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 
ABSTRACT 
 
Natural Language Processing is one of the major techniques 
in Artificial Intelligence which is used for processing, 
analysis and conversion of text from one language to another. 
It is used to process human language in a way machines can 
analyze. Test case generation is one of the most important 
parameters in determining the fitness value of the algorithms 
and to determine what test cases are accepted by the 
algorithms. The necessity to generate automatic test cases 
arises from the need to produce generations of test cases for 
complex algorithms. The main objectives of this paper 
include generating test cases automatically by the means of 
methodical practice and trail enhancement and defining test 
strategy for any software application which will not only 
reduce the long man hour needed to create the manual test 
cases but also help in searching the bugs and technical errors 
quickly, efficiently and accurately. The sole purpose of this 
paper is to automatically generate test cases on the basis of 
available test resources. In current scenario, the generation of 
most test cases is done manually. The manual generation of 
test cases is prone to human errors. The other test case 
generation systems do not rely upon NLP due to which 
ambiguous use cases often lead to incorrect generation of test 
cases. Due to the possibility in human error and having room 
for improvement in the other documented test case generation 
method for software application , the proposed system not 
only generates automated test cases according to the use cases 
but also makes use of ONTOLOGY and NLP UMTG 
TOOLKIT for overcoming ambiguous problem statements. In 
software development and testing, the main purpose is to 
produce high software with high quality output while 
optimizing the cost and the time needed to complete the 
application development. To achieve this goal, software 

 
 

teams will perform the test on their application before live 
production. For Test Automation, documentation plays a 
crucial role. To test the software output, functionality and 
quality, different kinds of documentation will be developed 
1. Test Script 
2. Test Case 
3. Test Scenario 
The proposed system ensures efficient test coverage where the 
key functionality will not be missed in the automatic test case 
generation. In this proposed system, test cases can be 
generated after a feature or a set of features are finished in the 
application development. The NLP not only helps in 
developing better and automated test cases but also gives 
maximum and efficient output in case of ambiguous 
statements. 
 
Key words: Natural Language Processing (NLP), Test 
Automation, Test Case, test coverage, Use Case Modelling for 
System Tests Generation (UMTG).  
 
1. INTRODUCTION 
 
In Software Engineering, the only aim is to produce high 
quality output while optimizing the cost and the time needed 
to complete the application development. To achieve this 
goal, software teams will perform the test on their application 
before live production. Currently Test Cases are generated 
manually. Therefore, there is always a possible chance of 
human error. Plus, there is always a room for improvement in 
documenting the test cases of the software application. Test 
case writing is major activity and a time consuming process. 
Test cases are key components of the entire testing process. 
Test cases are ground-breaking antiquities that work as a 
decent source of truth for how a framework and a specific 
component of programming works. The proposed system 
involves automated test case generation using Natural 
Language Processing (NLP). NLP is one of the most 
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important techniques in AI which is used for analyzing, 
processing and conversion of text from one language to 
another. It is used to process human language in a way 
machine can analyze. 
Our aim in this paper is to generate test cases according to the 
use case and with the help of Ontology, Decision tree 
algorithm using machine leaning and NLP UMTG toolkit for 
overcoming ambiguous problem statements. The proposed 
system believes improvements can be made in the existing 
state of research in software test case generation which is 
semantic-based. Ontology is a key element and should be also 
considered in the design of our framework. Ontology is an 
important element of the semantic web. With the help of 
ontology, the complex structure of natural language (i.e. user 
requirements) is reduced to a simpler format. This simpler 
format can be used as a use case in UMTG. By using use case 
specifications, Use Case Modelling for System Tests 
Generation (UMTG) generates the OCL constraints and the 
test inputs are generated from OCL constraints. Cohesion 
metric is used to check the correctness of code generated by 
UMTG. 
 
