
Manoj Sethi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5433 – 5441

5433

Distributed Association Rules Mining of Varying
Data Partition Size Using Nodesets

Manoj Sethi1, Dr. Rajni Jindal2
1Department of CSE, Delhi Technological University, ShahbadDaulatpur, Delhi-110042, manojsethi@dce.ac.in
2Department of CSE, Delhi Technological University, ShahbadDaulatpur, Delhi-110042, rajnijindal@dce.ac.in

ABSTRACT

Association rule mining in the distributed database has
become an important area of research, where frequent pattern
or itemsets are found in a large distributed data of varied
sizes stored at multiple sites. In recent years, new efficient
data structures have been proposed for the data mining. A
new algorithm named as QDFIN(Quick distributed frequent
itemset mining using nodeset) is proposed in this paper
which uses the efficient nodeset data structureto store the
candidate itemsets locally at each site and zero-first
technique to balance the load and pruning to reduce the
candidate sets. The algorithm is implemented and the speed
performance is compared with PFIN and FDM using FP-
Growth algorithms. Results shows that the proposed
algorithm not only outperform other algorithms on varying
size data partition but also on uniform distributed data on 4, 5
and 6 node setups.

Key words: Association Rule, Database, Distributed Mining,
frequent itemset, Nodeset

1. INTRODUCTION

 The voluminous amount of data is created at their different
sites and locations which varies in size. It is not feasible to
load all data onto a centralized database for analysis due to
resource limitations or policy. With the rising and varying
size of databases and the demand of mining patterns from
data, there is a need to find a solution to analyse the data as
and where it is generated and find interesting and frequent
pattern mining in the distributed data. The solution is
distributed Association rule mining(DARM)[1]. In DARM,
data is stored at different locations and various processors
work parallel to provide a fast and efficient results.
Distributed data mining finds local frequent patterns at
different sites, communicates with other sites and finds the
global frequent itemsets. As compared to centralized frequent
itemsets mining lesser algorithms have been proposed in
literature for DARM. Some of the famous DARM algorithms
are AprTidRec[2], Fast Distributed Mining of association
rules (FDM)[1], Optimized distributed association rule
mining (ODAM)[3] etc.[4] states that FIN algorithm is the
most recent algorithm and fast in generating frequent
itemsets.

1.1. Data Structures used for Mining

 Data Structures play an important role in reducing the
computational complexity of an algorithm which makes it
better. Different data structures are proposed in the literature
and based on these data structures different DARM
algorithms are proposed. The popular data structures which
are used in data mining are FP-tree used by the FP-Growth[5]
algorithm; N-List is a structure like FP-tree[6]and stores
information obtained from PPC-tree about the itemsets using
preorder, postorder; Nodesets is an efficient data
structure[7], which stores only postorder or preorder of nodes
in the form of N-info; Trie data structure[8]is a prearranged
data structure, also known as radix tree, digital tree or prefix
tree. In Trie structure strings are used to store the keys.

 This paper presents an efficient technique for mining
distributed data of varying size to find association rules
QDFIN which uses the novel data structure nodeset using
FIN[7] algorithm and also best technique for reducing the
candidate sets a new zero-first technique for utilizing the
sites capabilities in an effective manner. It combines the
advantages of local efficiency, load balancing in highly
skewed data and low communication load in finding global
frequent itemset in place of only one centralized site.

1.2. Paper Organization

 Rest of the paper is divided into 5 more sections. Section2
discusses the related work done in this area. Section 3
describes the basic technologies use in the distributed data
mining rule mining. In section 4 new algorithm QDFIN is
proposed and explained in detail. Section 5 is experimental
evaluation and comparison of the proposed algorithm with
some of the existing algorithms. Lastly section 6 describes
the conclusion and future scope of the work.

2. RELATED WORK

 Many surveys have been done on finding association rules
in the database[9], [10].Association rule mining gained
popularity with an article published in 1993 by [11] which
has been sited more than 22000 times according to google
scholar.

 The apriori like algorithms are based on anti-monotone
property[12] and are used to find the frequent itemsets. These
algorithms use a strategy to generate and test candidate

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse181942020.pdf

https://doi.org/10.30534/ijatcse/2020/181942020

Manoj Sethi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5433 – 5441

5434

set[2]. Two variations[2]AprioriTID and AprioriHybrid are
also proposed in literature.AprioriTID[2] does not use the
database again for finding the frequency of the items after the
first pass. AprioriHybrid[2] is also uses Apriori algorithm in
the first pass and then moves to AprioriTID at the end of the
pass.In 2000, another algorithm FP-Growth[5]was proposed,
where a tree like structure is made after database scan. The
tree is used to mine frequent itemsets. An algorithm PPC-
Tree[13] is proposed in 2012 which uses new structure N-
List structure based on PrePost. N-List is a novel vertical
data representation structure and it is originated from a FP-
Tree like structure.

 Algorithm FIN, Fast mining frequent itemset[7] using
structure Nodesets and based on the PrePost algorithm is
another algorithm proposed in 2014. Nodeset is also based on
PPC-Tree butto store information of each node, it makes
Nodeset structure using postorder or preorder of the node.
DFIN [14] algorithm uses diffnodesets structure which is also
based on structure nodeset. In 2015 [6] proposed an
Algorithm based on PPC-Tree structure PrePost+. To
discover the frequent itemsets, it sets enumeration search tree
using the N-List structure. Structure linear prefix
tree[15]composed of array forms was introduced which
minimizes the pointers between the nodes. IFIN+
algorithm[16] used multi-physical computational units
whereas [17] proposed a shared memory parallelism for
improving single machine performance for the frequent
itemset mining. A framework DT-DPM (Decomposition
Transaction for Distributed Pattern Mining) [18]proposed in
literature. It integrates Density-Based Spatial Clustering of
Applications and distributed computing represented, CPU
multi-cores and Single CPU for solving pattern mining
problems. Performance of the algorithm[19] depends on the
number of nodes in the distributed mining. Execution time
improves with increase of number of nodes or transactions.
When number of nodes increases but number of transactions
are less, algorithms will take longer execution time[20].
FDM optimised with FP-Growth and DiffSet-mining
improves the performance of FDM algorithm. A case
study[21] shows that the association mining helps in busting
the business and predicting the sales.

