
Hirkani Padwad, International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1991 – 1995

1991


ABSTRACT

Sorting problem is one of the classic problems of Computer
Science. Sorting is among the most basic tasks involved in
computation and is very commonly used in almost every
application. Design of a fast sorting algorithm has always
been a challenge and there has been a lot of research since
many decades. A variety of sorting algorithms have been
designed amongst which Quicksort is considered as the fastest
in-place sorting algorithm and Timsort is being used in
practically for sorting problems in programming languages
like Java and Python. Few parallelized versions of sorting
algorithms have also been developed. This paper proposes a
Divide and Conquer based scheme of in-place sorting which
sorts the array using repeated swap operations of largest and
small elements of two sub-arrays of the original array. The
procedure is recursively applied on the sub-arrays until they
are reduced to size 1. Analysis and results show that the
algorithm performs better than quicksort for an input that is
almost or completely sorted.

Key words: Sorting, divide and conquer, n log n sort

1. INTRODUCTION

For decades sorting has been one of the most basic and
principle problems of computer science. Many sorting
algorithms have been proposed since long time. But, very few
algorithms have achieved the goal of fast sorting.
 This paper presents a fast sorting algorithm which employs
“Divide and Conquer” strategy similar to Quick Sort and
Merge Sort algorithms. It recursively divides the given list
into 2 sub-lists until finally sub-list with only 1 item is left.
The algorithm uses an iterative swap operation which ensures
that the all items in 1st sub-lists are lesser than all items in the
2nd sublist.

2. LITERATURE REVIEW

2.1 Quicksort[2]
 Quicksort algorithm uses Divide and Conquer strategy
which partitions the input list on the basis of a pivot element,
such that items less (greater) than pivot element are placed in

the left(right) side of pivot and then the algorithm is
recursively called on the left and right sub list of pivot. In
quicksort the partition operation, which loops over the
elements of the list once, uses O (n) time. In the best case,
each time a partition operation divides the list into two nearly
equal parts. This means each recursive call processes a list of
half the size of original list. Therefore, the depth of the
recursion tree is log n. Each part of the list at every recursive
call processes different items, thus, each level of calls needs
only O(n) time in total. The result is that the algorithm uses
only O (n log n) time. If the input list is already sorted or in
reverse sorted order, the algorithm takes maximum time to
complete. This is the worst case of Quicksort with O(n^2)
time requirement. It happens because each partitioning
operation results into a list of size 0 and a list of size n-1, thus
causing n-1 partioning operations instead of log n. This
problem can be solved by random selection of pivot. This
version of quicksort is the randomized quicksort algorithm.
Quicksort and mergesort have same running time of O(n log
n),but quicksort is an in-place sorting algorithm unlike
mergesort. This gives quicksort the advantage of space.
Moreover, quicksort has a good cache locality which makes it
practically faster than mergesort.

2.2 MergeSort[1][3]
 Similar to quicksort, merge sort also uses Divide and
Conquer strategy for sorting a list. The input list is divided
into 2 halves from its middle position. This process continues
recursively until a list of size 1 is reached. Then, the merge
procedure starts which merges two lists in sorted order.
Finally when all sub-lists are merged, we get a sorted list. In
mergesort, the merge operations requires a total of O(n)
operations on all partitions. There are O(log n) such
partitioning operations. Thus total running time of this
algorithm in all cases is O(n log n). However, during
merging, a copy of the entire array is created. This copy
operation copies more than a constant number of items, so
merge sort is not an in place sorting algorithm. There are
some applications where space is critical, and thus in-place
algorithms are preferred over mergesort.
If data is present on disk, mergesort can be used in
combination with quicksort as quicksort alone cannot work
due to a large number of disk accesses. Mergesort is a great
algorithm for sorting linked lists, because it does not rely on
random access to elements as does heapsort or quicksort

SLSort (Smallest-Largest Swap Sort) – A Sorting Algorithm

Hirkani Padwad1

1 Assistant Professor, Department of Computer Science & Engineering, Shri Ramdeobaba College of Engineering
and Management, Nagpur, Maharashtra, India, hirkani.pathak@gmail.com

 ISSN 2278-3091
Volume 9 No.2, March - April 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse169922020.pdf

https://doi.org/10.30534/ijatcse/2020/169922020

Hirkani Padwad, International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1991 – 1995

1992

2.3 TimSort[4][5][6]
 TimSort is a hybrid sorting algorithm based on Insertion
Sort and Merge Sort. It is a stable sorting algorithm that
works in O(n log n) time. The list is divided into blocks (until
the block size reaches a particular threshold) that are sorted
using insertion sort one by one and then the sorted blocks are
merged using merge operation used in merge sort. If the size
of block is less than the threshold, then the list gets sorted just
by using Insertion Sort. The size of threshold may vary from
32 to 64 depending upon the size of the input list. This
algorithm is used in practical sorting implementations of Java
(Array.sort()) and Python (sorted(), sort()). This algorithm
has worst case time requirement of O(n log n).

