

K. Sri Kavya et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2021 – 2028

 2021


ABSTRACT

The main objective of a software development team is to have
maximum customer defects in the software will reduce its
quality. Thereby increasing its development cost. Several
algorithms have been proposed for predicting software
defects. But most of these algorithms are not appropriate
when the dataset is imbalanced. In this paper an Ensemble
DeepBoost Classifier (EDC) is built to predict the software
defects effectively by addressing two major issues – curse of
dimensionality and class distribution imbalance problem.
Firstly, EDC uses Genetic Algorithm (GA) to find out the
features that are relevant for software defect prediction. Thus,
achieving dimensionality reduction. Later it uses Safe Line
SMOTE (SLS) algorithm to achieve equal class distribution.
Finally, it uses DeepBoost algorithm to predict whether the
samples are defective or not based on the historical software
defect data. The experiment was carried out on 7 PROMISE
repository datasets and the results of EDC were compared
with similar algorithms. The experimental results indicate
that EDC has outperformed various existing algorithms in
most evaluation metrics.

Key words: Class Imbalance, DeepBoost, Dimensionality
Reduction, Genetic Algorithm, Safe Line SMOTE.

1. INTRODUCTION

The main objective of a software development team is to have
maximum customer satisfaction by developing a defect free
software product. The success of a software project depends
on its quality in terms of cost, time, effort etc. Code review,
inspection and testing are the traditional practices for
improving software quality prior to the official release.
However, testing is the most expensive phases of the software
development life cycle [1].

Researchers have proposed a lot of methods to enhance the
prediction results. Most of them found that the quality of

datasets, such as class distribution imbalance and curse of
dimensionality, has great impact on the overall performance
of the model. If the number of features in the dataset is very
large, it is called the “Curse of Dimensionality.” There are
two ways to reduce the dimensions in the dataset: by selecting
the most appropriate features from the actual dataset called
feature selection or by finding a smaller subset of new features
called feature extraction. Dimensionality reduction enables
the model to train faster. It improves the accuracy of a
model and reduces over fitting. At the same time, most of the
software defect datasets are not balanced, i.e., there is a huge
variation of data distribution. However a small difference
does not matter. In this case, the percentage of defective
module is very less than the percentage of normal module.
The normal and defective modules are considered as the
major and minor classes respectively. When the dataset is
imbalanced, standard algorithms have a bias towards the
instances of major class. The classifier treats the minor class
features as noise and ignores those features. There are 2
methods that deal with class imbalanced data. At data level,
sampling techniques are applied to the dataset to either
increase the sample count of minor class (called
oversampling) or decrease the sample count of major class
(called under-sampling) [2]. This is done to obtain the same
rate of class distribution. At algorithmic level, the existing
classification algorithm is changed to reduce the impact of
imbalanced class distribution on the prediction model.

In this paper, considering these challenges, an Ensemble
DeepBoost Classifier is constructed to predict the software
defects efficiently. Initially the data is pre-processed using
Genetic Algorithm to retrieve the features that are relevant for
classification and the dataset is balanced using Safe Line
SMOTE algorithm. Finally Ensemble DeepBoost algorithm
is used for classification purpose.

The rest of this paper is organized as follows: Section 2
presents the summary of related work. Section 3 contains the
description of proposed model EDC. Section 4 presents an
overview of the datasets and evaluation metrics used. Section
5 demonstrates the performance of EDC. Section 6 concludes
the paper along with future work.

An Ensemble DeepBoost Classifier for Software Defect Prediction

K. Sri Kavya1, Dr. Y. Prasanth2
1 M. Tech Student, srikavyaketagani987@gmail.com

2 Professor, prasanthyalla@kluniversity.in
Department of Computer Science and Engineering

Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh - 522502, India

 ISSN 2278-3091
Volume 9 No.2, March - April 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse173922020.pdf

https://doi.org/10.30534/ijatcse/2020/173922020

K. Sri Kavya et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2021 – 2028

 2022

2. BACKGROUND AND RELATED WORK

Various algorithms based on deep learning, machine learning
and data mining such as fuzzy decision trees [3], Association
rules [4], Random Forest [5], Artificial Neural Networks [6],
Convolution Neural Networks [7], Bayesian Network [8],
Support Vector Machine [9] have been used to predict
software defects. However, these algorithms don’t perform
well when the dataset has large number of features and class
imbalance problem.