2.1.Distributed Data Mining Algorithms

 Count Distribution(CD) [22] is another important
algorithm where the apriori algorithm is run parallelly. In
CD, local support count for each itemset is found. The local
count is communicated to each site and then by each site
global frequent itemsets are found. AprTidRec algorithm is
proposed by [12] in 2011, which is based on apriori
algorithm. It has only the joint steps and pruning steps. It
generates tidRec, a record structure for each candidate
frequent itemset. It has better running time than the apriori
algorithm.FDM [1]proposed in 1996 is based on Count
Distribution and apriori algorithms. It finds the local large
itemsets, communicate them to the respective polling sites to
find global count which are used to find the global frequent
itemsets. The number of messages exchanged are low, just
O(n).

 A distributed association rule mining algorithm[23],DMA
requires just O(n)support count messages exchange for each
candidate set generated and candidate sets are also low.

ODAM (Optimized Distributed Association Rule Mining) [3]
algorithm removes the infrequent global frequent size-1
itemsets after discovery then finds larger frequent itemsets.
The focus is on the communication and synchronization
issues. PFIN algorithm for mining frequent itemsets is
proposed by [24], which decomposes the large problem in
small tasks executed in parallel and uses nodeset data
structure. It is using a hash-based load balancing strategy for
optimize resources. Many algorithms are proposed based on
the map-reduced technique in distributed environment.
MRPrepost[25]and Prepost[26] algorithms are based on map-
reduce where first one gives the processing of prepost
algorithms where as second one iscloud implementation and
apriori map-reduce. Nadar proposed a new data structure
nagNodeset[27]used in the algorithm nagFIN. The algorithm
is based on the nodes in the prefix tree. There are some
negative associations[28]along with the positive associations
that exist in the data which are very significant for the
business. . [29] proposed an effective algorithm based on
optimized matrix computation for Multi party data
computation having different challenges.

3. BASIC TECHOLOGIES

3.1 Distributed Data Association Rule Mining

 In this proposed work, focus is on distributed association
rule mining (DARM), where data are captured or gathered in
distributed manner at different location with varying data
partition size. One of the popular algorithms for DARM is
the FDM (Fast Distributed Algorithm for mining Distributed
Association Rules)[1], which uses Apriori algorithm to
generate the local frequent itemsets at each site. Another
algorithm, FIN (Fast mining frequent itemsets using
Nodesets)[7]proposed a new approach based on the PrePost
algorithm which having advantages of apriori algorithm as
well asFP-Growth algorithm. In this work, FIN[7] algorithm
is used in the FDM algorithm to generate the local frequent
itemsets in the distributed database with a new balancing
technique zero-first. The problem statement is given below as
taken from [1] is defined below:

 Let DB is a transaction database with ܫ = {݅ଵ, ݅ଶ, … , ݅௠} set
of items. Transaction T of DB is a set of items whereܶ ⊆ .ܫ
An itemsetܼ ⊆ ܼ belongs to T if and only if ,ܫ ⊆ ܶ. An
association rule(AR)is represented[1] as ⇒ ܻ, where,ܼ ⊆
ܻ	݀݊ܽ	ܫ ⊆ andܼ	ܫ ∩ ܻ = ϕ.The ARܼ ⇒ ܻ	holds in the
database with a confidence ‘c’ implies that the probability of
a transaction in database containing Z also contains Y is ‘c’.
The association ruleܼ ⇒ ܻ	has support ‘s’ in database
implies that the probability of a transaction in database
contains both Z and Y is ‘s’. The association rules mining is
a task to search all the association rules in the database where
support is greater than the minimum support threshold value
and confidence is greater than the minimum confidence
threshold value.

 For an itemset Z, support is defined as the percentage of
transactions in database containing Z, and its support count,
Z.sup, is total number of transactions in database containing
Z. An itemset Z is large or frequent occurring if its support is
equal or greater than the minimum support threshold. An
itemset of size k is called a k-itemset. The problem of mining
association rules is divided into two subproblems[11]: (i) to

Manoj Sethi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5433 – 5441

5435

find all frequent itemsets in the database for the given
minimum support threshold value, and (ii) to generate the
association rules using the frequent itemsets found in (i). As
the mining association rules cost is mainly involved in(i), the
focus is on the evolution of some efficient technique for the
first subproblem [11].Distributed algorithm[1] for mining
association rules statement:

 To examine the association rules mining in a distributed
databaseDB with D transactions and n-sites ଵܵ,ܵଶ, … ,ܵ௡ 	
having n-partitioned{ܤܦଵ,ܤܦଶ , … ௜ܦ	 ௡}respectively. Letܤܦ,
be the size of the partitions ܤܦ௜where i = 1, 2, . . . , n. Z.sup,
the support counts of an itemset Zin database and
௜݌ݑܵ.ܼ .ܼ ,௜. For each site ௜ܵܤܦ	݊݅	 ௜݌ݑܵ is the local support
count of Z and Z. supis the global support count. For a
specific minimum support threshold value‘s’, Zis also
globally large itemset if	ܼ. 	݌ݑݏ ≥ 	ݏ	 × ,correspondingly ;ܦ	
Zis locally large itemset at site	 ௜ܵ, if 	ܼ. ௜	݌ݑݏ ≥ 	ݏ	 × .௜ܦ	
LetL be the globally large itemsets[1] in database, and
 the globally large k-itemsets in L. A distributed(௞)ܮ
association rule mining algorithm finds the globally large
itemsets L.

3.2. POC Tree

 Nodeset data structure[7] is based on the pre-order coding
tree called POC-tree used in FIN algorithm. It is constructed
with one root and prefix subtrees. Root is marked as null and
item subtree as nodes. Database is scanned for frequent size -
1 itemsets and POC is constructed. It is used to generate
nodeset of size-2 itemsets by preorder traversal. This is an
efficient data structure, which use POC tree and reduces data
scans and increase efficiency.

3.3.Candidate Set Pruning

 Pruning is a process of reducing candidate sets[1]
generated by data scan for itemsets size k=1,2,..n. It
eliminates the frequent itemset which are not locally large
itemset i.e. having support count less than the minimum
support threshold as those may not be the global frequent
itemsets. This reduces the number of candidates sets for
communication to other nodes so reduces the communication
load over the network and enhance the performance.

