
Richa Vats et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8142 - 8148

8142

Test Case Prioritization Using Cat Swarm Optimization
Richa Vats1 , Arvind Kumar1

1SRM University Delhi-NCR, Sonepat (Haryana), 131029, India
ritzi1606@gmail.com, k.arvind33@gmail.com

ABSTRACT

Regression testing is one of time taking and expensive task.
It is an indispensable part of SDLC process. The main task of
regression testing is to scuttleall test cases of a given test
suite. But it is time consuming and tedious task and also
needed more efforts and time. The effort can be described in
term of human work. One of the solutions for
aforementioned task is to automate the entire process through
prioritizing algorithm. The aim of thee algorithms is to
determine optimal test-cases for regression testing from a
given test suite. The other objective of these algorithmsis
also addressed the time and effort issues of regression testing
through achievinghigher faults detection. Hence, in this
work, a new technique based on CSO techniqueis
implemented to prioritize test cases. Prior to apply the CSO
method for prioritizing test-cases, some amendmentsare
inculcated in CSO algorithm to achieve optimum results in
terms of fault detection. The experiment demonstratesthe
applicability of CSO based prioritization technique for
attaining effective results especially prioritizing task.

Key words:Prioritization Algorithm, Fault Detection,
Clustering, Software Engineering, CSO Algorithm,
Regression Testing

1. INTRODUCTION

As in past few decades, there is tremendous growth in
software field. Large numbers of software are developed for
automation, day to day operations, healthcare, manufacturing
etc. But, prior to delivery of the software’s, it requires testing
of the developed software. It is very time consuming and
panic task. Hence, it can be defined as to evaluate the
capabilities like behavior, failure etc., of a software under
different circumstances and also evaluates its features using
predefined criteria’s. Moreover, this process also monitors
the development of software. Further, the testing is also done
to validate the software and detect the errors. A study
showed that this process requires sixty percent of cost and
also effort of SDLC. Different test cases are generated to
evaluate test data and meet the testing criteria. In software
development, testing can be described as an important
activity for validating the performance of software. The aim
of testing is to detect the unusual behavior of software
through test-cases and also identify errors in software. This
can be done through sequence of inputs and produced

expected output. Further, due to dynamic and competitive
environment, the requirements of user are changed
frequently. In turn, testing process become tedious, time-
consuming and complex task as per developer and tester
perspectives and more challenging. It is also observed that
frequently changes in requirement also lead to frequent
change in test-cases and it can overload the tester as to test
new test-cases as well as store available test-cases. Because
in future, any updation can be done in software, thentester
will be able to reuse test-cases. This process can include
large numbers of subroutines, functions and statements of an
application system. It is also noticed that most of software
development organizations believed that software is
independently designed, and also having better security and
testing abilities [1]. Hence, testing can be described as to
determine the faults in software application using test-cases
for improving the quality of software. However, test-cases
cannot be design easily, optimal test-cases takes lot of time
and effort. Further, these test-cases also contain several
subroutines which are initially described and output of these
test cases should be predictable. The uncertainty is also
associated with designed test-cases as program will pass the
specific test-case accurately or not. It can be described
through well intended, deliberated, scheduled and prioritized
process[2]. Further, this process also highlights the reason
for failure of program.The primary task of prioritization
algorithms is to investigate the role of test-cases for
validating the software application. These algorithms also
determine the optimal subset of test-cases from a test suite in
a hope that this subset of test-cases fully investigate the
software application instead for executing the entire test-
cases presented in test suite. Finally, a tester can schedule
test-cases in such a manner that its traverse maximum code
in minimum time and also reducing cost factor. Large
number of prioritization algorithms are reported in literature
for test suite optimization. These algorithms can be worked
with bugs removal, test-case execution etc. This work
introduces a CSO based algorithm for prioritizing the test-
cases. CSO algorithm inspired through the behavior of cats
and applied in diverse field [3-10]. Its stated that CSO based
prioritization algorithm obtains more accurate results for
test-cases prioritization.

2. RELATED WORKS

This section describes recent works on TCP and it is listed
below.