For curse of dimensionality, Chao Ni et al. [10] proposed a
novel method FeSCH (Feature Selection using Clusters of
Hybrid data) for feature selection in cross project software
defect prediction. This approach contains two stages. During
the initial stage, using Density Peaks Clustering technique the
original set of features is divided into multiple clusters.
During the final stage, from each cluster, the proper set of
features is selected based on three different ranking strategies
- SFD (Similarity of Feature Distributions), LDF (Local
Density of Features) and FCR (Feature-Class Relevance).
Haijin Ji et al. [11] proposed a new feature selection method
(NASM) based on Maximal Information Coefficient and
Automatic Clustering. Firstly, a coefficient matrix between
the features is computed that contains the maximal
information, and then based on this matrix, features are
clustered by spectral clustering. Calinski-Harabasz measure
is adopted to determine the optimum number of clusters in the
procedure of automatic clustering. Finally, the set of relevant
features is selected. Qiao YU et al. [12] proposed a feature
selection method for software defect prediction based on
Similarity Measure (SM). They have designed a feature
ranking algorithm. Using this algorithm, the weights of
features are updated based on the resemblance of instances
that belong to different classes. Then the weights of features
are sorted in decreasing order. After sorting, a feature ranking
list is obtained. Finally, from the list obtained after sorting, all
the feature subsets are selected and evaluated sequentially on
a KNN model. The Area Under curve metric is used to assess
the performance of the classification model.

For class imbalance, at data view Shamshul Huda et al.
[13] proposed An Ensemble Oversampling Model for Class
Imbalance Problem in Software Defect Prediction. This
methodology uses a combination of Majority Weighted
Minority Oversampling Technique, random oversampling
and Fuzzy-Based Feature Instance Recovery to construct an
ensemble classification model. This oversampling strategy
involves in generating pseudo positive instances from the
minor class. The proposed model has reduced false negative
rate. Lina Gong et al. [14] proposed an approach
Cluster-based Over-sampling with noise filtering (KMFOS)
to handle imbalance class distribution in SDP. Initially,
KMFOS splits the samples of minor class into K clusters, and
pseudo minor class samples are generated by interpolation
between samples of each two clusters. Then, these pseudo

minor class samples would distinctly spread in the space of
software defect dataset. Then, this cluster-based
over-sampling is extended through the Closest List Noise
Identification (CLNI) to clean the noise samples. At
algorithmic view, cost sensitive learning and ensemble
learning procedures are used to increase the performance of
the classifier. Ensemble learning helps improve the
performance of the algorithm by combining multiple models.
Naeem Seliya et al. [15] proposed an Ensemble learning
approach “Roughly Balanced Bagging” (RBBag) algorithm
for prediction of software defects in imbalanced datasets. This
algorithm is evaluated against two classification models, C4.5
decision tree and naive bayes. The results indicate that naive
bayes classifier outperforms C4.5 decision tree. Zhiqiang Li
et al. [16] proposed a novel approach “Ensemble Multiple
Kernel Correlation Alignment” (EMKCA) for Heterogeneous
Software Defect Prediction. First, based on multiple kernel
leaning, the source and target project data are mapped into
high dimensional kernel space, such that the defective and
normal modules can be well split. Later, a kernel correlation
arrangement procedure is used to distribute the source and
target project data alike in the kernel space. Lastly, multiple
kernel classifiers are integrated to minimize the effect
triggered by imbalanced class distribution.

3. METHODOLOGY

EDC is a software defect prediction model for prediction of
software defects in class imbalanced data. The outline of
proposed methodology is shown in Figure 1. The first phase is
data preprocessing. Statistical analysis is carried out in order
to find out whether there are any missing values and outliers
in the software defect dataset. Then Genetic Algorithm is
used for feature extraction and data sampling is done using
Safe Line SMOTE algorithm. The second phase is
classification where Ensemble DeepBoost algorithm is used
to construct the software prediction model.

3.1 Data Preprocessing
Data preprocessing involves tasks like data cleaning, data
integration, data reduction and transformation. The missing
values in the dataset are filled during the data cleaning stage.
The missing values are imputed with the corresponding mean
value. Then, the features that are relevant for classification
are selected in order to reduce dimensions in the dataset. At
the same time, most of the software defect datasets are not
balanced. In this paper, Genetic Algorithm (GA) is used for
feature extraction and the dataset is balanced using Safe Line
SMOTE algorithm.