2.4 Insertion Sort[1][7]
 The insertion sort is an online sorting algorithm. It inserts
each item at its proper position in the sorted sequence. It is an
in-place and a stable sort that works by inserting the current
item into the already sorted sequence of items by identifying
its proper position and shifting the items that are greater than
current item, one place to next position. Insertion sort has a
complexity of O (n^2) in worst case and average case. The
insertion sort is a almost twice as efficient as the bubble sort
and almost 40% faster than the selection sort. Best case of
insertion sort is O(n) and it occurs if the list is already sorted.
The worst-case occurs when the list is in reverse order. The
insertion sort is a good choice for sorting lists of a few
thousand items or less and when all the items are not known
in advance.

3. THE SLSort ALGORITHM

The SLSort algorithm recursively sorts a list by splitting it
into 2 sub-lists and repeatedly applying a swap operation on
these sub-lists. The basic working principle of this algorithm
is based on QuickSort algorithm. Fig. 1 shows the working of
SLSort algorithm.

The algorithm performs following operations to sort a list.

i) Partitioning the list
The algorithm initially does a logical partitioning
of the input list at middle position into 2 sub-lists,
say, ‘A1’ (low to mid-1) and ‘A2’ (mid+1 to high)

ii) Computing the Largest item in ‘A1’
After obtaining the middle position of the list, the
algorithm computes largest item, say, ‘IL’ from
the first sub-list i.e. ‘A1’

iii) Searching for an item in A2 that is less than ‘IL’ in
‘A1’

In step 3, an item ‘IS’ is linearly searched in the
2nd sub-list i.e. ‘A2’ which is smaller than ‘IL’

iv) Swapping of IL with IS
If, an ‘IS’ is identified in step 3, it is swapped with
‘IL’

v) Repeating Steps iii and iv till no IS is left in A2
Step iii and iv are performed repeatedly until all
items in A2 are either greater than or equal to the

largest item in A1. This repetition ensures that no
item in A2 is smaller than any of the items in A1.
Then, the largest item in A1 is placed at ‘mid’
position. Thus, the list (problem) can finally be
divided into 2 independent sub-lists (sub
problems).

vi) Recursively sort modified A1 and A2
Once the two parts ‘A1’ (low to mid-1) and ‘A2’ (mid+1

to high) of the list are obtained such that
 {i1<i2, for all i1 in A1 and i2 in A2 }
That is, all items in ‘A1’ are less than every item in A2;
these two sub-lists can be recursively sorted using same
procedure explained above.

Figure 1: Working of SLSort algorithm
Algorithm
(a[] – input list, low (high) is lower (upper) index of list
IS- 1st item in A2 that is less than largest in A1
 Algorithm SLSort(a[], low, high)
1. set j:=0
2. if(low<high) then
3. mid=(low+high)/2
4. while IS exists do
5. largest=findLargest(a, low, mid)
6. swap(a,largest,mid+1+j,high)
7. j++
8. end while
9. swap a[largest] and a[mid]
10. SLSort(a,low,mid-1)

Hirkani Padwad, International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1991 – 1995

1993

11. SLSort(a,mid+1,high)
12. end if
Algorithm swap(a[],largest, low, high)
low is at (mid+1+j)th index
1. set i:=low
2. while(i<=high and a[i]>=a[largest]) do
3. i:=i+1
4. end while
5. if(i<=high)
6. temp:=a[largest]
7. a[largest]:=a[i]
8. a[i]:=temp

Figure 2: Example showing working of SLSort algorithm (a)
input list (b) shows mid position and sub-lists A1, A2 with
IL=8 and IS=6 (c) shows modified list after swapping 8 and 6
and the next IL=6 and IS=5 (d) shows modified list after
swapping of 6 and 5 (e) shows list after swapping of largest
item (5) in A1 with item at mid (f) shows how the list is split
into 2 sub-lists, one from low to mid-1 and other from mid+1
to high (g)(h)(i) show recursive sorting of sub-lists.

The proof of correctness for SLSort involves a proof that
Swap procedure works correctly and a proof that SLSort
recursion works correctly.
The proof of correctness for Swap involves a loop invariant.
The invariant is that all array elements from mid+1 to
a[mid+j] are greater than largest

a[mid+1..mid+j]>largest in A1
and a[mid+j+i]th item is greater than largest in A1 and
i<high before loop terminates. Therefore, at loop end, either
no smaller item ‘IL’ is found or if it is found, it is swapped
with largest item in A1. While loop at line no. 4 in SLSort
ensures that all such ILs are shifted to sub-lists A1
Proof for Correctness of recursion algorithm SLSort is as
follows.

 Proof by induction on the length of the array, high - low + 1
1. When low = high SLSort does not do anything,

which is the correct to do when sorting a list of
length 1.