ISSN 2278-3091
Volume 9, No.5, September - October 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse175952020.pdf

https://doi.org/10.30534/ijatcse/2020/175952020

Richa Vats et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8142 - 8148

8143

Harrold et al. [11]selected the test-cases characteristics set
for developing a test suite minimization method. These
selected test cases givesame coverage like complete test suite
with reduced cost of regression testing. A new method to
assess regression testing in terms of completeness,
correctness, effectiveness, and generalization is presented in
[12]. In this work, author has developed some criteria to
weather a regression test either safe or unsafe. To choose the
optimal test-cases, some techniques are presented in [13-
14].The other techniques for prioritizing test-casesare
presented in [15]. The performance of these techniques is
evaluated using fault detection rate.To improve the rate of
fault detection using based on TCPis reported in [16]. This
work introduces version-specific TCP concept. This concept
enhances the fault rate detection in regression testing.
Moreover, some version specific prioritization techniques are
also reported to prioritize the test cases for a test suite [17-
18]. In continuation of their work, another technique based
on the magnitude of cost effectiveness is also presented in
[19]. A cost effective prioritization method is also reported in
[20]. A prioritization technique for object-oriented
programming language is reported and this technique gained
wide popularity among programmer [21]. A regression
testing based on black box testingis developed by Qu et al.
[22]. This technique can assemble all faulty test cases
together. Further, the priorities associated with technique are
adjusted as per results of test-cases dynamically. An
approach based on historical valuefor TCP is reported in
[23]. This technique is used for computing the severity of
faults. Further, historical value can be used for computing
the cost to a cost-cognizant TCP based on historical value. In
software testing, minimization and prioritization of test-cases
are important aspects. So, a study on these aspects is
presented in [24]. Bajwa and Kaur developed an adaptive
approach for test cases prioritization based on GA [25].It can
speed up the scheduling of test cases. To improve the
coverage of test cases prioritization, an immune based
genetic algorithm is reported in [26], in the proposed
approach, an immune operator is incorporated in genetic
algorithm to overcome the low convergence problem. It is
noted that IGA give better results thangenetic algorithm. A
hybrid approach based on genetic algorithm and SA is
reported for TCP [27]. This approach can reduce cost as well
as enhance fault rate. Tulasiraman and Kalimuthu developed
a cognizant cost and history basedTCP approach [28]. The
proposed approach computes fault rate and cost based on
historical information of test-cases. Moreover, artificial
immune system algorithm is also applied to find the effective
test cases. A multiobjective search-based regression TCP
approach is presented in [29]. It is amalgamationof epistasis
theory and ant colony optimization algorithm (ACO). The
epistasis theory is used to update the pheromone strategy of
ACO algorithm. To enhance the effectiveness of TCP, Chen
et al. [30], presented an adaptive random sequence approach.
The proposed approach consists of two clustering algorithm
such as K-means and K-medoid.The simulation results stated
that the proposed approach enhances earlier detection of fault
rate. To detect the faults earlier, a fuzzy TPOSIS technique is
reported to prioritize test-cases [31]. In this approach, fuzzy

principles are used for decision making. A risk based
prioritization approach is reported for test cases [32]. In this
work, fuzzy expert system is developed to accurate detection
of risks or faults. Noguchi et al. [33] developed a frame work
for TCP using ant colony optimization algorithm. Jiang and
Chan presented local beam search basedtechnique for
effective TCP [34]. The proposed approach is validated
using four benchmarks test cases datasets and gives better
results than greedy and genetic algorithms.Prioritizing the
test cases based on total coverage, Konsaard and
Ramingwong applied a modified genetic algorithm for TCP
[35]. A greedy based prioritization approach is reported for
optimizing the TCP problem [36]. The proposed approach
consists of exploration strategy and multi level coverage
model to capture the bugs. The MOGA is reported for TCPto
overcome regression testing cost [37]. In this work, a
mechanism based on orthogonal design and evolution is
incorporated in multi objective GA. It is seen that DIV-GA is
more capable than other algorithms.To optimize the test
cases in time constrained environment, panwar et al. [38]
presented a hybrid approach by combining CS and modified
ACO algorithm for obtaining optimized test cases. A
Bayesian based clustering approach is presented to prioritize
test cases [39]. In this work, two java projects are considered
to identify the mutated faults. The performance of the work
is compared with greedy approach and BNA techniques. It is
stated that Bayesian based clustering gives promising results.
To detect faults with minimum time and earlier, Tulasiraman
et al. [40] presented pareato and clonal selection algorithm
based multi-objective approach for TCP. It is noticed that
proposed multi objective approach scheduled the test cases
optimally and earlier. Suri and Singhal presented ACO based
technique for regression testing and prioritization [41].
Further, it is seen that a time bounded constraint is
incorporated in proposed approach to determine optimal test
cases. Results confirm that ACO based technique is one of
effective technique for TCP.