2. BACKGROUND 
 
In the existing system, test cases are generated manually. Test 
case generation techniques usually generate test cases from 
the following resources:  
1. Requirement specification document   
2. UML diagram   
3. Source code  
 
Test Case Generation Techniques has two processes:  
1. Define  
2. Design  
 
In the Define Process, test engineers collect, evaluates and 
identify all required information and also the pre-requisites. 
In the Design Process, test engineers aims to construct, 
organize and produce all components in a series of tests, such 
as test series, test data, and the need for each test case. A test 
case consists of parts that depict information, activity and a 
normal reaction, in order to ensure efficient working of any 
element of the application. A test case specifies more about 
"HOW" to approve a specific target, which when approved 
will depict whether the normal conduct of the framework is 
fulfilled or not. One significant inspiration is to guarantee 
detectability among necessities and framework test cases. 
Therefore, the meaning of test cases is tedious and testing, 
particularly under time imperatives and when there are 
successive changes to necessities. In this unique situation, 
programmed test age decreases the expense of testing as well 
as helps ensure that test cases appropriately spread all 
necessities. This section elaborates the overall sequence of the 
proposed system and the purpose of the UMTG toolkit. 
 

The testing process is categorized into static and dynamic 
testing. The performance indicators consist of software and 
hardware performance indicators. These is a need and 
possibility to improve the process of semantic-based software 
test case generation. Ontology is an essential element of the 
current approaches to the semantic representation of Unified 
Modelling Language models. The process sequence during 
and after the use of ontology in the proposed system, is as 
follows. 

1. Conversion of conditions and requirements, which are 
complex, provided by the user, into simple use cases. 

2. The generated use cases are utilized by the UMTG 
toolkit to generate test input data. 

Software testing is the most important parameter to ensure 
that the software systems are coherent with their 
requirements. Complex procedures of testing are used to 
ensure that every requirement is covered by the test cases. The 
test input data must be generated using the following steps: 

1. Identify of all the representative test execution 
scenarios from requirements 

2. Determination of the runtime conditions that trigger 
these scenarios 

3. Generation of input test data.  

 
The generation of test cases is error-prone considering the 
fact that the requirement specifications are very large for any 
software. Moreover, the specifications are represented in 
natural language in most cases. This makes the process of test 
case generation highly expensive and non-feasible. We use 
Ontology to simplify the complex requirements and 
conditions, provided in natural language and to convert them 
into simple use-cases. The main aim of the UMTG approach 
is the generation of executable system test cases. UMTG 
ensures requirement coverage and also reduces the manual 
effort required to generate these test cases. In conventional 
systems, restrictions are imposed on the template of use case 
specifications. This drawback is eliminated in UMTG. Using 
recent advances, to generate test data, UMTG 

1. Automatically identifies test scenarios 
2. Generates formal constraints that identify conditions 

triggering the execution of the scenarios 

A domain model and use case specifications for the system 
under test are produced. The generation of test cases is 
automated by UMTG based on these. UMTG also generate 
test cases which involves critical scenarios which was not 
done in conventional systems. Checking the correctness and 
efficiency of the test case generator plays an important role. In 
the next section, we have discussed the use of cohesion metric 
which test the efficiency of the code. 
Software designers and developers have always aimed at 
producing high quality software systems. The parameters 
which influence the quality of software are complexity, 
coupling and cohesion. High cohesion is considered as an 
essential characteristic of a well-designed and well-structured 
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software system. Generally, cohesion metric is used for 
testing of modules within the software. We propose the use of 
cohesion metric to evaluate the test case generator program. It 
determines the degree to which the modules in the software 
test case generator program relate to each other. Modules with 
high cohesion are usually efficient, robust, reusable, reliable, 
and understandable. On the other hand, modules with low 
cohesion are difficult to understand, test, have maintenance 
issues, and lead to problems while reusing. 
 
The different approaches to the test case generation process, 
test case prioritization, effect of testing on code quality, 
software [1]-[5] were studied to develop an efficient system. 
The various applications of the software testing processes 
[6]-[13] were also studied to understand the practical 
applications of testing. Comparison between existing models, 
approaches, surveys and analysis of the existing approaches 
[14]-[21] aided in developing the proposed system. The 
prioritization approaches in different types of testing 
[22]-[24] and the various test case generation methods 
[25]-[27] were thoroughly understood to develop an efficient 
system. 
 