3.4. Load Balancing Technique

 In the real life scenario database is distributed where data
is captured or gathered at different locations. The size of the
data partitions varies[19] in size from a few hundred of
transactions on one site to a million of transactions at other
site. In the distributed data mining resources are also
distributed and there should be a mechanism to utilize all the
nodes by allocating processing to less occupied nodes. In this
paper a new technique for load balancing Zero-first for
distributed data mining is presented with the following
assumptions.

Assumptions:
 Database is partitioned and distributed at various sites

around the globe

 Data is generated or captured at different sites and due to
the resources constraints or policies, data may not be
transferred to other sites

 Size of each partition may differ
 Size of Candidate set at different sites may differ
 All sites may not be equally loaded

 Based on the assumptions Zero-first technique is
developed for the assigning polling sites to each of the
locally large candidate sets received from all the sites. The
poling site is responsible for finding the globally large
itemset from the list of locally large itemset. The new
technique ensures the load is distributed to less occupied sites
fora distributed data association rule mining.

Definition : Zero-first technique:

 For sitesܵ = 	 { ଵܵ, ଶܵ, … , ܵ௡} and locally large candidate
sets{ܩܥଵ,ܩܥଶ, … .௡} received from n sitesܩܥ,

ܩܥ	ݐ݁ݏ	݁ݐܽ݀݅݀݊ܽܥ = 	 ଵܩܥ} ଶܩܥ, , … {௡ܩܥ,
ݔܽ݉ − ܩܥ = ଵܩܥ}ݔܽ݉	 ଶܩܥ, , … {௡ܩܥ,
Where max-CG is the max number of candidates sets
broadcasted by any site.

ݔܽ݉	݂݅ − ܩܥ > ,ଶܩܥ,ଵܩܥ}݁݊݋ݕ݊ܽ		 … {௡ܩܥ,
	௜	ܥ		ݎ݋݂ < ݔܽ݉ − Arrange	ܩܥ
ܵ′ = }ݎ݁݀ݎܱ	 ଵܵ,ܵଶ, … ,ܵ	௡ି௤}	

′ܵ		݁ݏ݅ݓݎℎ݁ݐ݋ = }ݎ݁݀ݎܱ	 ଵܵ, ܵଶ, … , ܵ	௡}	݈݈ܽ	ݏ݁ݐ݅ݏ

 Sites in the order of size of the candidate sets starting with
zero, excluding the sites with maximum size of candidate set.
If candidate sets broadcasted by each site is not equal, then
arrange all sites.
 complete combined list of all locally large itemsets = ′ܩܥ
received from all the sites removing duplicates

′ܩܥ = 	 ଵܩܥ} 	∪ ଶܩܥ	 	∪ 	…∪ {௡ܩܥ	
Allocate ܩܥ ᇱ	݋ݐ		ݏ݁ݐ݅ݏ	ܵ′

 After arranging the sites in order to their load, allocation of
polling sites to the itemset are done in the order of the site
occupancy (zero-first order) to check it for globally large
itemset.[1]If all the frequent itemsets are not assigned then
the repeat the assignment in the same sequence of initial
assignment.

 Let there are four sites ଵܵ, ܵଶ, 	ܵଷ,	ܵସ. The candidate sets
broadcasted by site ଵܵ{ }, ܵଶ{ܾܽ,ܾ݂	},ܵ	ଷ{ܾܽ	}, 	ܵସ{ܾܿ	}.
Applying zero-first technique, the ordered candidate set is
{ܾܽ,ܾܿ, ܾ݂	} and ordered site set is { ଵܵ, ܵଷ,	ܵସ	} leaving mist
occupied site {ܵଶ}. Using the zero-first technique, the first
polling site is { ଵܵ	}and first locally large itemset in the
ordered candidate set {ab} is assigned to site { ଵܵ}. Similarly
{bc} is assigned polling site is {ܵଷ}and {bf} itemset is
assigned to {ܵସ}. Leaving the most occupied sites who
broadcasted maximum number of locally large itemsets.

 The sites with small data partitions have fewer number of
transactions are under-utilized in terms of the processing,
memory and scan time as compared to the sites with large
data partitions. The Zero-first technique assigns more
responsibility to less loaded sites and does not assigns any
load to the most occupied sites. It ensures load balancing
across the sites.

Manoj Sethi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5433 – 5441

5436

4. QDFIN : PROPOSED METHOD

 In this section new algorithm QDFIN is proposed which
uses efficient data structure nodeset at each site and construct
the POC-tree[13]. It uses pruning technique locally and
globally to reduce the candidate sets and zero-first technique
for assigning polling site for load balancing. Globally large
itemsets are computed at less loaded sites increasing the
computational capacity.

Symbol Description[1]

s - Support threshold min-sup;
D - Number of transactions in database;
௞ܮ − Globally large k-itemsets;
Z.sup - Global support count of Z;
௞ܣܥ − Candidate sets generated from ܮ௞;
 ;௜ܤܦ ௜ - Number of transactions inܦ
 ;௜(௞)–globally large k-itemsets at ௜ܵܮܩ
 ;௜(௞) - Candidate sets produced by FIN algorithmܩܥ
 ;௜(௞)ܩܥ ௜(௞) - Locally large k-itemsets inܮܮ
ܼ. ௜݌ݑݏ − Local support count of Z at ௜ܵ
ܮ ௜ܲ(௞) – Local pruning k-itemset at site ௜ܵ

Algorithm -1: Zero-First Technique

݁ݖ݅ݏ	:࢚࢛࢖࢔ࡵ − ݏݐ݁ݏ݉݁ݐ݅	݁݃ݎ݈ܽ	ݕ݈݈ܽܿ݋݈	݇

݅)௜ࡿݐݏ݈݅	݁ݐ݅ݏ	݃݊݅ݐݏܽܿ݀ܽ݁ݎܾ	݀݊ܽ	 = 1,2, … ݊)

݁ݖ݅ݏ	ݎ݋݂	ݐݏ݈݅	݁ݐ݅ݏ	݈݈݃݊݅݋݌	:࢚࢛࢖࢚࢛ࡻ −k itemset.