A. Feature Extraction
 Most of the software defect datasets contain large number
of features. Some of these features may be relevant for
classification while others may redundant or irrelevant or
correlated which leads to curse of dimensionality. Selecting

K. Sri Kavya et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2021 – 2028

 2023

the best set of relevant features will increase the performance
of the classifier.

 EDC uses Genetic Algorithm for feature extraction.
Genetic Algorithm (GA) mimics Darwin’s idea of natural
selection. The first step in GA involves in creating an initial
population i.e., set of possible features and calculating their
respective fitness scores. Here, the fitness function used is
maximization of Area Under ROC Curve. Each feature is
referred to as an individual. The features are encoded using
binary scheme; a feature is either included (represented by 1)
or not included (represented by 0) in the subset. To produce
offsprings of the next generation, the features with the best
fitness score are selected and combined randomly. The fitness
score of an individual is determined using the formula (1).

Fitness (i) = ROC/Number of features (1)

Figure 1: Software Defect Prediction Model of EDC

 The objective of a Genetic Algorithm is to integrate
different solutions to extract the ideal set of features from
each generation. The advantage of GA over other techniques
is, one can obtain the optimal solution from the best of prior
solutions. Figure 2 depicts the flow chart of Genetic
Algorithm.

B. Sampling
 Most of the software defect datasets are not balanced, i.e.,
they do not have equal number of instances in the respective
classes. When the dataset is imbalanced, standard algorithms
have a bias towards the instances of major class. The classifier
treats the minor class features as noise and ignores those
features.

Figure 2: Flow Chart of Genetic Algorithm

 Safe Level SMOTE (Safe Level Synthetic Minority
Oversampling TEchnique) is a sampling technique, similar to
SMOTE with a difference of generating synthetic minor class
instances (also called data points) along the same line with
different weight degree, called safe level. Before sampling,
SLS algorithm assigns each positive data point a safe level.
The safe level (sl) of a data point is calculated using formula
(2). When sl of a data point is near to 0, the data point is
nearly noise. The data point is considered safe if its sl is close
to k. The safe level ratio is used to choose the safe positions to
generate synthetic data points. The safe level ratio is
determined using formula (3). The Safe Line SMOTE
algorithm is described in Algorithm 1.

safe level (sl) = number of positive data points in k nearest

 neighbors (2)

safe level ratio = sl of a positive data point / sl of a nearest

neighbor (3)

K. Sri Kavya et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2021 – 2028

 2024

Algorithm 1 Safe Level SMOTE
Input: Dataset of original positive instances S
Output: Dataset of synthetic positive instances S'

1. S' =  // Initially set of synthetic instances is empty
2. for i in S, Calculate k nearest neighbors and randomly

select one from the k nearest neighbors. Let it be n.
3. for i in S sli = number of positive data points in k nearest

neighbors
4. for n in S sln = number of positive data points in k nearest

neighbors
5. if (sln ≠ 0) then compute SLRatio = sli / sln
7. else Set SLRatio = ∞
8. if (SLRatio = ∞ AND sli = 0) then positive synthetic

instance is not generated //i.e., i and n are noises
9. else for (j = 1 to feature_count)
10. if (SLRatio = ∞ AND sli ≠ 0) then Set dist = 0
11. else if (SLRatio = 1) then dist = a random number[0,1
12. else if (SLRatio > 1) then dist = a random number 

[0,1/SLRatio]
13. else set dist = a random number  [1 – SLRatio, 1]
14. difference = n[j] - i[j]
15. s[j] = i[j] + dist·difference
16. S' = S'  {s} //Add synthetic instance to the set.
17. return S'.

