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ABSTRACT 
 
Sorting problem is one of the classic problems of Computer 
Science. Sorting is among the most basic tasks involved in 
computation and is very commonly used in almost every 
application. Design of a fast sorting algorithm has always 
been a challenge and there has been a lot of research since 
many decades. A variety of sorting algorithms have been 
designed amongst which Quicksort is considered as the fastest 
in-place sorting algorithm and Timsort is being used in 
practically for sorting problems in programming languages 
like Java and Python. Few parallelized versions of sorting 
algorithms have also been developed. This paper proposes a 
Divide and Conquer based scheme of in-place sorting which 
sorts the array using repeated swap operations of largest and 
small elements of two sub-arrays of the original array. The 
procedure is recursively applied on the sub-arrays until they 
are reduced to size 1. Analysis and results show that the 
algorithm performs better than quicksort for an input that is 
almost or completely sorted.  
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1. INTRODUCTION 
 
For decades sorting has been one of the most basic and 
principle problems of computer science. Many sorting 
algorithms have been proposed since long time. But, very few 
algorithms have achieved the goal of fast sorting. 
 This paper presents a fast sorting algorithm which employs 
“Divide and Conquer” strategy similar to Quick Sort and 
Merge Sort algorithms. It recursively divides the given list 
into 2 sub-lists until finally sub-list with only 1 item is left. 
The algorithm uses an iterative swap operation which ensures 
that the all items in 1st sub-lists are lesser than all items in the 
2nd sublist. 
  
2. LITERATURE REVIEW 
 
2.1 Quicksort[2] 
 Quicksort algorithm uses Divide and Conquer strategy 
which partitions the input list on the basis of a pivot element, 
such that items less (greater) than pivot element are placed in 

 
 

the left(right) side of pivot and then the algorithm is 
recursively called on the left and right sub list of pivot. In 
quicksort the partition operation, which loops over the 
elements of the list once, uses O (n) time. In the best case, 
each time a partition operation divides the list into two nearly 
equal parts. This means each recursive call processes a list of 
half the size of original list. Therefore, the depth of the 
recursion tree is log n. Each part of the list at every recursive 
call processes different items, thus, each level of calls needs 
only O(n) time in total. The result is that the algorithm uses 
only O (n log n) time. If the input list is already sorted or in 
reverse sorted order, the algorithm takes maximum time to 
complete. This is the worst case of Quicksort with O(n^2) 
time requirement. It happens because each partitioning 
operation results into a list of size 0 and a list of size n-1, thus 
causing n-1 partioning operations instead of log n. This 
problem can be solved by random selection of pivot. This 
version of quicksort is the randomized quicksort algorithm. 
Quicksort and mergesort have same running time of O(n log 
n),but quicksort is an in-place sorting algorithm unlike 
mergesort. This gives quicksort the advantage of space. 
Moreover, quicksort has a good cache locality which makes it 
practically faster than mergesort. 
   
2.2 MergeSort[1][3] 
 Similar to quicksort, merge sort also uses Divide and 
Conquer strategy for sorting a list. The input list is divided 
into 2 halves from its middle position. This process continues 
recursively until a list of size 1 is reached. Then, the merge 
procedure starts which merges two lists in sorted order. 
Finally when all sub-lists are merged, we get a sorted list. In 
mergesort, the merge operations requires a total of O(n) 
operations on all partitions. There are O(log n) such 
partitioning operations. Thus total running time of this 
algorithm in all cases is O(n log n). However, during 
merging, a copy of the entire array is created. This copy 
operation copies more than a constant number of items, so 
merge sort is not an in place sorting algorithm. There are 
some applications where space is critical, and thus in-place 
algorithms are preferred over mergesort.  
If data is present on disk, mergesort can be used in 
combination with quicksort as quicksort alone cannot work 
due to a large number of disk accesses. Mergesort is a great 
algorithm for sorting linked lists, because it does not rely on 
random access to elements as does heapsort or quicksort 
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2.3 TimSort[4][5][6] 
 TimSort is a hybrid sorting algorithm based on Insertion 
Sort and Merge Sort. It is a stable sorting algorithm that 
works in O(n log n) time. The list is divided into blocks (until 
the block size reaches a particular threshold ) that are sorted 
using insertion sort one by one and then the sorted blocks are 
merged using merge operation used in merge sort. If the size 
of block is less than the threshold, then the list gets sorted just 
by using Insertion Sort. The size of threshold may vary from 
32 to 64 depending upon the size of the input list. This 
algorithm is used in practical sorting implementations of Java 
(Array.sort()) and Python (sorted(), sort()). This algorithm 
has worst case time requirement of O(n log n). 
 