 ݁ݐ݅ݏ	݈݈ܽ ݎ݋݂ .1
 ௞ܥ	݁ݖ݅ݏ	ݐ݊݁ݎ݂݂݁݅݀	݁ݎܽ	ݏ݁ݐ݅ݏ	ݕܾ	ݐ݁ݏ	݁ݐܽ݀݅݀݊ܽܿ	݂݅ .2
 	݂݋	ݎܾ݁݉ݑ݊	ℎ݁ݐ	݂݋	ݎ݁݀ݎ݋	݊݅	ݏ݁ݐ݅ݏ	ℎ݁ݐ	݁݃݊ܽݎݎܽ .3

 ݅ܵ	݀݁ݐݏܽܿ݀ܽ݁ݎܾ	ݐ݁ݏ݉݁ݐ݅	݁݃ݎ݈ܽ	ݕ݈݈ܽܿ݋݈
.ݔܽ݉	ℎݐ݅ݓ	ݐݏ݈݅	݉݋ݎ݂	ݏ݁ݐ݅ݏ	ℎ݁ݐ	݁ݒ݋݉݁ݎ .4 ݎܾ݁݉ݑ݊

 ௜(௞)ܮܮ݀݁ݐݏܽܿ݀ܽ݁ݎܾ	ݐ݁ݏ݉݁ݐ݅	݁݃ݎ݈ܽ	ݕ݈݈ܽܿ݋݈	݂݋
 ݏݐ݁ݏ݉݁ݐ݅	݁݃ݎ݈ܽ	ݕ݈݈ܽܿ݋݈		݈݈ܽ ݎ݋݂ .5
 ௜(௞)ܮܮ	ݏ݁ݐ݈ܽܿ݅݌ݑ݀	݃݊݅ݒ݋݉݁ݎ	ݎ݁݀ݎ݋	݊݅	݁݃݊ܽݎݎܽ .6
 ݏ݁ݐܽ݀݅݀݊ܽܿ	݀݁ݎ݁݀ݎ݋	݈݈ܽ	ݎ݋݂ .7
݋ݎ݁ݖ	݊݅	݁ݐ݅ݏ	݈݈݃݊݅݋݌	ℎ݁ݐ	݊݃݅ݏݏܽ .8 − ݎ݁݀ݎ݋	ݐݏݎ݂݅
 ݀݁ݐ݅ݏݑܽݔ݁	ݐ݁ݏ	݁ݐܽ݀݅݀݊ܽܿ	݂݅ .9
݇	ݎ݋݂	ݐݏ݈݅	݁ݐ݅ݏ	݈݈݃݊݅݋݌	݊ݎݑݐ݁ݎ .10 − ݐ݁ݏ	݁ݐܽ݀݅݀݊ܽܿ
11. ݁ 	݁ݏ݈
 	݀݊ܽ	ݏ݁ݐ݅ݏ	݂݋	ݎ݁݀ݎ݋	݁݉ܽݏ	ℎ݁ݐ	ݐܽ݁݌݁ݎ .12

 ݐ݊݁݉݊݃݅ݏݏܽ	݁ݑ݊݅ݐ݊݋ܿ

Algorithm-2: QDFIN

݅)௜ܤܦ	݁ݏܾܽܽݐܽ݀		݀݁݊݋݅ݐ݅ݐݎܽܲ	:࢚࢛࢖࢔ࡵ = 1,2, …݊)

 .ݏݐ݁ݏ݉݁ݐ݅	݁݃ݎ݈ܽ	ݕ݈݈ܾܽ݋݈݃	݈݈ܽ	݂݋	ݐ݁ݏ	:ܮ	:࢚࢛࢖࢚࢛ࡻ

݇	݈݈ܽ	ݎ݋݂	݁݀݋ܿ	ℎ݁ݐ	݁ݐݑܿ݁ݔܧ:ࢊ࢕ࢎ࢚ࢋࡹ − 	ݏݐ݁ݏ݉݁ݐ݅
,ݏ݁ݐ݅ݏ	݈݈ܽ	ݐܽ ݇	݉݋ݎ݂	݃݊݅ݐݎܽݐݏ = .1	ℎܽ݊ݐ	ݎ݁ݐܽ݁ݎ݃	݁ݖ݅ݏ	ℎݐ	1

 ݏ݁ݐ݅ݏ	݈݈ܽ ݎ݋݂ (1
݇	ݎ݋݂ (2 = 1	
	ݐ݊ݑ݋ܿ	ݐݎ݋݌݌ݑݏ	ℎ݁ݐ	݂݀݊݅ (3 ௜ܶ(ଵ)
 	ℎ݉ݐ݅ݎ݋݈݃ܽ	ܰܫܨ	݃݊݅ݏݑ	݁݁ݎݐ	ܥܱܲ	ℎ݁ݐ	ݐܿݑݎݐݏ݊݋ܿ (4
݇	ݎ݋݂ (5 > 1

