
 N.M.Nor et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3695 – 3699

3695

ISSN 2278-3091
Volume 9, No.3, May - June 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse182932020.pdf

https://doi.org/10.30534/ijatcse/2020/182932020


ABSTRACT

Socio-Technical Congruence (STC) is one of the most
significant current discussions in software engineering
community and have been used for measuring developer’s
coordination. Over the past few years, increasing interest
been observed in improvement of measure for STC, and its
relationship with task performance, software quality and
software productivity. However, a major limitation with this
kind of measure is the inability to represent lower level of
technical dependencies and only conceptualize a limited
range of actual coordination. This study therefore provides a
conceptualization to integrate lower-level technical
dependencies and actual coordination, and examine the
connection of STC on task complexity in distributed software
development. Thus, we outline the literature review, research
methodology, potential contributions and the expected
findings of the study.

Key words : Coordination, Dependencies, Software
Development, Software Engineering Projects, Technical
Dependencies.

1. INTRODUCTION

In the past decade, a large and growing body of literature
suggests that social and technical dependencies, are essential
in attaining effective developer coordination and
collaboration [1]. For instance, in software application,
current dependencies might be modified, and social
organization specifically team membership will evolve when
the new code dependencies pop up [2]. Literature evidence
has discussed how a project can matched its coordination
activities to fulfill the technical requirements so that optimal

coordination activities can occur in projects [2]. Over the past
decade, there have been several approaches to improvising
coordination in software engineering projects. For instance, a
study suggested the information hiding and modularization
theory that intends to alleviate software development
complexity. By reducing dependencies at the artefact level, it
is possible to reduce dependencies among developers [3].
However, these approaches have limitations that can impact
developer coordination. For example, as technical
interdependencies inside system module decrease,
coordination needs among teammates also decrease. Less
communication causes interpretations and misconceptions
[4]. Therefore, there exists Socio-Technical Congruence
(STC) method, which measures the match among
coordination needs and actual coordination activities [5].

Despite the recognized positive effect of STC, some of the
STC’s shortcomings and fundamental issues still need to be
addressed. Firstly, a recent study on STC suggested the
limitation that the conceptualizations of STC do not represent
lower-level technical dependencies and only conceptualize a
limited range of actual coordination among developers [6].
Secondly, little evidence established the relationship of STC
on task complexity, and prior literature on STC only focused
on a limited range of development settings [6]. Thus, STC to
be further explored in many aspects in order to emphasize it to
be classified among software development established
theories.

Accordingly, this study attempts to enhance the current STC
model by constructing an integrated model of socio-technical
congruence that conceptualizes lower-level technical
dependencies and to examine the socio-technical congruence
correlation on task complexity in distributed software
development.

This study has been organized in the following way. The first
section of this study details the literature review of STC. The

Modelling Lower-level Technical Dependencies to Improve

Coordination in Software Engineering Projects : A
Conceptualization

N.M.Nor1, S.S.M.Fauzi1*, R.Ahmad2, M.M.Rosli3
1Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Perlis Branch, Arau Campus,

02600, Arau, Perlis, Malaysia, shukorsanim@uitm.edu.my
2Department of Software Engineering, Faculty of Computer Science and Information Technology, University of

Malaya, 50603 Kuala Lumpur, Malaysia, rodina@um.edu.my
3Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor

Darul Ehsan, Malaysia, marshima@tmsk.uitm.edu.my

 N.M.Nor et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3695 – 3699

3696

second section is concerned with the methodology used for
this study. Third section begins by laying out the expected
potential contributions of this study. The fourth section
presents the expected findings of this study. Finally, the
conclusion gives a brief summary of this study.

2. LITERATURE REVIEW

A study found that complex and extensive software
engineering projects have many technical dependencies [7].
Throughout this paper, the term technical dependency will
refer to “a type of dependency between two technical entities”
[8]. Various types of technical dependencies exist in software
engineering projects, for instance modules that rely on other
modules [9]. The presence of technical dependencies in
software projects will not only increase the complexity of the
project but will also impact the coordination among software
developers [10].