3.2 Classification
While constructing the classifier, the smaller the error is, the
more stable the classifier is. Noise, bias and variance are the
factors that are responsible for generating error in the model.
Ensemble procedures support to minimize these factors as
Ensemble learning techniques conclude by considering the
decisions from multiple models. Therefore, EDC uses
Ensemble DeepBoost algorithm to reduce these factors.
 DeepBoost is an ensemble learning algorithm that uses a
hypothesis set H consisting of deep decision trees, or models
of other families as base classifiers. The basic assumption is
that the hypothesis set H is partitioned as the combination of p
disjoint families H1, . . .,Hp taking values in [−1, +1] ordered
by increasing Rademacher complexity, Rm(Hk), where Hk, is
the set of decision trees of depth k, or a set of functions of
degree k for k  [1, p]. It is also assumed that the hypothesis
sets Hk are symmetric i.e., there exists (−h)Hk, for any h 
Hk. For each hypothesis h, we keep either h or −h in {h1, . . . ,
hN} using the notation defined in formula (4). Training and
testing samples are drawn from certain distribution Dt over
the input space I. The weighted error s,j of hypothesis hj for
the distribution Ds, for s  [1, T] is calculated using the
formula (5).

j = λrj + β (4)
s,j = [1 – E(yi hj(xi)] (5)

 The DeepBoost algorithm is described in Algorithm 2. At
each iteration, w.r.t specified criterion, it looks for the base
hypothesis that is ideal. First, via an exhaustive search, the
optimal tree h1*  H1 trees is found. Next, a local optimal tree
hk*  Hk trees is found ∀1< k ≤ K. Finally, from the set of
hypotheses selected in previous iterations, the best hypothesis
is selected.

Algorithm 2 DeepBoost
Input: S’ ((x1, y1), . . . ,(xm, ym))) – Dataset of m training

samples
Output: Composite Model - f

1. for i from 1 to m compute D1(i) = 1/m
2. for t from 1 to T do // T = maximum number of iterations
3. for j from 1 to N do // Search for the optimal base

hypothesis where N = Number of distinct base
functions

 4. if αt-1, j ≠ 0 //When the mixture coefficient is not equal to
zero, compute the hypothesis set’s index as

 dj = (t, j – 0.5) + sgn(t-1, j) (jm/2St)
5. else if t, j – 0.5 ≤ (jm/2St) then Set hypothesis set’s

index set to 0
6. else dj = (t,j–0.5) - sgn((t, j – 0.5) (jm/2St)
7. k = argmax  dj ; where j[1,N]
8. t = t, k
9. if (1-t)eα

t-1, k - te-α
t-1, k ≤ (jm/2St) then compute step

size as Ƞt = -αt-1, k
10. else if (1-t) eα

t-1, k - te-α
t-1, k > (jm/2St) then compute

step size as
 Ƞt = log[-(km/2St) + √(km/2St)2 + ((1-t)/ t)]
11. else
 Ƞt = log[-(km/2St) + √(km/2St)2 + ((1-t)/ t)]
12. αt = αt – 1 + Ƞtek // ek= kth unit vector in RN.
13. St+1 = Σ i=1to m ɸ’(1- yi Σj= 1 to N αt, j hj(xi))
14. for 1: 1 to m calculate the distibution

Dt+1 (i) = ɸ’(1 - yi Σj = 1 to N αt, j hj(xi)) / (St+1)
 //St+1 is the normalization factor
15. f = Σj αT,j hj; j: 1 to N
16. return family of functions f.

4. EXPERIMENTAL SETUP

4.1 Dataset Description
The datasets used in this research were taken from the
PROMISE repository. The experiment was carried out on 7
NASA MDP datasets namely, CM1, PC1, PC2, PC3, KC1,
KC2 and JM1. Table 1 provides the basic information of the
datasets used in this experiment. The defect rate of the
datasets is shown in Figure3. From Figure 3, it was clear that
the percentage of defective modules in all the datasets is
almost less than 20%.

K. Sri Kavya et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2021 – 2028

 2025

Table 1: NASA MDP Datasets

Dataset

Defective

Non-Defective

Features

Proportion
of Defects

CM1 49 449 22 9.83%
PC1 77 1032 22 6.94%
PC2 16 1569 37 1.00%
PC3 160 1403 38 10.23%
KC1 326 1783 22 15.45%
KC2 107 415 22 20.49%
JM1 2106 8779 22 19.34%

Figure 3: Defect Rate of NASA MDP Datasets

4.2 Evaluation Measures
The predictive performance of the model is assessed by
adopting various metrics such as AUC, specificity, sensitivity,
precision, accuracy and balance. These metrics are computed
from the confusion matrix. Table 2 provides the definition of
confusion matrix.
 Accuracy is referred to as the proportion of correctly
predicted observations to the total number of observations.
Sensitivity (also known as Recall) is defined as the proportion
of the number of correctly classified positive observations to
the total number of positive observations. Precision (also
known as Positive Predictive value) is defined as the
proportion of total number of correctly classified positive
observations to the total number of predicted positive
observations. F-measure is the combination of Recall and
Precision. AUC (Area Under Curve) is the probability that the
classifier is capable of distinguishing between the classes. The
greater the value of AUC, the better the performance of the
classification model.