݁ݖ݅ݏ	ℎ݁ݐ	݂݀݊݅	 (6 − ݋݈݃ܽ	ܰܫܨ	݊݅ݏݑ	ݐ݁ݏ݉݁ݐ݅	2
݁ݖ݅ݏ	݂݀݊݅	݋ݐ	ܥܱܲ	ℎ݁ݐ	݊ܽܿݏ) (7 − 	(ݐ݁ݏ݉݁ݐ݅	2
	ݏݐ݁ݏ݉݁ݐ݅	ݐ݊݁ݑݍ݁ݎ݂ ݋ݐ	ݏ݃݊݋݈ܾ݁	ܼ	ݏݐ݁ݏ݉݁ݐ݅ ݈݈ܽ	ݎ݋݂ (8 ௜ܶ(௞)
ℎ݁ݐ ݁݃ݎ݈ܽ	ݕ݈݈ܽܿ݋݈	ݏ݅	ݐ݊ݑ݋ܿ	ݐݎ݋݌݌ݑݏ ݂݅ (9 ݊
 	ݏ݁݀݋݊	݈݈ܽ	ݎ݋݂ (10
 ௜(௞)ܮܮ 	ݐݏ݈݅	݁݃ݎ݈ܽ	ݕ݈݈ܽܿ݋݈	݋ݐ݊݅	ݐ݁ݏ݉݁ݐ݅	ݐݎ݁ݏ݊݅ (11
 ݏ݁ݐ݅ݏ	݈݈ܽ	݋ݐ	ݐݏܽܿ݀ܽ݁ݎܾ (12
 ݏ݁ݐ݅ݏ	݈݈ܽ ݎ݋݂ (13
 ௜(௞)ܮܮ	݁݃ݎ݈ܽ	ݕ݈݈ܽܿ݋݈	݋ݐ	ݏ݃݊݋݈ܾ݁	ܼ	ݏݐ݁ݏ݉݁ݐ݅ ݈݈ܽ ݎ݋݂ (14
 ݐ݁ݏ	݃݊݅݊ݑݎ݌	݈ܽܿ݋݈	݋ݐ݊݅	ݐ݁ݏ݉݁ݐ݅ ݐݎ݁ݏ݊݅ (15
݋ݎܼ݁	݃݊݅ݏݑ (16 − ݏ݁ݐ݅ݏ	݈݈݃݊݅݋݌	݂݋	ݐݏ݈݅	ℎ݁ݐ	ݐ݁݃,ݐݏݎ݂݅
,ݏ݁ݐ݅ݏ	݈݈ܽ ݎ݋݂ (17
 ௠ܵ ݁ݐ݅ݏ	݈݈݃݊݅݋݌ ݋ݐ ௜(௞)ܮܮ	݁݃ݎ݈ܽ	ݕ݈݈ܽܿ݋݈ ݀݊݁ݏ (18
 ܲܮ	݃݊݅݊ݑݎ݌	݈ܽܿ݋݈	݋ݐ	݃݊݋݈ܾ݁	ܼ	ݏݐ݁ݏ݉݁ݐ݅ ݈݈ܽ	ݎ݋݂ (19
 	ݏ݁ݐ݅ݏ	݈݈ܽ	݋ݐ	ܼ	ݐ݁ݏ݉݁ݐ݅	ݎ݋݂	ݐݏ݁ݑݍ݁ݎ	݈݈݃݊݅݋݌	݀݊݁ݏ (20
൫		݉݋ݎ݂	ݐݏ݁ݑݍ݁ݎ	݈݈݃݊݅݋݌	ݕ݈݌݁ݎ	ݏ݁ݐ݅ݏ	݈݈ܽ (21 ௜ܶ(௞)൯
.ܼ	ݏݐ݊ݑ݋ܿ	ݐݎ݋݌݌ݑݏ	݀݊݁ݏ (22 ௠݌ݑݏ
௜(௞)ܲܮ	ݐ݁ݏ	݈݈݃݊݅݋݌	ℎ݁ݐ	݊݅	ܼ	ݏݐ݁ݏ݉݁ݐ݅ ݈݈ܽ	ݎ݋݂ (23
.ܼ	ݐ݊ݑ݋ܿ	ݐݎ݋݌݌ݑݏ ݁ݒ݅݁ܿ݁ݎ (24 ݏ݁ݐ݅ݏ ݈݈ܽ ݉݋ݎ݂ ௠݌ݑݏ

 ݁݃ݎ݈ܽ	ݐ݋݊	ݏ݅	ݐ݁ݏ݉݁ݐ݅	݁ݎℎ݁ݓ
 ݏݐ݁ݏ݉݁ݐ݅	ℎ݁ݐ	݈݈ܽ	ݎ݋݂ (25
26) ܿ .ܼ	ݐݎ݋݌݌ݑݏ	݈ܾܽ݋݈݃	݁ݐ݈ܽݑ݈ܿܽ supܾݕ

 ݁ݎℎ݁ݓ		ݐݎ݋݌݌ݑݏ	݈ܽܿ݋݈	݈݈ܽ	݂݋	݌ݑ݉ݑݏ
27) ݂݅	ܼ. ݌ݑܵ > ݈݀݋ℎݏ݁ݎℎݐ	ݐݎ݋݌݌ݑݏ	݈ܾܽ݋݈݃	ℎ݁ݐ
 ௜(௞)ܩ	ݐ݁ݏ݉݁ݐ݅	ݐ݊݁ݑݍ݁ݎ݂	݈ܾܽ݋݈݃݋ݐ	݀݀ܣ (28
 ; ௜(௞)ܩ	ݐ݁ݏ݉݁ݐ݅	ݐ݊݁ݑݍ݁ݎ݂	݈ܾܽ݋݈݃ ݐݏܽܿ݀ܽ݋ݎܾ (29
30) ݂݅(݇ = ;(௜ܤܦ)ݐ݊݁ݑݍ݁ݎ݂݊݅_݁ݒ݋݉݁ݎ		(1
 ݏݐ݁ݏ݉݁ݐ݅	݁݃ݎ݈ܽ	ݕ݈݈ܾܽ݋݈݃	݈݈ܽ	݂݋	ݐ݁ݏ	݁ݐܽݎ݁݊݁ܩ (31
݇	݁݃ݎ݈ܽ	ݕ݈݈ܾܽ݋݈݃	݊ݎݑݐ݁ݎ (32 − (௞)ܮ ݐ݁ݏ݉݁ݐ݅

The steps in the algorithm are explained below:

(i) Database ܤܦ௜ for all partitions are scanned, local

counts for all items of size-1 are found and POC-tree
is constructed using FIN algorithm[7].This is
responsible to generate candidate set ܩܥ௜(௞)at all sites
locally. If k>1 in the next pass, it uses POC-tree to
find the candidate sets using FIN algorithm. If ܩܥ௜(௞)
is empty, no k size itemsets are found then the process
stops.(line 1-7)

(ii) At all the sites locally large itemsets of size-k are
found by local pruning at all the sites where the count
is more than the minimum local support threshold ‘s’
and generate the locally large ܮܮ௜(௞)itemset for
broadcast.
The locally large itemset ܮܮ௜(௞)are broadcasted to all
other sites to get and inform the information about
locally large for finding the globally large
itemsets.(line 8-15)

(iii) Zero-first algorithm receives list of sites and locally
large items communicating by each site. It returns the
list of all polling sites for size-k locally large itemsets
 ௜(௞)which is communicated to all the sites ௜ܵby theܮܮ
designated site.(line 16, call algorithm 1)

(iv) Polling sites store the itemsets in ܮ ௜ܲ(௞) and store the
list of sites and itemsets Z.large_sites. The polling
sites ௜ܵwhich receive these local frequent items ܮܮ௜(௞)
send request to sites where these items were not
frequent and gets the count of the items from