3. PROPOSED APPROACH PRIORITIZING BASED
ON CLUSTERING

3.1 Motivation
The motivation of this research is to develop CSO based
prioritization algorithm for the identification of optimum
test-cases from a test suite. Generally, test suite comprises of
large number of test-cases and execute each test-case is a
time-consuming task. In turn, testing effort will be increased.
Furthermore, test-cases are characterized on the basis of
attribute types and each test-case having some common
characteristics. Hence, to reduce the testing effort and also
accelerate the testing process, a CSO based prioritization
algorithm is proposed. The CSO based prioritization
algorithm works in two steps. In first step, test-cases
presented in test suite are separated into k-clusters based on
similarity or dissimilarity measure. The test-cases occurs
similarity placed in one cluster, whereas, dissimilar test-
cases put into different clusters. So, a cluster contains more
than one test-case that are similar in nature and occurs

Richa Vats et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8142 - 8148

8144

heterogeneity with other clusters. The second step towards to
selection of test-cases from clusters in random order. For
testing purpose. The main of work is to detect maximum
faults with respect to minimum test-cases.

3.2 Cat Swarm Optimization
It is arecent technique that can be adopted for searching best
solution through mimic the behavior of cats. This algorithm
represents the potential solution for the optimization
problems in terms of cats position. Further, optimum solution
is refined through two modes of CSO algorithm, these modes
can explain in terms of seeking mode and tracing mode.
Seeking mode denotes the moving characteristics of cats,
whereas, tracing mode corresponds to hunting capabilities of
cats. A flag value is used to determine the modes of cat i.e.
current presence of cat in modes. Two amendments are
introduced in CSO algorithms to make it more powerful.

1. A newsearch mechanism is devised for maintaining
local and global searches of CSO.

2. A conditional operator is applied to determine
whether the algorithm executes in exploration phase
or exploitation phase. This conditional operator
measures the current cost of gbest position of cat is
compared with previous cost. If, current cost is less
than previous cost then algorithm execute in
exploration phase. If significant difference occurs
between the cost function, then algorithm executes
in exploitation phase.

3. To improve the convergence rate, an inertia weight
function (w) is also used with searching mechanism
of CSO algorithm.

3.3 Pseudo Code of CSO Based Prioritization Algorithm
The steps of CSO based prioritization algorithm are listed as

1. Load test-cases from test suite and initialized the
different user defined parameters of CSO based
prioritization algorithm such as population of cats,
flag etc.

2. Randomly evaluate the catspositions and determine
velocities of cats.

3. Determine the similarity and dissimilarity between
test-cases and clusters; and grouped test-cases into
different clusters through similarity and
dissimilarity measure.

4. Evaluate the fitness (Fitୋ(X)) of cats and store the
positions of cats into variable Xୋ and denote best
position of cats using (Xୋ).

5. Check the flag value, If flag == 0; move to set 6,
otherwise move to step 7.

6. Cat in seeking mode, start seeking mode process
 Replicate the position of cats (suppose m) using

SMP parameter, where, m=SMP.
 similarity and dissimilarity between test-cases and

grouped the test-cases into different clusters.
 Evaluate the Fitness of catspositions (test-cases)
 Compare the fitness 	(Fitୗ(Xୗ)) of cats (test-

cases)and the minimum one acted as best cat
position (best test-case) and determine the other

catspositions using best cat positionand store
into	Xୗ.

