study on the Effect of
Testing on Code Quality Using Topic Models: A Case
Study on Software Development Systems, IEEE
Transactions on Reliability, 2017, 66(3): 806824

3. Cipriani, P. Citton, M. Romano and S. Fabbi. Testing two
opensource photogrammetry software as a tool to
digitally preserve and objectively communicate
significant geological data: the Agolla case study
(Umbria-Marche Apennines), Italian Journal of
Geosciences, 2016, 135(2): 199-209
https://doi.org/10.3301/IJG.2015.21

4. E. Engstrom and P. Runeson. Test overlay in an
emerging software product line - An industrial case
study, Information and Software Technology, 2013,
55(3): 581-594

5. J. R. Geringer, C. Y. Tuan and P. D. Lindsey. Assessment
of Software for Blast Loading and Structural
Response Analysis Using a Lightweight Steel-Joist
Roof as a Test Case, Journal of Performance of
Constructed Facilities, 2013, 27(2): 144-154

6. S. Ibaraki, S. Tsujimoto, Y. Nagai, Y. Sakai, S. Morimoto
and Y. Miyazaki. A pyramid-shaped machining test to
identify rotary axis error motions on five-axis
machine tools: software development and a case
study, International Journal of Advanced Manufacturing
Technology, 2018, 94(1-4): 227-237
https://doi.org/10.1007/s00170-017-0906-9

7. J. Itkonen and M. V. Mantyla. Are test cases needed?
Replicated comparison between exploratory and
test-case-based software testing, Empirical Software
Engineering, 2014, 19(2): 303-342

8. P. Janczarek and J. Sosnowski. Investigating software
testing and maintenance reports: Case study,
Information and Software Technology, 2015, 58:
272-288
https://doi.org/10.1016/j.infsof.2014.06.015

9. E. Jee, D. Shin, S. Cha, J. S. Lee and D. H. Bae.
Automated test case generation for FBD programs
implementing reactor protection system software,
Software Testing Verification & Reliability, 2014, 24(8):
608-628

10. AminShokravi, H. Eskandar, A. M. Derakhsh, H. N. Rad
and A. Ghanadi. The potential application of particle
swarm optimization algorithm for forecasting the air
overpressure induced by mine blasting, Engineering
with Computers, 2018, 34(2): 277-285
https://doi.org/10.1007/s00366-017-0539-5

11. M. H. Esfe, O. Mahian, M. H. Hajmohammad and S.
Wongwises. Design of a heat exchanger working with
organic nanofluids using multi-objective particle
swarm optimization algorithm and response surface
method, International Journal of Heat and Mass
Transfer, 2018, 119:922-930

12. S. S. Gill, R. Buyya, I. Chana, M. Singh and A.
Abraham. BULLET: Particle Swarm Optimization
Based Scheduling Technique for Provisioned Cloud
Resources, Journal of Network and Systems
Management, 2018, 26(2): 361-400

13. L. Guneshwor, T. I. Eldho and A. V. Kumar.
Identification of Groundwater Contamination
Sources Using Meshfree RPCM Simulation and
Particle Swarm Optimization, Water Resources
Management, 2018, 32(4): 1517-1538

14. S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B.
Cohen, W. Grieskamp, M. Harman, M. J. Harrold, and P.
McMinn. An orchestrated survey of methodologies for
automated software test case generation, Journal of
Systems and Software, vol. 86, no. 8, pp. 1978–2001,
Aug. 2013.
https://doi.org/10.1016/j.jss.2013.02.061

15. É. F. de Souza, R. D. A. Falbo, and N. L. Vijaykumar.
Knowledge management initiatives in software
testing: A mapping study, Information and Software
Technology, vol. 57, pp. 378– 391, 2014.

16. J. J. Gutiérrez, M. J. Escalona, and M. Mejías. A
Model-Driven Approach for Functional Test Case
Generation, Journal of Systems and Software, vol. 109,
pp. 214–228, 2015.

17. S. Paydar and M. Kahani. A semantic web enabled
approach to reuse functional requirements models in
web engineering, Automated Software Engineering,
vol. 22, no. 2, pp. 241– 288, 2014.
https://doi.org/10.1007/s10515-014-0144-4

18. M. Soltani et al. Search-Based Crash Reproduction
and Its Impact on Debugging, IEEE Transactions on
Software Engineering, 2018.

19. Panichella et al. A large scale empirical comparison of
state-of-the-art search-based test case generators,

Balika J Chelliah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2089 – 2095

2095

Information and Software Technology, vol. 104, 2018,
pp.236– 256.

20. J. Campos et al. An empirical evaluation of
evolutionary algorithms for unit test suite generation,
Information and Software Technology, vol. 104, 2018,
pp. 207–235.
https://doi.org/10.1016/j.infsof.2018.08.010

21. J. Ferrer et al. Evolutionary algorithms for the
multi-objective test data generation problem,
Software: Practice and Experience, vol. 42, issue 11,
2012, pp. 1331–1362,

22. Priyanka Paygude, Shashank Joshi, Debnath
Bhattacharyya, Tai-hoon Kim. Comparative analysis of
Test Case Prioritization Approaches in Regression
Testing, International Journal of Advanced Trends in
Computer Science and Engineering, Volume 8, No.4,
2019, pp. 1260-1267.
https://doi.org/10.30534/ijatcse/2019/36842019

23. Omdev Dahiya, Kamna Solanki, Sandeep dalal.
Comparative Analysis of Regression Test Case
Prioritization Techniques, International Journal of
Advanced Trends in Computer Science and Engineering,
Volume 8, No.4, 2019, pp. 1521-1531.
https://doi.org/10.30534/ijatcse/2019/74842019

24. P. Huang et al. Performance Regression Testing
Target Prioritization via Performance Risk Analysis,
in Proc. The 36th International Conference on Software
Engineering (ICSE), 2014.

25. L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro.
Link: Exploiting the Web of Data to Generate Test
Inputs, in Proc. 2014 International Symposium on
Software Testing and Analysis (ISSTA), 2014, pp.
373–384.
https://doi.org/10.1145/2610384.2610397

26. Arcuri et al. Private API access and functional
mocking in automated unit test generation, in Proc.
IEEE international conference on software testing,
verification and validation (ICST), 2017.

27. K. Lakhotia et al. A multi-objective approach to
search-based test data generation, in Proc. The 9th
International Conference on Genetic an Evolutionary
Computation (GECCO), 2007.
https://doi.org/10.1145/1276958.1277175