Accuracy = TP + TN (6)
 TP + TN + FP + FN

Table 2: Confusion Matrix

Sensitivity = TP (7)
 TP + FN

Precision = TP (8)
 TP+FP

F –measure = 2*Sensitivity*Precision (9)
 Sensitivity + Precision

4.3 Experimental Design
The experiment was carried out using RStudio software. The
software defect dataset is partitioned into training and testing
sets in the proportion of 70% and 30% respectively. After
partitioning the dataset, Genetic algorithm is used to find out
the optimal set of relevant features. The maximum number of
iterations is set to 20. Binary encoding scheme is used for
encoding the genes (1 for inclusion of the feature and 0 for
exclusion of the feature). The probabilities of crossover and
mutation are set to 0.8 and 0.3 respectively. In the later stage,
Safe Line SMOTE is used to balance the dataset. The number
of nearest neighbors during the process of sampling and
calculation of safe level are set to 5 and 4 respectively. Finally,
Ensemble DeepBoost algorithm is used to construct the
classifier. The number of iterations and the maximum depth
of a single decision tree in the model are set to 10 and 6
respectively.

Table 3: Experimental Results
Dataset Accuracy Senstivity Precision AUC Balance

CM1 89.73% 0.88 0.94 0.97 0.89

PC1 92.38% 0.93 0.90 0.98 0.92
PC2 94.06% 0.92 0.98 0.97 0.93

PC3 95.78% 0.94 0.96 0.95 0.95
KC1 80.03% 0.84 0.81 0.88 0.81

KC2 93.21% 0.93 0.87 0.95 0.93
JM1 91.24% 0.90 0.88 0.97 0.90

5. ANALYSIS OF EXPERIMENTAL RESULTS

The procedural results are shown in Table 3. The
corresponding values of the evaluation metrics- Accuracy,
Sensitivity, Precision, AUC, and Balance are summarized in
Table 3.

Actual Predicted
Positive Negative

Positive TP (True Positive) FN (False Negative)
Negative FP (False Positive) TN (True Negative)

K. Sri Kavya et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2021 – 2028

 2026

 Since accuracy is the main indicator of the overall
performance of the classifier, the results in Table 3 indicate
that EDC has achieved approximately 90% of accuracy in
most of the datasets except in KC1 dataset where the accuracy
is only 80.03%. As most of the software defect datasets are
imbalanced, the false alarm of minor class is overlooked.
Therefore, it is not comprehensive to consider only the
Accuracy as standard for evaluation. Another metric such as
AUC value is considered to make further evaluation. Table 3
shows that AUC values of all the datasets is above 0.9 except
for KC1 dataset. It indicates that the proposed method has
effectively handled the two problems mentioned earlier.
 At the end, this paper compared other ensemble learning
algorithms like Relational association rule mining (DPRAR)
[8], Dynamic version of Adaboost Negative Correlation
Learning (DNC) [17], Multi-core kernel ensemble learning
(MEKL) [18] and Coding based Ensemble Learning (CEL)
[19], with EDC to validate the predictive performance of the
proposed model. The results of comparative study are
summarized in Table 4.
 From Table 4, it was evident that the mean accuracy of
EDC is 90.92% which is higher than the other algorithms
except in certain cases where DPRAR has 95.60% and
96.70% for PC1 and PC3 datasets. However, DPRAR has
achieved an average accuracy of 88.46% which is slightly
lower than EDC. Other indicators including F-measure and
balance also showed better results when compared with other
algorithms. The mean AUC of EDC is 0.94 which indicates
that EDC has better prediction performance. The results of
comparison of various algorithms are shown graphically in
Figure 4. From Figure 4, it was clear that EDC has
outperformed various similar algorithms in Accuracy and
AUC.