 IfFitୋ(Xୋ) < Fitୗ(Xୗ),
Fitୗ(Xୗ) ← Fitୋ(X) and Xୗ ← Xୋ

Else
Fitୗ(Xୗ) ← Fitୗ(Xୗ)and	Xୗ,୬ୣ୵ ← Xୗ

Fitୋ(Xୋ) is global best fitness and Fitୗ(Xୗ) is
seeking best fitness.

7. Cat in tracing mode, starts tracing mode process
 Cats velocity is computed through equation 1.

V୬ୣ୵ = w ∗ V(t) + rଵ 	 ∗ ൫Xୗ(t) − X୧(t)൯ + rଶ 	
∗ ൫Xୋ(t) − X୧(t)൯														(1)

In equation 1, w is inertia weight, V(t)represents
the ith test case velocity, r describes through rand
function (rand(0,1)), Xୋ(t) represents best cat
position (test-case) and X୧(t)is current cat position
(test-case).

 Update the position of catk using equation 2.
X	୬ୣ୵ = 		X୧(t) + V୧,୬ୣ୵ 																									(2)

In equation 2, X୧,୬ୣ୵ represents new test case,
X୧(t) denotes ithcat position (test case) and		V୧,୬ୣ୵
represents velocity of ith test case.

 Determine the similarity and dissimilarity between
test-cases and Grouped test-cases into different
clusters through similarity and dissimilarity
measure

 Compute the fitness function (Fit(X)) and store
the best positions of cats in a variable	X.

8. If 	Fit(X) < Fitୗ(Xୗ)
Fitୋ(X) ←	Fit(X)and Xୋ ← X

Else
Fitୋ(X) ← Fitୗ(Xୗ)and Xୋ ← Xୗ

(Xୋ) global best cat position, Fit(X) Tracing
mode fitness, Fitୗ(Xୗ) Seeking mode fitness and
Fitୋ(X) fitness of global best cat (test case).

9. Is termination condition met, stop and collect final
solution, execute step 5.

Fitୗ denotes fitness of seeking mode and Fit describes
fitness of tracing mode. Fitୋdenotes global best fitness of
cat.
Xୗ		describes	best	cats	position	in	seeking	mode	and	X
describes best catsposition in tracing mode.Xୋrepresents the
global positions of cats.

3.4 Algorithm Explanation
CSO based prioritization algorithm starts with random
initialization of cats population and main task of algorithm is
to divide the test suite in optimal clusters, but having no prior
information regarding clusters..The populations are selected
randomly. In next step, the position and velocity vectors of
CSO based prioritization algorithm can be defined. In this
work, faults represented the cat position, while, execution
can be used to describe the velocity of cat. The optimal
solution for optimization problem can be either in term of
minimization or maximization. This work considers the
maximization as the solution for CSO based prioritization
algorithm. Hence, the objective function can be described in
terms of maximum faults detected with respect to minimum

Richa Vats et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8142 - 8148

8145

test cases. Further, an execution time is also adopted as
performance measure to compute efficacy of algorithm and it
should be kept minimum, So, along with maximum faults,
keep in mind that execution time should be minimum.
Further, a mutation operator is also used to generate the
diverse position of cats throughout the execution of the
program. The mutation operation changes the velocity and
position of cats and provides more optimum results in terms
of faults detection. The algorithm should stop its execution
after reaching maximum iteration. The optimum solution in
terms of maximum faults can be determined and also
scheduling of test-cases is computed.

3.5 APFD Metric
The results of CSO based prioritization algorithm is
computed through APFDmetric. This metric gives the results
in terms of maximum faults determined through test-cases
[18]. It can be ranges in between 0 to100. Considera test
suite(T) with ntest-cases. F represents faultsetwhich can be
boundedthrough test-cases. Suppose Tidenotes first test-case
that can explore fault i.APFDcan be computed using
following equation.