Hence, Socio-Technical Congruence (STC) was introduced as
a conceptualization used to quantitatively study social and
technical aspects in software engineering projects [10]. STC
is specified as “the match among the coordination needs,
established by the dependencies between tasks, and the actual
coordination activities performed by developers” [10]. STC
conceptualization was first carried out by Melvin Conway
(1968), who observe that the system structure resembles the
organization structure whose constructed it [11]. Alignment
between developers formed when the developers collaborate
on the same tasks to keep abreast of the changes taking place
in the system. In Conway’s Law arguments, products should
be break down into components with restricted technical
dependencies in order to reduce communication overhead
[11]. However, due to the growth of the worldwide distributed
project, coordination also has become more challenging.
Then, information hiding and modularization theory that
intends to alleviate software development complexity was
suggested. This theory highlights the possibility to reduce
dependencies among developers, by reducing dependencies at
the artefact level [12]. However, these approaches have
limitations that can impact developer coordination and could
leads to coordination problems [13]. Thus, STC has been
introduced since the coordination required for the more
powerful technique to technical coordination [5].

In recent years, there has been an increasing amount of
literature on STC. Several studies thus far have paraphrased
the definition of socio-technical congruence [3],[10]. The
properties of STC have been explored in a study [14]. A
significant number of studies on the effectiveness of
socio-technical congruence has been reported. It has
conclusively showed that higher level of congruence could
reduce the time for resolution of a modification request,

decrease errors, boost productivity and reducing cost [3],[10],
[15]. Besides, in a study which set out to investigate the
measures for calculating STC, a model that involves weighted
edges has been proposed [15]. It has been demonstrated that
STC has a positive impact on software builds in software
engineering projects [8]. A prior empirical study created an
ISTC metric to collect STC measure for a person. The
research study wanted to discuss potential large-scale project
problems created by involvement in a variety of projects that
could affect the coordination needs of the project [16]. On the
other hand, another study broadened the STC measure by
adding extra congruence scales for resource-dependent and
knowledge-dependent congruence. The study also examined
the relationship between STC on team performance and found
that a higher degree of congruence could have obtained when
there is a greater interaction between project team [17].

To manage STC at Global Software Development (GSD), a
researcher proposed a multi-agent architecture. In the study,
the researcher expanded the range of the congruence metric to
represent all project stages [18]. Derived from social network
approaches, a quantitative measure of social interaction has
been proposed [19]. Another study reported that low
congruence and having several coordination problems could
substantially raise the project failures number [13]. On the
other hand, other studies investigate the Conway’s Law and
Reverse Conway’s Law throughout the open-source
development projects environment by introducing a different
measurement method. This study later explores the
significance of STC as the project matures [20]. The
researchers focused their research on FreeBSD project. They
found out when the FreeBSD project had such a steady
background of development over the past seven releases, the
congruence measure is substantially high [20]. The same
authors then investigate the correlations among the
coordination activities of the project team and the dependency
structure of project in the Ruby ecosystem [21]. The study
conclusively reported that the teamwork pattern between the
Ruby ecosystem’s developers is not inevitably demonstrated
the communication requirements showed by the dependencies
between projects in the ecosystem.

Prior study outlines result from experimental research that
lead to a deeper understanding of STC by analyzing benefits
and disadvantages of congruent and incongruent plots. They
observed that, amendments in the communication structure
alone cause amendments in the software products structure
[22]. Further, they establish a rubber band effect hypothesis
and counsel a replication research that outgrowing the fresh
insights of Conway’s law by examining the progress of STC
over the years [22]. In an analysis of STC in the ambience of
open-source component, a researcher recognizes the necessity
for a new model of STC for dependencies among projects. The
study proposed a need to revise the function of STC in

 N.M.Nor et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3695 – 3699

3697

open-source component use since less interaction intervenes
as an open-source component is utilized more frequently [23].
In a study which designed to determine the impact of STC on
software development, an author investigated STC and task
performance’s connection in software development life cycle
incremental model. The research investigated the insight of
the incremental model. In the same vein with prior research,
they agreed that a technique of breakdown task helps lessens
dependencies which deliver good performance [24]. The
researchers then constructed a model of the STC and project
performance’s relationship in the various types of software
development lifecycle [25]. Another research was performed
to study the effect of STC on software quality. By using
defects as a measurement of software quality, this research
expects that higher congruence level in a project team will
lower the defects quantity and increase quality [26].