2.4 Insertion Sort[1][7] 
 The insertion sort is an online sorting algorithm. It inserts 
each item at its proper position in the sorted sequence. It is an 
in-place and a stable sort that works by inserting the current 
item into the already sorted sequence of items by identifying 
its proper position and shifting the items that are greater than 
current item, one place to next position. Insertion sort has a 
complexity of O (n^2) in worst case and average case. The 
insertion sort is a almost twice as efficient as the bubble sort 
and almost 40% faster than the selection sort. Best case of 
insertion sort is O(n) and it occurs if the list is already sorted. 
The worst-case occurs when the list is in reverse order. The 
insertion sort is a good choice for sorting lists of a few 
thousand items or less and when all the items are not known 
in advance.   
 
3.  THE SLSort ALGORITHM 
 
The SLSort algorithm recursively sorts a list by splitting it 
into 2 sub-lists and repeatedly applying a swap operation on 
these sub-lists. The basic working principle of this algorithm 
is based on QuickSort algorithm. Fig. 1 shows the working of 
SLSort algorithm. 
 
The algorithm performs following operations to sort a list. 

i) Partitioning the list  
The algorithm initially does a logical partitioning 
of the input list at middle position into 2 sub-lists, 
say, ‘A1’ (low to mid-1) and ‘A2’ (mid+1 to high) 

ii) Computing the Largest item in ‘A1’ 
After obtaining the middle position of the list, the 
algorithm computes largest item, say, ‘IL’ from 
the first sub-list i.e. ‘A1’ 

iii) Searching for an item in A2 that is less than ‘IL’ in 
‘A1’ 

In step 3, an item ‘IS’ is linearly searched in the 
2nd sub-list i.e. ‘A2’ which is smaller than ‘IL’ 

iv) Swapping of IL with IS 
If, an ‘IS’ is identified in step 3, it is swapped with 
‘IL’ 

v) Repeating Steps iii and iv till no IS is left in A2 
Step iii and iv are performed repeatedly until all 
items in A2 are either greater than or equal to the 

largest item in A1. This repetition ensures that no 
item in A2 is smaller than any of the items in A1. 
Then, the largest item in A1 is placed at ‘mid’ 
position. Thus, the list (problem) can finally be 
divided into 2 independent sub-lists (sub 
problems). 

vi) Recursively sort modified A1 and A2 
Once the two parts ‘A1’ (low to mid-1) and ‘A2’ (mid+1 

to high) of the list are obtained such that  
 {i1<i2, for all i1 in A1 and i2 in A2 }  
That is, all items in ‘A1’ are less than every item in A2; 
these two sub-lists can be recursively sorted using same 
procedure explained above. 
 
 

 
 

Figure 1: Working of SLSort algorithm 
Algorithm 
(a[] – input list, low (high) is  lower (upper) index of list   
IS- 1st item in A2 that is less than largest in A1 
  Algorithm  SLSort(a[], low, high) 
1.         set j:=0 
2.    if(low<high) then  
3.   mid=(low+high)/2 
4.   while IS exists do 
5.    largest=findLargest(a, low, mid) 
6.    swap(a,largest,mid+1+j,high) 
7.       j++ 
8.   end while 
9.   swap a[largest] and a[mid] 
10.   SLSort(a,low,mid-1) 
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11.      SLSort(a,mid+1,high) 
12.   end if 
Algorithm swap(a[],largest, low, high) 
low is at (mid+1+j)th index 
1. set i:=low 
2. while(i<=high and a[i]>=a[largest]) do 
3.  i:=i+1 
4. end while   
5. if(i<=high) 
6.  temp:=a[largest] 
7.  a[largest]:=a[i] 
8.  a[i]:=temp 
 

 
Figure 2: Example showing working of SLSort algorithm (a) 
input list (b) shows mid position and sub-lists A1, A2 with 
IL=8 and IS=6 (c) shows modified list after swapping 8 and 6 
and the next IL=6 and IS=5 (d) shows modified list after 
swapping of  6 and 5 (e) shows list after swapping of largest 
item (5) in A1 with item at mid (f) shows how the list is split 
into 2 sub-lists, one from low to mid-1 and other from mid+1 
to high (g)(h)(i) show recursive sorting of sub-lists. 
 