APFD =	1− ଵ	ା	ଶ	ା	ଷ	ା	…ା	୫
୬∗୫

+ 	ଵ	
ଶ
																					(3)

Table 1illustrates the ten test-cases. The test-cases are
prioritized in order
likeT1T4T3T2T5T8T9T7T6T10;T3T1
T2T6T5T4T8
T10T7T9.The APFD equation is adopted for determining
test-cases ordering. Furthermore, test-cases having higher
APFD values can be selected from test suite. The faults
detection can show the effectiveness of the test-cases.
TCPcan be optimized through maximum faults with respect
to minimum test-cases.

Table 1:Description of test-cases with seeded faults

Table 2:Execution time of test-cases

Test Case Faults Execution Time
T1 5 13
T2 6 11
T3 4 12.5
T4 3 10
T5 2 14
T6 3 9
T7 5 16
T8 4 8
T9 1 9

T10 2 11

4. SIMULATION RESULTS

This section illustratesperformance of CSO based
prioritization algorithm for prioritization of test-cases using a
given test suite. Test cases are prioritized through maximum
faults with respect to minimum test-cases. Further, execution
time is also considered one of important parameter to
evaluate the effectiveness of CSO based prioritized
algorithm. Hence, the execution time is associated with all
test-cases. A total thirty-eight test-cases are designed in this
work for a test suite(TS). Software reliability, software tools
used, lines of codes, faults and efforts (in hours) can be
described the attributes of test-cases. The proposed CSO
based prioritized algorithm works in two steps. Initially,
clustering task is performed on the test suite. The objective
of clustering is to divide the test-cases into different cluster
and each cluster contains the similar test-cases. So, the aim
of clustering is to determine the subsets of similar test-cases,
and in turn reduce the testing effort by considering either one
or two test-cases from each cluster for testing purpose. Total
31 test-cases are defined in test suite and in the first step,
these 31 test-cases are separated into five clusters. Further, it
is stated that an automatic clustering procedure is adopted in
this work and no prior information is required regarding
number of clusters. The second step corresponds for the
selection of test-cases for testing purpose. In this work, there
test-cases are considered for detecting the faults in a
specified program and test-cases are prioritized through
faults detected. The test-case that determine the maximum
faults can be assigned higher priority in the given cluster.
Table 3 presents the faults detected through each selected
test-cases from a given cluster and rank the test-case on the
behalf of faults detected. This works considers two software
application for evaluating the performance of CSO based
prioritized algorithm. These application programs are written
in object-oriented language and validated the proposed
algorithm. Further, some faults are seeded into program to
check the robustness and completeness of CSO based
prioritized algorithm with other prioritization algorithms.
The seeding faults in program is 10.Table 3 demonstrates the
faults detected through each cluster an also presents the

Richa Vats et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8142 - 8148

8146

effectiveness of the test-cases for faults detection. Its
revealed that cluster 2 detects more faults as compared to rest
of clusters. Whereas, cluster 5 detects lower faults as
compared to rest of clusters. Hence, the scheduling of test-
cases can be given as 23145.

Table 3:Faults selected through CSO for each test case

Cluster Test Cases No. of Faults

1
1 3
2 5
3 4

2
2 4
5 6
3 5

3
3 5
4 6
10 3

4
5 5
6 3
3 3

5
7 4
8 2
9 3

Table 4 depicts the results of CSO, K-means and
agglomerative techniques. The test cases are divided into
five numbers of clusters and eachcluster consists of three test
cases. It is observed that CSO technique detects higher faults
as compared to k-means and agglomerative techniques. It is
also noticed that for few test cases, k-means algorithm
detects higher faults than agglomerative techniques. On other
hand , agglomerative techniques detects higher faults in
compression to K-means such as for cluster 1 and test case 1,
agglomerative technique detect two faults, but k-mean
detects one faults and for same, CSO technique detects three
faults. Table 5 demonstrates the comparison of execution
time of all aforementioned techniques. It is revealed that
CSO technique requires minimum time as compared to k-
mean and agglomerative techniques to optimize the test
cases. Moreover, agglomerative technique requires
maximum time for optimizing test cases. Table 6 illustrates
the success rate of each technique. It is seen that for most of
test cases, CSO technique achieve hundred percent success
rate. While, K-means achieves hundred percent success rates
only for three test cases and agglomerative technique
achieves hundred percent success rates for two test cases.

Table 4:Fault detection using CSO, K-Means and
Agglomerative techniques.