(a)

(b)

Figure 4: Comparison of different algorithms on (a) Accuracy and
(b) AUC

Table 4: Comparison of different algorithms
Measure Algorithm CM1 PC1 PC2 PC3 KC1 KC2 JM1 Average

Accuracy
(%)

DNC 75.04 78.30 84.22 78.35 84.61 76.14 82.02 79.81
CEL 79.58 83.48 87.65 81.26 73.83 77.05 80.02 80.44
MEKL 68.03 69.00 74.76 69.13 65.48 66.53 77.31 70.03
DPRAR 87.16 95.60 85.42 96.70 82.30 83.00 89.10 88.46
EDC 89.73 92.38 94.06 95.78 80.03 93.21 91.24 90.92

F – measure

DNC 0.32 0.38 0.39 0.40 0.47 0.33 0.31 0.37
CEL 0.27 0.32 0.37 0.36 0.36 0.33 0.30 0.33
MEKL 0.40 0.50 0.65 0.46 0.50 0.44 0.50 0.49
DPRAR 0.65 0.78 0.84 0.86 0.71 0.66 0.76 0.62
EDC 0.90 0.91 0.94 0.94 0.82 0.89 0.88 0.89

Balance

DNC 0.65 0.68 0.75 0.74 0.83 0.66 0.62 0.70
CEL 0.54 0.61 0.65 0.57 0.55 0.49 0.46 0.55
MEKL 0.71 0.70 0.72 0.63 0.68 0.66 0.75 0.69
DPRAR 0.90 0.92 0.83 0.89 0.82 0.58 0.91 0.87
EDC 0.89 0.92 0.93 0.95 0.81 0.93 0.90 0.90

AUC

DNC 0.79 0.87 0.88 0.82 0.89 0.80 0.71 0.82
CEL 0.70 0.83 0.90 0.80 0.81 0.82 0.71 0.80
MEKL 0.71 0.71 0.75 0.64 0.70 0.66 0.72 0.70
DPRAR 0.90 0.92 0.94 0.92 0.82 0.85 0.92 0.89
EDC 0.96 0.97 0.97 0.95 0.88 0.95 0.97 0.94

K. Sri Kavya et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2021 – 2028

 2027

6. CONCLUSION

In this paper, an Ensemble DeepBoost algorithm, EDC, is
proposed for prediction of software defects. The two main
threats in constructing software prediction models are curse
of dimensionality and imbalanced class distribution.
Therefore, EDC uses Genetic Algorithm to find out the
relevant features of the dataset and Safe Line SMOTE to
achieve approximately equal number of samples in major and
minor classes. Moreover, EDC uses ensemble DeepBoost
algorithm for classification. Then EDC is compared with
similar algorithms and the experimental results indicate that
EDC outperforms other algorithms including DNC, CEL,
MEKL and DPRAR in various evaluation metrics. However,
this paper adopts a common approach for data preprocessing
for all datasets. It doesn’t take into account, the unique
features of each dataset. In future, dataset specific
preprocessing method will be used for different datasets.

REFERENCES
1. Sandeep Dalal, Kamna Solanki, Sudhir, Diksha.

Exploring the essentials and principles of software
development, International Journal of Advanced Trends
in Computer Science and Engineering, Vol. 8, No. 6, pp
3504 – 3510, 2019.
https://doi.org/10.30534/ijatcse/2019/129862019

2. B. Jabber, P. Sai Venkat, K. Sri Sai Nikhil, B. Lakshmi
Avinash. A novel sampling approach for balancing
the data and providing health care management
system by government, International Journal of
Advanced Trends in Computer Science and Engineering,
Vol. 8, No. 6, pp 2753 - 2761, 2019.
https://doi.org/10.30534/ijatcse/2019/12862019

3. Vashisht, Vipul, Manohar Lal, and G. S. Sureshchandar.
A framework for software defect prediction using
neural networks, Journal of Software Engineering and
Applications, Vol. 8, No. 08, 384, 2015.
https://doi.org/10.4236/jsea.2015.88038

4. Li, Jian, Pinjia He, Jieming Zhu, and Michael R. Lyu.
Software defect prediction via convolutional neural
network, In 2017 IEEE International Conference on
Software Quality, Reliability and Security (QRS), pp.
318-328. IEEE, 2017.