The proof of correctness for SLSort  involves a proof that 
Swap procedure works correctly and a proof that SLSort 
recursion works correctly. 
The proof of correctness for Swap involves a loop invariant. 
The invariant is that all array elements from mid+1 to 
a[mid+j] are greater than largest 

a[mid+1..mid+j]>largest in A1 
and a[mid+j+i]th item is greater than largest in A1 and 
i<high before loop terminates. Therefore, at loop end, either 
no smaller item ‘IL’ is found or if it is found, it is swapped 
with largest item in A1. While loop at line no. 4 in SLSort 
ensures that all such ILs are shifted to sub-lists A1 
Proof for Correctness of recursion algorithm SLSort is as 
follows. 

 Proof by induction on the length of the array, high - low + 1 
1. When low = high SLSort does not do anything, 

which is the correct to do when sorting a list of 
length 1. 

2. Assume that SLSort can correctly sort any list of 
length n or less 

3. We show that it can correctly sort a list of 
length n+1.  
The line no. 3 of SLSort algorithm will partition the 
list of length n+1 into two sub-lists A1 & A2 and 
swap subroutine places smaller half from low to mid 
and greater (equal items in case of duplicates) half 
from mid+1 to high. This is followed by swapping of 
largest in A1 with mid item.  
That is, we end up with a[low..mid-1] ≤ a[mid] 
< A[mid+1..high]. These sub-lists will have 
length n/2, so the induction hypothesis tells us that 
the recursive calls to SLSort will correctly sort the 
two sub-lists. After the sub-lists are sorted, sorting is 
over. 

4. RESULTS 

The algorithm was implemented in C. The implementation 
was tested for input data of varying sizes and arrangements. 
Result of few test cases is shown in table 1. It is evident that 
for sorted and almost sorted input, SLSort algorithm performs 
significantly faster than quicksort algorithm. For unsorted 
input of input size in 100s, the SLSort algorithm performs at 
par with quicksort algorithm. For larger inputs, SLSort 
algorithm is slower as a result of findLargest() subroutine, 
however there is no significant increase in the execution time 
of SLSort as compared to Quicksort. 

Table 1: Execution Time and No. of comparisons for SLSort 
and Quicksort 

SN SLSort Quicksort 
n= 1000 
sorted 

Time 0.00015 seconds 
Partition count =511  
No of swap iterations=4049  
No of comparisons in largest=3938  

Time 0.00472 seconds 
Partitions=999 
Split iterations 
=499500 

n= 
10000 
Almost 
sorted 

Time 0.00203 seconds 
Partition count =5904  
No of swap iterations=59018  
No of comparisons in 
largest=54613  

Time 0.19267 seconds 
Partitions=9999,  
Split iterations 
=49995000 

n= 
20000 
sorted 

Time 0.00433 seconds 
Partition count =11808  
No of swap iterations=128027  
No of comparisons in 
largest=119221  

Time 0.72281 seconds 
Partitions=19999,  
Split iterations 
=199990000 

n= 
100000 
sorted 

Time 0.01291 seconds 
Partition count =65535  
No of swap iterations=753916  
No of comparisons in 
largest=715030  

Time 18.00247 
seconds 
Partitions=99999,  
Split iterations 
=704982704 

100 
sorted 

Time 0.00001 seconds 
Partition count =63  
No of swap iterations=261  
No of comparisons in largest=219  

Time 0.00005 seconds 
Partitions=99,  
Split iterations=4950 

300 
sorted 

Time 0.00004 seconds 
Partition count =172  
No of swap iterations=1014  

Time 0.00047 seconds 
Partitions=299,  
Split iterations=44850 
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No of comparisons in largest=884  
100 
unsorted 