Cluster Test Cases
Fault Detected

CSO K-
Mean Agglomerative

1
1 3 1 2
2 5 3 4
3 4 3 2

2

2 4 2 3

5 6 4 3
3 5 3 4

3
3 4 5 3
4 5 3 6

10 3 1 2

4
5 4 2 5
6 2 3 1
3 3 1 2

5
7 4 3 2
8 2 2 1
9 3 2 2

Table5:Comparison of execution time of CSO, K-Means and
Agglomerative techniques.

Cluster Test Cases
Execution Time

CSO K-Mean Agglomerative

1
1 10.4 11.6 12.1
2 11.2 11.8 13.4
3 12.33 11.2 14.2

2
2 15.75 16.8 17.1
5 13.6 14.1 15.6

3 10.2 11.3 10.6

3
3 10.2 9.4 10.5
4 14.1 15.3 15.5

10 11.2 13.4 14.1

4
5 9.2 9.4 10.2
6 12.2 11.4 12.4
3 10.3 10.6 11.15

5

7 18.55 20.3 20.5

8 11.6 12.1 13.4
9 10.2 10.5 11.4

Richa Vats et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8142 - 8148

8147

Table 6:Comparison of success rate of techniques for each
test case.

Cluste
r

Test
Cases

Success Rate

CSO K-
Mean

Agglomerativ
e

1
1 100% 33.3% 50%
2 100% 60% 80%
3 100% 75% 50%

2
2 100% 50% 75%
5 100% 66.6% 50%
3 100% 60% 80%

3
3 80% 100% 60%
4 83.3% 50% 100%

10 100% 33.3% 66.6%

4
5 80% 40% 100%
6 66.6% 100% 33.3%
3 100% 33.3% 66.6%

5

7 100% 75% 50%

8 91.56
% 100% 50%

9 100% 66.6% 66.6%

5. CONCLUSION

This work investigates the applicability of CSO based
algorithm for prioritizing the test-cases. Furthermore, faults
detection can be considered one of the performance
parameters for evaluating the efficacy of CSO based
prioritized algorithm. The working of prioritized algorithm is
described using two steps. The first step corresponds to
determine the different clusters of test-cases usingtest suite.
The clustering of test-cases can be done through test-case
attributes. The second step corresponds for evaluating the
performance of test-cases. To achieve the same, three
telecasts for each cluster are selected in random order. The
efficacy of test-cases is evaluated using fault detection and
execution time parameters. Simulation results showed that
CSO based prioritized algorithm achieves at par results than
other compared algorithms. Moreover, CSO algorithms also
considers APFD metric for representing the fault detection.
In future, TCP problem can be handled through more meta-
heuristic algorithms.
References
1. Arafeen, M.J. and Do, H. Test case prioritization using

requirements-based clustering. Proceedings of the
IEEE 6th International Conference on SoftwareTesting,
Verification and Validation, (ICST) Mar. 18-22, IEEE
Xplore Press, Luembourg, 2013, pp: 312-321.

2. El-Koka, A., Cha K.H. and Kang,D.K. Regularization
parameter tuning optimization approach in logistic
regression.Proceedings of the 15th International

Conference on Advanced Communication Technology
(ICACT),2013, pp: 13-18.

3. Tsai P. W, Chu, SC., and Jeng, S. P.Cat swarm
optimization,In PRICAI,Trends in Artificial
Intelligence, Springer Berlin Heidelberg, 2006, pp. 854-
858.

4. Tsai PW, Jeng-Shyang Pan, Shyi-Ming Chen, and Bin-
Yih Liao. Enhanced Parallel Cat Swarm
Optimization Based on the Taguchi Method, Expert
Systems with Applications, Vol. 39, Issue 7, 2012 pp.
6309-6319.

5. Panda, G, Pradhan, P. M, and Majhi B. IIR system
identification using cat swarm optimization, Expert
Systems with Applications, Vol. 38, No. 10, 20111, pp.
12671-12683.

6. Pradhan, P. M, and Ganapati G.Solving multi objective
problems using cat swarm optimization’, Expert
Systems with Applications, Vol. 39, No. 3, 2012, pp.
2956-2964.