A recent study has suggested an approach to calculate STC
build-level for the utilization in prolonged fault prediction.
This finding indicated that STC build-level had a great
impact on ongoing integration build failures, and useful in
continuous flaw prediction [27]. Later, the same authors
explore the connection among STC file-level and bug
proneness in Open Source Software (OSS) projects. Some
required modifications were implemented to the technique of
calculating the coordination needs and coordination activities
at file-level compared to the original study [27].

Despite the recognized positive effect of STC, STC need to be
further explored in many aspects in order to emphasize it to be
classified among software development established theories.

3. METHODOLOGY

Figure 1 illustrate the proposed Socio Technical Congruence
(STC) model.

Figure 1: Proposed Socio-Technical Congruence (STC) model

A brief description about each variable is discussed below:

Coordination Requirement is a link that suggests that two
developers must be coordinated depending on their
assignment of tasks [13]. Data for coordination requirement
will be extracted from various sources. As for instance,
modification request report, version control system and also

source code itself. In this study, the coordination requirement
is derived from task dependencies occurring in
components-changed -together. Each task (Modification
Request) typically has components that need to be changed by
the developer(s). Hence, the coordination requirement of an
MR task is treated as a group. The study presumed a
coordination requirement among developers occurs when, at
least, two developers modify the similar component in the
similar MR task.

Actual coordination is the interaction between developers that
occurs in the project [13]. Actual coordination will be
calculated based on communications that occurred in the
software repository comment. Actual coordination is
calculated by developing table matrices that indicate the
communication that occurred among person i and person j.

Congruence is described as the fit among coordination
requirements and actual coordination. It is measured by
matching the coordination requirement matrix with actual
coordination matrix [14]. The value of congruence is from 0
to 1. Congruence will be computed by comparing table
matrices between coordination requirement and actual
coordination.

Task Complexity is an indicator of the resources a system
expends while dealing with a software program to accomplish
a task. It is measured on the basis of program code which
disregards comments and stylistic features such as
indentation and naming conventions. Usually, the measures
rely on the size of the program, the control structure, or the
nature of the module interfaces [28].

Due to a more limited range of variables available in the
open-source project datasets, four of these control variables
were able to be applied in this study, namely, task
dependency, priority, release and change size. First is task
dependency, which is a measure of the affected MRs which
need to be referred to in order to accomplish the task. It is
measured as a number of MRs that are depended on in
performing the task (#of MRs). Second is priority, which is
the order in which the task should be fixed. It will be
measured as a value assigned to MRs to represent the level of
criticality of the MRs. Third is release, which is the ordinal
number of the software version contributed to be the. It is
measured as the number of releases of the product with which
the MR is associated. Lastly change size, is an indicator for
the total number of development work performed. The change
size is measured as the sum of files and components that are
altered as part of the MR change.

Open source project will be selected to conduct the research.
This research will fully utilize R script to perform data
extraction, cleaning, and statistical regression. Thus, script
needs to be developed and tested before being implemented.

 N.M.Nor et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3695 – 3699

3698

This study will use archived data from a Modification Request
(MR) bugs repository and software repository comments. We
will extract data for this study by using Mining Software
Repository (MSR) method. The MR bugs repository consists
of a bundle of information related to changes in each project.
This information can be manipulated and analyzed to
understand the coordination requirement among the
developers. Coordination requirement is derived from the
technical dependencies occurring in components-changed-
together.

The study will use linear regression to identify the association
among socio-technical congruence and task complexity in
distributed software development projects.

4. POTENTIAL CONTRIBUTIONS
This research will potentially provide the following
contributions: 1) an improved STC model, and 2) an
additional piece of empirical evidence on the relationship
between the improved STC model on task complexity in
distributed software development.

This study also extends the coordination requirements by
using ‘components-change-together’ which differ from
previous studies. Besides, this study also provides a valuable
opportunity to advance the understanding of how social
factors affect the working mechanism, and the used of
technical systems. This interpretation offers some crucial
insights into the software industry because it can lead to the
improvement of organizational structures and technical
frameworks and therefore, can contribute to the creation of
more suitable systems to end-users.