5. Okutan, Ahmet, and Olcay Taner Yıldız. Software
defect prediction using Bayesian networks, Empirical
Software Engineering, Vol. 19, No. 1, 154-181, 2014.
https://doi.org/10.1007/s10664-012-9218-8

6. Soe, Yan Naung, Paulus Insap Santosa, and Rudy
Hartanto. Software Defect Prediction Using Random
Forest Algorithm, In 2018 12th South East Asian
Technical University Consortium (SEATUC), Vol. 1, pp.
1-5. IEEE, 2018.

7. Ricky, Michael Yoseph, Fredy Purnomo, and Budi
Yulianto. Mobile application software defect
prediction, In 2016 IEEE Symposium on
Service-Oriented System Engineering (SOSE), pp.
307-313. IEEE, 2016.

https://doi.org/10.1109/SOSE.2016.25
8. G. Czibula, Z. Marian, and I. G. Czibula. Software

defect prediction using relational association rule
mining, Information Sciences, Vol. 264, pp. 260 - 278,
Apr. 2014.

9. Marian, Zsuzsanna, Ioan-Gabriel Mircea,
Istvan-Gergely Czibula, and Gabriela Czibula. A novel
approach for software defect prediction using fuzzy
decision trees, In 2016 18th International Symposium
on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), pp. 240-247. IEEE, 2016.
https://doi.org/10.1109/SYNASC.2016.046

10. Ni, Chao, Wangshu Liu, Qing Gu, Xiang Chen, and
Daoxu Chen. FeSCH: a feature selection method using
clusters of hybrid-data for cross-project defect
prediction, In 2017 IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC),
Vol. 1, pp. 51-56. IEEE, 2017.

11. Ji, Haijin, Song Huang, Yaning Wu, Zhanwei Hui, and
Xuewei Lv. A New Attribute Selection Method Based
on Maximal Information Coefficient and Automatic
Clustering, In 2017 International Conference on
Dependable Systems and Their Applications (DSA), pp.
22-28. IEEE, 2017.
https://doi.org/10.1109/DSA.2017.13

12. Yu, Qiao, Shu-juan Jiang, Rong-cun Wang, and
Hong-yang Wang. A feature selection approach based
on a similarity measure for software defect
prediction, Frontiers of Information Technology &
Electronic Engineering, Vol. 18, No. 11, pp 1744-1753,
2017.

13. Huda, Shamsul, Kevin Liu, Mohamed Abdelrazek,
Amani Ibrahim, Sultan Alyahya, Hmood Al-Dossari, and
Shafiq Ahmad. An ensemble oversampling model for
class imbalance problem in software defect
prediction, IEEE access, Vol. 6, pp 24184-24195, 2018

14. Gong, Lina, Shujuan Jiang, and Li Jiang. Tackling
Class Imbalance Problem in Software Defect
Prediction through Cluster-Based Over-Sampling
With Filtering, IEEE Access, Vol. 7, 145725-145737,
2019.
https://doi.org/10.1109/ACCESS.2019.2945858

15. Seliya, Naeem, Taghi M. Khoshgoftaar, and Jason Van
Hulse. Predicting faults in high assurance software,
In 2010 IEEE 12th International Symposium on High
Assurance Systems Engineering, pp. 26-34. IEEE, 2010.

16. Li, Zhiqiang, Xiao-Yuan Jing, Xiaoke Zhu, and Hongyu
Zhang. Heterogeneous defect prediction through
multiple kernel learning and ensemble learning,
In 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 91-102. IEEE,
2017.
https://doi.org/10.1109/ICSME.2017.19

17. Wang, Shuo, and Xin Yao. Using class imbalance
learning for software defect prediction, IEEE
Transactions on Reliability, Vol. 62, No. 2, 434-443,
2013.

K. Sri Kavya et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2021 – 2028

 2028

https://doi.org/10.1109/TR.2013.2259203
18. Sun, Zhongbin, Qinbao Song, and Xiaoyan Zhu. Using

coding-based ensemble learning to improve software
defect prediction, IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews),
Vol. 42, No. 6, 1806-1817, 2012.
https://doi.org/10.1109/TSMCC.2012.2226152

19. Wang, Tiejian, Zhiwu Zhang, Xiaoyuan Jing, and
Liqiang Zhang. Multiple kernel ensemble learning for
software defect prediction, Automated Software
Engineering, Vol. 23, No. 4, 569-590, 2016.
https://doi.org/10.1007/s10515-015-0179-1