3.  PROPOSED SYSTEM 
 
We have studied current approaches to semantic 
representation of Unified Modelling Language models. The 
following sections give a detailed outline of the proposed 
system and system architecture. 
 
3.1 Ontology 
 
For understanding the domain ontology already have been 
recognized as a prerequisite for conceptualizing the domain 
and processing the information. The ontology is a powerful 
tool which is mainly used to gather and share knowledge 
while the explicit specifications of the domain are provided. 
In the recent years, the realm of machine learning has seen 
the development of ontology in explicit formal specification 
of the terms within the domain. The case studies and the 
knowledge about the related rules of software were extracted 
from the case library and knowledge base for inference and 
interpretation by the inference engine, so that judgment 
predicates can be extracted from the production rules .The 
biggest advantage in ontology is that it creates sub categories 
under the domains and each sub-category is categorized 
according to the specific requirements. Due to this, the 
process of extracting information by processing natural 
language becomes smoother and efficient. The process of 
categorizing the domain for processing of natural language is 
crucial for the generation test cases for the software.  
 
Ontology has five uses:  
1. Ontology helps to have an understanding of the 
information structure among the software agents. 
2. It is used for reuse of domain knowledge. 

3. Domain assumptions could be made explicit. 
4. Operational knowledge can be separated from the domain 
knowledge. 
5. It is used to analyze domain knowledge. 
 
3.2 Generation of Test Cases using Ontology 
 
The main purpose of ontology in this paper is to convert 
complicated and complex natural language into simpler 
format while removing all the ambiguity. The main aim of 
processing and converting natural language into simpler 
format is to create use case with simpler formation with 
extraction of all the information from the condition and 
requirements provided. Simpler use cases will create better 
test cases for the software. While developing a system based 
on Ontology, according to the implementation and its 
requirements, we must keep in mind a few goals. Firstly, it is 
open-ended. We should get facts about all types of domains. 
Secondly, with a large corpus, this extraction technology 
involves building a large knowledge base. That is, the task 
should be dominated by precision, and not recall. Thirdly, the 
results must not be extracted from only one specific text. 
Rather, they must be statistical aggregates collected from 
various sources. For example, Hearst (1992) analyzed the 
concept of learning an ontology of concept categories and 
subcategories from a large corpus. (In 1992, a large corpus 
meant 1000-page encyclopedia. Today a large corpus would 
be a 100-million-page Web corpus.) The work focused on 
general templates which have high precision and which are 
not tied to a specific domain; this means they almost always 
match; but they had low recall; that is, they do not always 
match. Figure 1 is an example of one of the most productive 
templates. 
 
 

 
Figure 1: Example of a high-precision template 

 
Here the words specified in bold and the commas must appear 
literally in the text. The asterick indicates that the elements 
can be repeated zero or more times. The parentheses are for 
grouping. Question marks indicate optional elements. NP 
stands for a noun phrase and indicates a variable. This above 
mentioned template can be matched with the texts "subjects 
such as Science increase your knowledge" and "programming 
languages such as Java". From this, we can draw a conclusion 
that Science is a subject and Java is a programming language. 
Using key words like "which includes," "mainly," and 
"especially," other templates can be constructed. These 
templates will fail to match many relevant passages, like 
"Science is a subject." However, this is intentional. The "NP is 
a NP" template does not always indicate a subcategory 
relation. It often means something else. For example, 
consider the lines, "There is a cat" or "She is a too tall." When 
we have a large corpus, we can afford to ensure that we use 
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only those templates which have a high-precision. Many 
statements of the subcategory relation might be missed. 
However, it is definitely possible to find a paraphrase of the 
statement elsewhere in the corpus in a usable form. The 
extracted simplified information now can be use as user case 
in UMTG software. 
 