Manoj Sethi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5433 – 5441

5437

remaining sites.Global counts of these items are found
and the global frequent size-1 items are broadcasted to
all sites.All these sites after receiving the request from
the polling site check the structure and return the
support count of these items to polling sites which are
not locally large at that location.(line 21-25)

(v) At the polling sites after receiving all counts,
computes the global counts for locally large items
 ௜(௞). Then the global count of each candidateܮܮ
itemset is compared with the minimum support count
condition to find the global large itemsets. The
globally large itemsets are stored in ܩ௜(௞) and
broadcasted to all other sites. (line 25-29)

(vi) A home site receives the frequent itemsets. If it is the
first pass then the dataset is updated. All the infrequent
itemset of size-1 are removed from the database. A
final set of global large itemsets are returned.After this
to find the 2-itemset, all local large itemsets having
size greater than 1, repeat the process step 1. Remove
all infrequent items are removed having count less
than minimum the globally large size-1 items. The
POC-tree is scanned. This generates the 2-itemset and
nodeset structure and so on. These local large itemsets
are sent to respective polling sites.(line 30-32)

4.1. Efficiency of Local Frequent Mining

 All the sites use efficient FIN[7] algorithm to find locally
large itemsets and create an efficient POC-tree and nodeset
data structure. All the frequent 1-itemsets are stored in the
POC tree. For finding frequent 2-itemsets and nodeset the
POC tree is scanned. Then delete the infrequent itemsets and
initialize the nodesets of all frequent2-itemsets by null. Using
the preorder traversal, generate the nodesets of all frequent 2-
itemsets. Then the same procedure is used to generate the
frequent-k itemsets. This reduces the number of database
scans and improves the performance. The nodeset is an
efficient data structure, this helps in further reducing the scan
time. Table 1 is the part of the transaction database for size-1
items. Figure1 shows the POC structure construction and
nodeset for the data in Table 1.

Table 1: Database Transactions

TID Items Ordered frequent items
101 b, e, j, i, p b, i
102 f, c, b, i b, c, f, i
103 f, b, i, k b, f, i
104 b, c, h, b, c
105 F, a, b, c a, b, c, f
106 A, f, c, g, b a, b, c, f

Figure 1: The POC-tree construction and Nodeset

4.2. Distributed Database and Resources

 Data is distributed across the globe amongst different sites
{ ଵܵ, ଶܵ, … , ܵ௡}so called distributed database DBi. Each site
finds the local frequent itemset at each site LLi. Each site is
being used and gives throughput proportional to the number
of nodes or sites. There is a tradeoff between the
communication load for processing throughput in order to get
the best performance out of the setup depending of number of
sites. There is not only one centralized site which processes
and finds the frequent itemsets rather all sites behave as
home as well as poling site. Sites having small data portion a
few transactions. It takes less time to scan and create nodeset,
also less capabilities and memory to process the small data
as compared to sites with large data. These nodes are under-
utilized. Zero-first technique takes care of the highly loaded
sites and assign polling to less loaded sites first for
generating the globally large itemsets. It is the best load
balancing technique which utilizes the less loaded sites by
effective use of resources. All the sites are involved in
processing the support count and finding the global frequent
itemsets for a specific local large itemset hereby reducing the
load of finding global frequent itemset on one centralized
site. In this algorithm all sites participate in the process of the
local and them global frequent itemsets and good amount of
parallelism is achieved.

4.3. Communication Load Reduction

 At each site there is a process of pruning which reduces
the size of the candidate sets. Whenever any site finds the
candidate sets of frequent itemsets, if it is not locally large to
that particular site, that site remove that itemset from the
candidate set by the means of local pruning. If frequent size-
2 itemset at site -2 {ab, ac, bf, cf}. After pruning itemsets
having support count less than the minimum support
threshold say {cf, bf}are removed from the candidate sets.
The remaining candidate sets {ab, bf} communicated to all
other sites.The pruning process reduces the number of
candidates sets drastically hence reduce the load on the
network and communication cost. This process makes this
network efficient algorithm as small set of data is being
communicated to all sites.

5. EXPERIMENTAL EVALUATION

5.1.Experimental Setup

 This section deals with the environment used to run the
algorithm and it is then evaluated depending upon various
parameters and compared with FDM-FP and PFIN[24] on
datasets two datasets. Experiments are performed on Eclipse
Indigo with clusters of nodes varying four, five and six nodes
with windows 10 OS, with RAM 6 GB each and hard-disk 1
TB system 64 bit running at 3.30 GHz having Java JDK 1.7

5.2. Datasets

 The algorithms are run on Mushroom datasets. These
datasets are downloaded from FIMI data repository[30].
Mushroom dataset is build using characteristics of
mushrooms and dataset specifications are:

 Average length = 23
 Number of Items = 119

Manoj Sethi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5433 – 5441

5438

 Total Transactions = 8124

Two experiments are performed, one on equal data
size partitions at each site and another on varying size data
partitions in the following sizes.

Experiment 1: Uniform data partitions size shown in Table 2

Table2: Uniform Data Partition size at different site

No. of
Nodes

DB1 DB2 DB3 DB4 DB5 DB6

4 2030 2030 2030 2034
5 1625 1625 1625 1625 1624
6 1350 1350 1350 1350 1350 1374

Experiment-2: Varying data partition size shown in Table 3.

Table3:VaryingData Partition size at different sites

No. of
Nodes

DB1 DB2 DB3 DB4 DB5 DB6

4 500 1500 2500 3624
5 300 900 1500 2100 3324
6 100 600 1100 1600 2100 2624

5.3. Performance Analysis

 The proposed algorithm QDFIN is compared with FDM-
FP (FDM using FP Growth) and PFIN(Parallel FIN)[24]
algorithms on the basis of execution time.In the proposed
algorithm all sites participate in the processing giving better
throughput and pruning technique reduces the number of
candidate sets resulting low communication overhead. It
assigns the polling site using new presented technique zero-
first which further reduces load on the fully occupied sites.
At each site an efficient data structure Nodeset based on
POC-tree[7]is used which reduces number of data scans and
hence improve the performance by reducing the data access
time.