7. Santosa, B., and Ningrum, M. K. Cat swarm
optimization for clustering,In IEEE International
Conference of Soft Computing and Pattern Recognition
(SOCPAR'09), 2009, pp. 54-59.

8. Kumar, Y., and Sahoo, G.An Improved Cat Swarm
Optimization Algorithm for Clustering, In
Computational Intelligence in Data Mining, Vol. 1,
2015, pp 187-197.

9. Kumar, Yugal and Sahoo, G. (2015). A Hybrid Data
Clustering Approach based on improved Cat Swarm
Optimization and K- Harmonic Mean Algorithm, AI
communications, Vol 28, No. 4, 2015, pp. 1-14.

10. Kumar, Y., & Sahoo, G. (2014). A hybridize approach
for data clustering based on cat swarm optimization.
International Journal of Information and
Communication Technology, Vol. 9, No. 1, 2016, pp.
117-141

11. Harrold M, Gupta R, Soffa M.A methodology for
controlling the size of a test suite.ACM Trans
SoftwEngMethodo, Vol. 2, No. 3, 1993, pp. 270–285.

12. Rothermel G, Harrold MJ.Analyzing regression test
selection techniques. IEEE Trans SoftwEng,Vol. 22(8),
1996, pp. 529–551

13. Rothermel G, Untch RH, Chu C, Harrold MJ.Test case
prioritization: an empirical study. In: Proceedings of
internationalconference of software maintenance. 1999,
pp 179–188

14. Wong WE, Horgan JR, London S, Agrawal H.A study
of effective regression testing in practice. Proceedings
of 8th IEEE international symposium on software
reliability engineering (ISSRE’ 97). 1997, pp 264–274,
Albuquerque, NM.

15. Rothermel G, Untch RH, Chu C, Harrold
MJ.Prioritizing test cases for regression testing. IEEE
Trans SoftwEng, Vol. 27(10), 2001, pp. 929–948

16. Elbaum S, Malishevsky A, Rothermel G.Prioritizing
test cases for regression testing. In: Proceedings of
international symposium on software testing and
analysis. 2000, pp 102–112.

Richa Vats et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8142 - 8148

8148

17. Rothermel G, Untch RH, Chu C, Harrold
MJ.Prioritizing test cases for regression testing.IEEE
Trans SoftwEng,Vol. 27(10), 2001, pp. 929–948.

18. Elbaum S, Malishevsky A, Rothermel G.Test case
prioritization: a family of empirical studies. IEEE
Trans SoftwEng,Vol. 28(2), 2002, pp. 159–182.

19. Elbaum S, Kallakuri P, Malishevsky A, Rothermel G,
Kanduri S.Understanding the effects of changes on
the costeffectiveness of regression testing
techniques.J SoftwVerificationReliab, Vol. 12(2), 2003,
pp. 65–83.

20. Elbaum S, Rothermel G, Kanduri S, Malishevsky
AG.Selecting a cost-effective test case prioritization
technique.Software Quality JournalVol. 12(3), 2004,
pp. 185–210.

21. D. H, Rothermel G, Kinneer A.Prioritizing Junit test
cases: an empirical assessment and cost-benefits
analysis. EmpirSoftwEngVol. 11, 2006, pp. 33–70.

22. Qu B, Nie C, Xu B, Zhang X.Test case prioritization
for black box testing. In: The proceedings of 31st
annual international computer software and
applications conference. IEEECS press,Beijing, 2007.

23. Park H, Ryu H, Baik J.Historical value-based
approach for cost-cognizant test case prioritization to
improve the effectiveness of regression testing. In:
The proceedings 2nd international conference on secure
system integration and reliability improvement. IEEECS
press, Washington, 2008, pp 39–46

24. Khan SR, Rehman I, Malik S.The impact of test case
reduction and prioritization on software testing
effectiveness.In: Proceeding of international conference
on emerging technologies.2009, pp 416–421.