3.3 UMTG 
 
Use Case Modelling for System Tests Generation (UMTG) is 
a technique that uses the domain model and use case 
specifications to automatically generate test cases. Use case 
specification is a document that captures the requirements of 
a use case. UMTG uses the system’s domain model to define 
the constraints which will be used to generate the test input 
data. Restricted Use Case Modelling (RCUM) introduces 
templates with keywords and also restricts rules to reduce 
ambiguity in the requirements and to permit the automated 
evaluation of use case specifications. By retaining precision, 
consistency and completeness in use case specifications, 
RCUM can extract behavioral information. From RCUM 
specifications, UMTG uses NLP to create Use Case Test 
Models (UCTMs).By capturing control flow defined in 
RCUM specification, UCTM allows the model-based identity 
of use case scenarios (Use case scenarios refer to the 
sequences of use case steps in model). UMTG consists of 3 
model-based, coverage techniques to generate use case 
scenarios from the UCTMs: branch, def-use, and subtype 
coverages. In each use case specification a list of conditions 
such as pre, post and guard are extracted which enables 
UMTG to define the constraint that the test inputs must satisfy 
in order to cover a test scenario. Each extracted condition is 
translated into an OCL (Object Constraint Language) 
constraint which describes the conditions in the form of entity 
in domain model. UMTG exploits the abilities of NLP 
techniques such as Semantic Role Labeling (SRL) to generate 
OCL constraints. Then the generated constraints are used to 
automatically generate test input data. 
 
Three assumptions that are used to generate OCL constraints 
are: 
Assumption 1: The concepts that appears in the requirement 
specification are modeled as attributes or classes or 
associations in domain model 
Assumption 2: (OCL constraint pattern): The conditions in 
the use case specifications are very simple and they captures 
information regarding the states of domain entities (That is, 
classes in the domain model). 
Assumption 3 (SRL): To correctly generate an OCL 
constraint, an SRL toolset is used that identifies the semantic 
roles in a sentence. 
 
Semantic Role Labeling (SRL) is a NLP technique, used to 
determine the various roles played by the words in a given 
sentence. The words are marked with various keywords (For 
example, A0, A1, A2,  …. AN) to indicate their roles. A0 
indicates the subject or the one performing the action, 

whereas A1 indicates the actor who/which is most directly 
affected by the performed action. The constraint generation 
process is depicted in Figure 2. 

 

 
Figure 2: Constraint Generation Process 

                                  
Identification of the Left-hand Side Variables: An algorithm 
is followed by the transformation rules(i.e., verb rules) which 
use the similarities in the strings between domain model 
elements’ names such as classes, attributes, associations and 
the phrases in the use case step marked with the entity and 
support role to identify LHS-variable. 
 
Identification of the Right-hand Side Terms: Based on the 
LHS-variable and based on the support roles that have not 
been used to select the LHS-variables, the RHS-terms are 
identified. An RHS-term can be a literal or a variable. 
 
3.4 Use of  Cohesion Metrics to check code Correctness 
 
Cohesion determines to what degree the elements of a class or 
an object are related together. There are various 
object-oriented cohesion metrics which are based on the 
degree of similarity of methods. It has not been determined 
which of the above methods best measure cohesion. There are 
a wide range of suggested metrics. This is a huge challenge 
for software developers because it is very hard to make an 
informed choice. A non-cohesive class may need to be divided 
into smaller classes. For the following cohesion metrics, an 
assumption is made that methods are related if they function 
on the same class-level variables. On the other hand, they are 
unrelated if they work on variables on different levels. 
Methods in a cohesive class work with the same set of data. In 
case of a non-cohesive class, there are methods which work on 
different variables. Only one function is performed by a 
cohesive class. A class performing more than one function 
denotes a lack of cohesion which is undesirable. It is 
necessary for a class to split up if it performed a large number 
of unrelated functions. High cohesion is desirable for 
encapsulation. However, a limitation is that, for a class 
having high cohesion, the coupling between the class 
methods is very high, which denotes a high testing effort for 
that class. Low cohesion indicates high complexity and 
improper design. It also indicates a high possibility of errors. 
The class must be divided into two or more smaller classes. 
 