 The algorithms are run on Mushroom dataset with
minimum supports thresholds of 10, 20, 30, 40, 50, and 60
percent. Both experiments are done on 4, 5, and 6 nodes
setups and are compared on the basis of execution time.

Figure 2: Execution time on uniform partition size on 4 nodes

Figure 3: Execution time on uniform partition size on 5 nodes

Figure 4: Execution time on uniform partition size on 6 nodes

Execution on Uniform data partition size

 In the first experiment where each site is having uniform
partitions size, QDFIN performs better in all 4, 5, and 6node
setups shown in Figures 2, 3, and 4. Figure 2 shows in 4-
node setup, execution time of QDFIN is close to the
execution time of PFIN algorithm as both the algorithm use
nodesets data structure for finding locally large itemsets,
which reduces the scan time. But it performs better than the
FDM-FP where FP-tree structure is used. In the 4-node setup
all the sites are producing candidate sets and the advantage of
the zero-first technique is very small. The same algorithms
are also compared in the 5-node and 6-node setups.Figures3
and 4show that the proposed algorithm QDFIN performs best
in 5 nodes. It further improves in 6-node setup as with the
increase of number of nodes, number of locally large k-
itemsets further reduces with the increase of k. It makes some
imbalance in the sites in broadcasting the number of
candidate sets where some sites become less occupied or
free. The zero-first technique assigns the polling site in order
of their occupancy for finding globally large itemsets.
Figures 3 and 4 shows the same effect where the
performance of the QDFIN is better than the other
algorithms.

Manoj Sethi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5433 – 5441

5439

Figure 5: Execution time on varying partition size on 4 nodes

Figure 6: Execution time on varying partition size on 5 nodes

Figure 7: Execution time on varying partition size on 6 nodes

Execution on varying data partition size

 In the second experiment, same algorithms are compared
with the varying size of the data partitions on various sites.
Figures 5,6, and 7 show that the performance of the QDFIN
is best in all three setups. The time performance of QDFIN is
much better due to the reason of load balancing. As the data
size available at all nodes differ implies that number of
transactions differ. The sites with fewer number of
transactions produces small candidate sets, takes less time to
scan the data, use lesser memory, less processing required.
QDFIN takes the advantage of the load difference and
assigns less loaded sites first as polling site. Some sites have
large number of transactions takes more time and processing

capabilities to scan, store the data and generate more
candidate sets and are highly busy. The zero-first technique
of the proposed algorithm excludes these busy sites from the
polling site list. Number of sites increases in Figures 6, 7 and
the difference in number of candidate sets generated by
different sites also increase. Some of the sites generate no
candidate sets even for k=1 or k=2, this imbalance further
increase in case of 6-node setup as shown in Figure7. It
directly effects the load balance, which makes QDFIN best
amongst the all three algorithms. The performance difference
as compared to FDM-FP is even more due to the efficient
data structure nodesets being used in QDFIN as compared to
FP-Tree. It is also observed that with low minimum support
threshold say 10%, 20%, high number of frequent itemsets
are generated and all algorithms take more time and QDFIN
performs better due to the difference of candidate set
generations amongst each site. The time performance
difference reduces for higher minimum support
threshold50%, 60% because smaller number of candidate sets
are generated, even some sites generate zero frequent
itemsets and QDFIN performs better by load balancing.

 QDFIN performs best in lower as well as higher minimum
support count in both the experiments i.e. with varying or
uniform size data partitions in all three setup 4, 5, and 6
nodes as compared to the PFIN and FDM-FP algorithms. It
also shows that with the increase of the number of nodes or
decrease in the minimum support threshold QDFIN
outperforms other similar algorithms specially in varying
data size. It uses the advantages of the POC-tree and nodeset
data structure locally by saving scan time, pruning in
reducing communication and zero-first technique for load
balancing.

6. CONCLUSIONS

 In this paper, new algorithm QDFIN for distributed
association rule mining on distributed data of varying
partition size is proposed. The proposed algorithm uses the
efficient data structure, nodeset[7] to generate the candidate
itemsets at each site locally, the pruning of data for low
communication load and zero-first technique for load
balancing. The algorithm performance is evaluated on three
different setups of 4-nodes, 5-nodes, and 6-node with varying
support threshold. Two experiments are performed one with
uniform and one with varying data partition size. The
performance of the proposed algorithm is compared with
some of the similar algorithms FDM-FP and PFIN[24]
algorithms.

The QDFIN outperforms the existing algorithms in

the execution time comparisons in all setup, especially in
varying data partition size in all 4, 5, and 6 node setups. The
new zero-first technique is very useful in the real life
scenario where the data is skewed i.e. not uniformly
distributed amongst the sites and even not possible to balance
the same. It performs better with the increase of number of
sites or nodes as it overcome the disadvantage of the data
skew.

 In future this algorithm can be used in larger setup and
also for large scale distributed association rule mining
problems and for large datasets. The resources and the

Manoj Sethi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5433 – 5441

5440

capabilities of the nodes can be considered for further
improvement.

REFERENCES

1. D. W. Cheung, Jiawei Han, V.T. Ng, A. W. Fu,

and Yongjian Fu, "A fast distributed algorithm for
mining association rules”, Fourth International
Conference on Parallel and Distributed Information
Systems, IEEE, 1996.

2. Agrawal R. and Ramakrishnan Srikant, "Fast
algorithms for mining association rules", in Proc.
International Conference on Very Large Scale Data
Base, 1994, pp. 487-499.

3. Ashrafi, Mafruz Zaman, David Taniar, and Kate Smith,
"ODAM: An optimized distributed association rule
mining algorithm”, IEEE distributed systems online,
2004.
https://doi.org/10.1109/MDSO.2004.1285877

4. P. Naresh and Dr. R. Suguna, “Association rule
mining algorithms on large and small datasets: a
comparative study”, in Proc. International Conference
on Intelligent Computing and Control Systems (ICICCS
2019) IEEE: CFP19K34-ART, pp. 587-592.

5. Han, Jiawei, Jian Pei, and Yiwen Yin., "Mining
frequent patterns without candidate generation”, in
Proc. of the 2000 ACM SIGMOD international
conference on Management of data, vol. 29. no. 2, pp.
1-12, 2000.
https://doi.org/10.1145/335191.335372

6. Deng, Zhi-Hong and Sheng-Long Lv., "PrePost+: An
efficient N-lists-based algorithm for mining frequent
itemsets via children–parent equivalence pruning”,
 Expert Systems with Applications, vol.42 no.13, pp.
5424-5432, 2015.