Time 0.00010 seconds 
Partition count =63  
No of swap iterations=1655  
No of comparisons in largest=3551  

Time 0.00003 seconds 
Partitions=65,  
Split iterations=652 

500 
unsorted 

Time 0.00153 seconds 
Partition count =255  
No of swap iterations=6951  
No of comparisons in 
largest=88862  
Total=96068 

Time 0.00016 seconds 
Paritions=323,  
Split iterations=4837 

1000 
unsorted 

Time 0.00540 seconds 
Partition count =511  
No of swap iterations=27063  
No of comparisons in largest 
=370050  

Time 0.00036 seconds 
Paritions=668,  
Split iterations 
=10931 

5000 
unsorted 

Time 0.05471 seconds 
Partition count =2952  
No of swap iterations=706598  
No of comparisons in largest= 
9073019  

Time 0.00080 seconds 
Paritions=3326,  
Split iterations 
=78338 

Number of partitioning operations is same in all cases: (log n) 

5.  PERFORMANCE ANALYSIS 
The algorithm performs various operations viz. calculation of 
middle position, computing the largest item in A1, searching 
for an item in A2 that is smaller than the largest item in A1 
followed by a swap operation, partitioning of the list into 2 
sub-list and recursively sort these sub-lists. The running time 
of all the operations is computed separately. 
Calculation of middle position and swapping of two items 
requires a constant time and hence are O(1) operations. 
As evident from fig. 3 and fig. 4 the depth of recursion tree is 
log₂n, that is, the number of partitioning operations is log₂n, 
with n as the size of input list. 

 
Figure 3: Recursion tree for a list of size n 

 

 
Figure 4: Recursion tree for n=7 

 
 Initially the algorithm takes full array as the input. Mid 
position is present at n/2th item in the list. Therefore, finding 
largest item ‘IL’ in A1 requires n/2 i.e. (n) comparisons and 

finding an item in A2 that is smaller than IL requires 
maximum n/2 comparisons which again accounts to O(n) 
operations. Thus, the total time requirement is O(n) for 1 
swap operation. There can be upto n/2 i.e. O(n) such swap 
operations. 
 Since, there are log₂n partitioning operations, hence the 
total time requirement of this algorithm in worst case is O(n² 
log n). However, the expected number of comparisons in 
swap() procedure are much less than n on the average, 
resulting into a smaller constant factor. 
 Best case of this algorithm occurs if the list is already in 
sorted order. If the input is sorted, the while loop in SLSort 
algorithm at line number 4 executes only once as there is no 
item in A2 that is smaller than the largest in A1. So, the total 
number of comparisons required for finding largest is n/2, 
which is θ(n) and that required for searching an ‘IS’ in A2 is 
again n/2, which is θ(n). Therefore, the total time requirement 
is O(n log n) in best case. 
 If the input is almost sorted, the number of calls to swap() 
procedure are a small constant. Thus, the algorithm performs 
much better than O(n² log n), as the factor of  n² reduces to 
O(n). 
 The performance of this algorithm can be further 
improved by studying the pattern (arrangement) of items in 
the input list. If smallest item in A1 is also computed 
alongwith the largest item and if same procedure is repeated 
on A2, then, a simple comparison of largest item in A1 and 
smallest item in A2, followed by swapping of all items in A1 
with all in A2, can save the number of comparisons by a factor 
of n in each recursive call, thus resulting in a running time of 
O(n log n). This optimization can work if the input list is 
completely unsorted. 

6. CONCLUSION 
The algorithm partitions the array by repeatedly swapping 
larger and smaller items and the same procedure is 
recursively applied on the sub-arrays. Thus, it uses a Divide 
and Conquer paradigm to sort an array. The SLSort algorithm 
performs better if the input array is almost or completely 
sorted. This is because, for an almost sorted input, the array is 
traversed only once in each partition. Since, the algorithm 
does not use any auxiliary space; hence SLSort is an in-place 
sorting algorithm. Similar to quicksort and mergesort [9], 
parallelized and concurrent version of this algorithm can be 
designed for faster execution on large inputs. Further, the 
worst case performance of the algorithm can be improved by 
the proposed optimization, for completely unsorted list. 
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