There are two types of cohesions, namely TCC and LCC. 
TCC stands for Tight Class Cohesion and LCC stands for 
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Loose Class Cohesion. In order to determine the difference 
between good bad cohesions, TCC and LCC metrics are used, 
wherein large values indicate good cohesion and low values 
indicate bad cohesion.  The idea of LCOM4 can be highly 
related to the TCC and LCC Metrics. Higher cohesiveness of 
the class can be associated to the higher values of LCC and 
TCC. 
 
A Visible Method is the one that is not private and has an 
interface implementing it and such are the methods which are 
used for TCC and LCC. If any two methods, such as a and b, 
are able to access the same class-level variable, or if their call 
trees start at a and b then such methods are said to be related. 
All the methods, including the private methods are 
considered for the call trees. A call branch needs to stop being 
followed when there is a call going outside the class. Directly 
connected methods are those which are connected in the 
above manner. An indirectly connected method is one 
wherein the two given methods have a connection through 
other methods. Example: A, B and C are  three methods 
wherein, the connections made from A to B to Care direct , 
that is AB are directly connected and so are BC. However, the 
connection to C from A is indirect. The TCC and LCC 
definitions are given in Figure 3. 

 

 
Figure 3: TCC and LCC definitions 

 
Higher TCC and LCC would lead to an increase in the 
cohesiveness of the class .The non-cohesive classes are those 
where the value of TCC and LCC are lesser than 0.5 .While, 
quite cohesive classes are those where the value of LCC is 
equivalent to 0.8 and when the values of TCC and LCC are 
equivalent to 1, then this is considered as a maximally 
cohesive class which means that all the methods present in it 
are connected. LCC is an indication of the overall 
connectedness, which depends upon the number of methods 
and how they are grouped together. When the value of LCC is 
equivalent to 1, it is an indication that all the methods in the 
class are connected, either directly or indirectly. This is 
known as the cohesive case. Whereas, when the value of LCC 
is lesser than 1,it is an indication that  there may be two or 
more unconnected method groups, which might be because 
the methods might be having access to  totally different 
variables. The class is further known as “ not cohesive “. 
Further, such classes need to be reviewed in order to check 
why they are not cohesive. The non-cohesive case is the one 

where the value of LCC is equivalent to 0. TCC is an 
indication of the "connection density". 
 
Moreover, when all the existing connections are direct, then 
the values of TCC and LCC evaluate to a value lesser than 1. 
Furthermore, the connection density is said to be lower when 
the value of TCC is lesser than that of LCC. In the example 
that follows, it is being proven that all methods are not 
directly connected with each other. Let A and B be the two 
points which are to be connected through variable x and B and 
C which are to be connected through y. Therefore, A and C 
are indirectly connected through B, even though they do not 
share a variable. Thus, the non-cohesive classes are those in 
which the methods are totally unconnected and TCC and LCC 
are equivalent to 0. 
 
The overall system architecture of the proposed system is 
depicted in Figure 4. 
 
 

 
 

Figure 4: System Architecture 
 

4. CONCLUSION 
This paper sets up an automatic test case generation system 
based on knowledge base, case study library, solution space 
tree and testing weight technique. In this system, test cases 
are generated from the large number of rules which are 
established for the tested program. The knowledge base 
ensures the reliability of the tests. The case study library 
ensures the reusability for testing. The traversal inference 
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technique of the solution space tree ensures test adequacy. 
Hence, the testing weight technique can apply the skills, 
experience and knowledge of the test engineer for the 
generation of test cases. This enhances the efficacy of the test 
cases. Moreover, the use of simple use cases generated using 
ontology and the processing of these use cases in the UMTG 
toolkit to generate the test cases leads to the generation of a 
much more efficient set of input test data.  

5. FUTURE WORK 
Our future studies will focus on combining other technologies 
of Artificial Intelligence such as Artificial Neural Network 
(ANN), Genetic Algorithm (GA) and Simulated Annealing 
Algorithm (SAA). 
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