7. Deng, Zhi-Hong and Sheng-Long Lv., "Fast mining
frequent itemsets using Nodesets”, Expert Systems
with Applications, vol. 41 no. 10, pp. 4505-4512, 2014.

8. F. Bodon and L. Rónyai, “Trie: An alternative data
structure for data mining algorithm”, Mathematical
and Computer Modelling, vol. 38, Issue 7–9, pp. 739-
751, 2003.

9. Vinaya Sawant and Ketan Shah, “A survey of
distributed association rule mining algorithms”,
Journal of Emerging Trends in Computing and
Information Sciences, vol. 5, pp. 391-398, 2014.

10. Han, Jiawei, et al., "Frequent pattern mining:
current status and future directions”, Data Mining
and Knowledge Discovery, vol.15.1, pp. 55-86, 2007.
https://doi.org/10.1007/s10618-006-0059-1

11. Agrawal R., Tomasz Imieliński, and Arun Swami,
"Mining association rules between sets of items in
large databases", ACM SIGMOD Record 22.2,pp. 207-
216, 1993.

12. Ailing Wang, "An improved distributed mining
algorithm of association rules”, Journal of
Convergence Information Technology, vol. 6,
no.4,pp.118-122, 2011.

13. Deng, ZhiHong, ZhongHui Wang, and JiaJian Jiang, "A
new algorithm for fast mining frequent itemsets
using N-lists”, Science China Information Sciences,
vol.55, no.9, pp. 2008-2030, 2012.

14. Deng, Zhi-Hong, "DiffNodesets: An efficient
structure for fast mining frequent itemsets”, Applied
Soft Computing, vol. 41, pp. 214-223, 2016.
https://doi.org/10.1016/j.asoc.2016.01.010

15. Pyun, Gwangbum, Unil Yun, and Keun Ho Ryu,
"Efficient frequent pattern mining based on linear
prefix tree”, Knowledge-Based Systems, vol. 55, pp.
125-139, 2014.

16. Van Quoc Phuong Huynh, Josef Küng, Markus Jäger
and Tran Khanh Dang, “IFIN+a parallel incremental
frequent itemsets mining in shared- memory
environment”,in Proc. International Conference on
Future Data and Security Engineering FDSE 2017,pp.
121-138.

17. Van Quoc Phuong Huynh, Josef Küng and Tran Khanh
Dang, “A Parallel incremental frequent itemsets
mining IFIN+: improvement and extensive
evaluation”,Transactions on Large-Scale Data-and
Knowledge-Centered Systems XLI,pp. 78-106, 2019.

18. Vinaya Sawant and Ketan Shah, “Performance
evaluation of distributed association rule mining
algorithms”, 7th International Conference on
Communication, Computing and Virtualization,
Procedia Computer Science 79, pp. 127-134, 2016.
https://doi.org/10.1016/j.procs.2016.03.017

19. Asma Belhadi, YoucefDjenouri, Jerry Chun-Wei
Linand Alberto Cano, “A general-purpose distributed
pattern mining system”, Springer-Applied
Intelligence, vol. 50, pp. 2647–2662, 2020.

20. George Gatuha and Tao Jiang, “Smart frequent
itemsets mining algorithm based on FP-tree and
DIFFset data structures”, Turkish Journal of
Electrical Engineering & Computer Sciences, vol. 25,
pp. 2096-2107, 2017.

21.Norulhidayah Isa, Nur SyuhadaMohd Yusof and
Muhammad Atif Ramlan, “The implementation of
data mining techniques for sales analysis using daily
sales data”, International Journal of Advanced Trends
in Computer Science and Engineering, vol. 8, no.1.5,
pp. 74-80, 2019.
https://doi.org/10.30534/ijatcse/2019/1681.52019

22. Agrawal R. and Shafer John C., "Parallel mining of
association rules", IEEE Transactions on Knowledge
& Data Engineering, vol. 8, Issue 6, pp. 962-969, 1996.

23. David Cheung, Vincent T.Y. Ng, Ada W. Fu and
Yongjian Fu, "Efficient mining of association rules in
distributed databases”, IEEE Transactions on
Knowledge and Data Engineering, vol. 8 no. 6, pp.
911-922, 1996.

24. Chen Lin and Junzhong Gu, “PFIN: A parallel
frequent itemset mining algorithm using nodesets”,
International Journal of Database Theory and
Application, vol. 9, no.6, pp. 81-92, 2016.
https://doi.org/10.14257/ijdta.2016.9.6.08

25. Liao, Jinggui, Yuelong Zhao and Saiqin Long.,
"MRPrePost—A parallel algorithm adapted for
mining big data", IEEE Workshop on Electronics,
Computer and Applications(IWECA), 2014.

26. Thakare, Sanket, Sheetal Rathi, and R. R. Sedamkar,
"An improved Prepost algorithm for frequent
pattern mining with Hadoop on cloud”, Procedia
Computer Science, vol. 79, pp. 207-214, 2016.

27. Nader Aryabarzan, Behrouz Minaei-Bidgoli and
Mohammad Teshnehlab, “negFIN: An efficient

Manoj Sethi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5433 – 5441

5441

algorithm for fast mining frequent itemsets”,Expert
System and Applications, vol. 105, pp. 129-143, 2018.

28. NVS Pavan Kumar, Dr. J K R Sastry and Dr. K Raja
Sekhara Rao, “Mining distributed databases for
negative associations from regular and frequent
patterns”, International Journal of Advanced Trends in
Computer Science and Engineering, vol. 8, no. 4, pp.
1449-1463, 2019.
https://doi.org/10.30534/ijatcse/2019/64842019

29.Jun Liu, Yuan Tian, Yu Zhou, Yang Xiao and Nirwan
Ansari, “Privacy preserving distributed data mining

based on secure multi-party computation”,
Computer Communications, vol.153, pp.208-216, 2020.
https://doi.org/10.1016/j.comcom.2020.02.014

30. FimiDataset Repository: Online Portal
http://fimi.ua.ac.be/data/