25. Bajwa, J. K., & Kaur, R..An Adaptive Approach For
Test Case Prioritization In Regression Testing Using
Improved Genetic Algorithm, An International
Journal of Engineering Sciences, 2017, pp. 1-17

26. Gladston, A., Nehemiah, K., Narayanasamy, P., &
Kannan, A..Test case prioritization for regression
testing using immune operator. The International
Arab Journal of Information Technology, Vol. 13(6),
2016, pp. 1-7.

27. Tulasiraman, M., &Kalimuthu, V. (2018). Cost
Cognizant history based prioritization of test case for
regression testing using immune algorithm. Journal
of Intelligent Engineering Systems, 11(1), 2018, pp. 221-
228.

28. Maheswari, R. U., & Mala, D. J. Combined genetic
and simulated annealing approach for test case
prioritization. Indian Journal of Science and
Technology,Vol. 8(35), 2015.

29. Bian, Y., Li, Z., Zhao, R., & Gong, D. (2017). Epistasis
based aco for regression test case prioritization.IEEE
Transactions on Emerging Topics in Computational
Intelligence, Vol. 1(3), 2017, pp. 213-223.

30. Chen, J., Zhu, L., Chen, T. Y., Towey, D., Kuo, F. C.,
Huang, R., & Guo, Y.Test case prioritization for
object-oriented software: An adaptive random
sequence approach based on clustering. Journal of
Systems and Software,Vol. 135, 2018, pp. 107-125.

31. Tahvili, S., Afzal, W., Saadatmand, M., Bohlin, M.,
Sundmark, D., & Larsson, S. Towards earlier fault
detection by value-driven prioritization of test cases
using fuzzy TOPSIS. In Information Technology: New
Generations (pp. 745-759). Springer, Cham, 2016.

32. Hettiarachchi, C., Do, H., & Choi, B.Risk-based test
case prioritization using a fuzzy expert
system.Information and Software Technology, Vol. 69,
2016, pp. 1-15.

33. Noguchi, T., Washizaki, H., Fukazawa, Y., Sato, A., &
Ota, K.History-based test case prioritization for black
box testing using ant colony optimization. In 2015
IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST),2015, pp. 1-2.

34. Jiang, B., & Chan, W. K.Input-based adaptive
randomized test case prioritization: A local beam
search approach.Journal of Systems and Software,Vol.
105, 2015, pp. 91-106.

35. Konsaard, P., &Ramingwong, L.Total coverage based
regression test case prioritization using genetic
algorithm.In Electrical engineering/electronics,
computer, telecommunications and information
technology (ECTI-CON), 2015, pp. 1-6.

36. Mei, L., Cai, Y., Jia, C., Jiang, B., Chan, W. K., Zhang,
Z., &Tse, T. H. A subsumption hierarchy of test case
prioritization for composite services. IEEE
Transactions on Services Computing, Vol. 8(5), 2015,
pp. 658-673.

37. Panichella, A., Oliveto, R., Di Penta, M., & De Lucia,
A. Improving multi-objective test case selection by
injecting diversity in genetic algorithms.IEEE
Transactions on Software Engineering, Vol. 41(4),
2015, pp. 358-383.

38. Panwar, D., Tomar, P., & Singh, V.Hybridization of
Cuckoo-ACO algorithm for test case
prioritization.Journal of Statistics and Management
Systems, 21(4), 2018, pp. 539-546.

39. Zhao, X., Wang, Z., Fan, X., & Wang, Z.A Clustering-
Bayesian network based approach for test
caseprioritization.In Computer Software and
Applications Conference (COMPSAC), 2015 pp. 542-
547.

40. Tulasiraman, M., Vivekanandan, N., &Kalimuthu, V.
Multi-objective Test Case Prioritization Using
Improved Pareto-Optimal Clonal Selection
Algorithm.3D Research, Vol. 9(3), 2018, pp. 32.

41. Suri, B., & Singhal, S.Understanding the effect of
time-constraint bounded novel technique for
regression test selection and prioritization.
International Journal of System Assurance Engineering
and Management, Vol. 6(1), 2015, pp. 71-77.

42. S. Andrews. An Investigation into Mutation
Operators for Particle Swarm optimization,in Proc.
Congr. Evol. Compt., 2015, pp. 1044 –1051.