5. EXPECTED RESULT
In this study, we expect to find higher levels of congruence
between lower-level technical dependencies is associated with
task complexity.

6. CONCLUSION
The intention of this research is to integrate lower-level
technical dependencies and actual coordination and examine
the connection of STC on task complexity in distributed
software development. In this study, an outline of the
literature review, research methodology, potential
contributions and expected outcomes of this study are
presented. Therefore, this study should make an essential
contribution to the field of software development by
representing lower-level technical dependencies in the
conceptualization of socio-technical congruence.
Understanding how socio-technical congruence will manifest
itself in the new ways of working will also help understanding
how future software should be created and maintained.

ACKNOWLEDGEMENT

This research was supported by Ministry of Higher Education
Malaysia under Fundamental Research Grant Scheme
(FRGS), grant (600-IRMI/FRGS 5/3/ (092/2019)).

REFERENCES
1. R. E. Grinter. Understanding dependencies: A study of

the coordination challenges in software development,
Ph.D. dissertation, University of California, Irvine, 1996.

2. M. Cataldo. Dependencies in geographically
distributed software development: overcoming the
limits of modularity, Dissertation Abstracts
International, vol. 68, no. 12, December 2007.
https://doi.org/10.1145/1414004.1414008

3. M. Cataldo, J. D. Herbsleb, and K. M. Carley,
Socio-technical congruence: a framework for
assessing the impact of technical and work
dependencies on software development productivity,
in Proceedings of the Second ACM-IEEE international
symposium on Empirical software engineering and
measurement, New York, 2008, pp.2-11.

4. R. Hassani, and Y. E. B. El Idrissi. A framework to
succeed planning of IT projects through the Machine
Learning. International Journal of Advanced Trends in
Computer Science and Engineering, vol. 9, no. 2,
March-April 2020
https://doi.org/10.30534/ijatcse/2020/220922020

5. J. Herbsleb, M. Cataldo, D. Damian, P. Devenbu,
Easterbrook, S., and A. Mockus. Socio-technical
congruence (STC 2008), in Companion of the 30th
international conference on Software engineering. 2008,
pp. 1027-1028.

6. J. M. Sierra, A. Vizcaíno, M. Genero, and M. Piattini. A
systematic mapping study about socio-technical
congruence, Information and Software Technology, vol.
94, pp. 111–129, 2018.

7. N. Sekitoleko, F. Evbota, E. Knauss, A. Sandberg, M.
Chaudron, and H. H. Olsson. Technical dependency
challenges in large-scale agile software development,
in International Conference on Agile Software
Development, Springer, Cham, 2014, pp. 46-61.
https://doi.org/10.1007/978-3-319-06862-6_4

8. I. Kwan, A. Schroter, and D. Damian. Does
socio-technical congruence have an effect on software
build success? a study of coordination in a software
project. IEEE Transactions on Software Engineering,
vol.37, no.3, pp.307-324, 2011.

9. P. Rani, and Katari. An Application for the
Development of Smart Library as an Academic
Initiative, International Journal of Advanced Trends in
Computer Science and Engineering, vol. 8, no. 1.3, pp.
55-58, 2019.

10. M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M.
Carley. Identification of coordination requirements:
implications for the Design of collaboration and

 N.M.Nor et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3695 – 3699

3699

awareness tools, in Proceedings of the 2006 20th
anniversary conference on Computer supported
cooperative work, 2006, pp. 353–362.

11. M. E. Conway. How do committees invent.
Datamation, vol. 14, no.4, pp.28-31, 1968.

12. D. L. Parnas. On the criteria to be used in
decomposing systems into modules, Communications
of ACM, vol. 15, no. 12, pp. 1053–1058, Dec. 1972.
https://doi.org/10.1145/361598.361623

13. M. Cataldo, and J. D. Herbsleb. Coordination
breakdowns and their impact on development
productivity and software failures, IEEE Transactions
on Software Engineering, vol.39, no.3, pp.343-360,
2012.

14. A. Sarma, J. Herbsleb, and A. Van Der Hoek. Challenges
in measuring, understanding, and achieving
social-technical congruence, in Proceedings of
Socio-Technical Congruence Workshop, In Conjuction
With the International Conference on Software
Engineering, 2008.

15. F. Bolici, J. Howison, and K. Crowston. Coordination
without discussion? Socio-technical congruence and
Stigmergy in Free and Open Source Software
projects, in Socio-Technical Congruence Workshop in
conj International Conference on Software Engineering,
2009.

16. P. Wagstrom, J. D. Herbsleb, and K. M. Carley.
Communication, Team Performance, and the
Individual: Bridging Technical Dependencies, in
Academy of Management Proceedings, 2010, pp. 1–7.

17. L. Jiang, K. M. Carley, and A. Eberlein. Assessing team
performance from a socio-technical congruence
perspective, in 2012 International Conference on
Software and System Process (ICSSP), 2012, pp.
160–169.
https://doi.org/10.1109/ICSSP.2012.6225961

18. J. P. Rodríguez. An Agent Architecture with which to
Improve Coordination and Communication in Global
Software Engineering, Ph.D. dissertation, University of
Castilla-La Mancha, Ciudad Real, Spain, 2013.

19. G. Valetto, M. Helander, K. Ehrlich, S. Chulani, M.
Wegman, and C. Williams. Using Software
Repositories to Investigate Socio-technical
Congruence in Development Projects, in Fourth
International Workshop on Mining Software
Repositories (MSR’07: ICSE Workshops 2007), 2007,
pp. 25–25.

20. M. M. Syeed, and I. Hammouda. Socio-Technical
Dependencies in Forked OSS Projects: Evidence
from the BSD Family, JSW, vol.9, no.11,
pp.2895-2909, 2014.
https://doi.org/10.4304/jsw.9.11.2895-2909

21. M. M. Syeed, K. M. Hansen, I. Hammouda, and K.
Manikas. Socio-technical congruence in the ruby
ecosystem, in Proceedings of The International
Symposium on Open Collaboration, 2014, pp. 2.

22. S. Betz, S. Fricker, A. Moss, W. Afzal, M. Svahnberg, C.
Wohlin, and T. Gorschek. An evolutionary perspective
on socio-technical congruence: The rubber band
effect, in 2013 3rd International Workshop on
Replication in Empirical Software Engineering
Research, 2013, pp. 15-24.
https://doi.org/10.1109/RESER.2013.8

23. M. Palyart, G. C. Murphy, and V. Masrani. A study of
social interactions in open source component use,
IEEE Transactions on Software Engineering, vol.44,
no.12, pp.1132-1145, 2017.

24. W. A. W. M. Sobri, S. S. M. Fauzi, M. H. N. Nasir, R.
Ahmad, and A. J. Suali. A mechanism to assess the
relationship between socio-technical congruence and
project performance in incremental model. Journal of
Fundamental and Applied Sciences, vol.9, no.5S,
pp.58-74, 2017.
https://doi.org/10.4314/jfas.v9i5s.6

25. W. A. W. M. Sobri, S. S. M. Fauzi, M. H. N. M. Nasir, R.
Ahmad, and A. J. Suali. Measuring The Impact of
Socio-Technical Congruence in a Different Types of
Software Life Cycle, Sains Humanika, vol.9, no.1-3,
2017.

26. A. J. Suali, S. S. M. Fauzi, M. H. N. M. Nasir, and W. A.
W. M. Sobri, Assessing the Impact of Socio-Technical
Dependencies on Software Defect. Sains Humanika,
vol.9, no.1-3, 2017.

27. W. Zhang, S. C. Cheung, Z. Chen, Y. Zhou., and B. Luo.
File-level socio-technical congruence and its
relationship with bug proneness in OSS projects.
Journal of Systems and Software,2019.
https://doi.org/10.1016/j.jss.2019.05.030

28. M. Vieira and D. Richardson. Analyzing dependencies
in large component-based systems, in Proceedings
17th IEEE International Conference on Automated
Software Engineering, 2002, pp. 241–244.