2. Assume that SLSort can correctly sort any list of
length n or less

3. We show that it can correctly sort a list of
length n+1.
The line no. 3 of SLSort algorithm will partition the
list of length n+1 into two sub-lists A1 & A2 and
swap subroutine places smaller half from low to mid
and greater (equal items in case of duplicates) half
from mid+1 to high. This is followed by swapping of
largest in A1 with mid item.
That is, we end up with a[low..mid-1] ≤ a[mid]
< A[mid+1..high]. These sub-lists will have
length n/2, so the induction hypothesis tells us that
the recursive calls to SLSort will correctly sort the
two sub-lists. After the sub-lists are sorted, sorting is
over.

4. RESULTS

The algorithm was implemented in C. The implementation
was tested for input data of varying sizes and arrangements.
Result of few test cases is shown in table 1. It is evident that
for sorted and almost sorted input, SLSort algorithm performs
significantly faster than quicksort algorithm. For unsorted
input of input size in 100s, the SLSort algorithm performs at
par with quicksort algorithm. For larger inputs, SLSort
algorithm is slower as a result of findLargest() subroutine,
however there is no significant increase in the execution time
of SLSort as compared to Quicksort.

Table 1: Execution Time and No. of comparisons for SLSort
and Quicksort

SN SLSort Quicksort
n= 1000
sorted

Time 0.00015 seconds
Partition count =511
No of swap iterations=4049
No of comparisons in largest=3938

Time 0.00472 seconds
Partitions=999
Split iterations
=499500

n=
10000
Almost
sorted

Time 0.00203 seconds
Partition count =5904
No of swap iterations=59018
No of comparisons in
largest=54613

Time 0.19267 seconds
Partitions=9999,
Split iterations
=49995000

n=
20000
sorted

Time 0.00433 seconds
Partition count =11808
No of swap iterations=128027
No of comparisons in
largest=119221

Time 0.72281 seconds
Partitions=19999,
Split iterations
=199990000

n=
100000
sorted

Time 0.01291 seconds
Partition count =65535
No of swap iterations=753916
No of comparisons in
largest=715030

Time 18.00247
seconds
Partitions=99999,
Split iterations
=704982704

100
sorted

Time 0.00001 seconds
Partition count =63
No of swap iterations=261
No of comparisons in largest=219

Time 0.00005 seconds
Partitions=99,
Split iterations=4950

300
sorted

Time 0.00004 seconds
Partition count =172
No of swap iterations=1014

Time 0.00047 seconds
Partitions=299,
Split iterations=44850

Hirkani Padwad, International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1991 – 1995

1994

No of comparisons in largest=884
100
unsorted

Time 0.00010 seconds
Partition count =63
No of swap iterations=1655
No of comparisons in largest=3551

Time 0.00003 seconds
Partitions=65,
Split iterations=652

500
unsorted

Time 0.00153 seconds
Partition count =255
No of swap iterations=6951
No of comparisons in
largest=88862
Total=96068

Time 0.00016 seconds
Paritions=323,
Split iterations=4837

1000
unsorted

Time 0.00540 seconds
Partition count =511
No of swap iterations=27063
No of comparisons in largest
=370050

Time 0.00036 seconds
Paritions=668,
Split iterations
=10931

5000
unsorted

Time 0.05471 seconds
Partition count =2952
No of swap iterations=706598
No of comparisons in largest=
9073019

Time 0.00080 seconds
Paritions=3326,
Split iterations
=78338

Number of partitioning operations is same in all cases: (log n)

5. PERFORMANCE ANALYSIS
The algorithm performs various operations viz. calculation of
middle position, computing the largest item in A1, searching
for an item in A2 that is smaller than the largest item in A1
followed by a swap operation, partitioning of the list into 2
sub-list and recursively sort these sub-lists. The running time
of all the operations is computed separately.
Calculation of middle position and swapping of two items
requires a constant time and hence are O(1) operations.
As evident from fig. 3 and fig. 4 the depth of recursion tree is
log₂n, that is, the number of partitioning operations is log₂n,
with n as the size of input list.

Figure 3: Recursion tree for a list of size n

Figure 4: Recursion tree for n=7

 Initially the algorithm takes full array as the input. Mid
position is present at n/2th item in the list. Therefore, finding
largest item ‘IL’ in A1 requires n/2 i.e. (n) comparisons and

finding an item in A2 that is smaller than IL requires
maximum n/2 comparisons which again accounts to O(n)
operations. Thus, the total time requirement is O(n) for 1
swap operation. There can be upto n/2 i.e. O(n) such swap
operations.
 Since, there are log₂n partitioning operations, hence the
total time requirement of this algorithm in worst case is O(n²
log n). However, the expected number of comparisons in
swap() procedure are much less than n on the average,
resulting into a smaller constant factor.
 Best case of this algorithm occurs if the list is already in
sorted order. If the input is sorted, the while loop in SLSort
algorithm at line number 4 executes only once as there is no
item in A2 that is smaller than the largest in A1. So, the total
number of comparisons required for finding largest is n/2,
which is θ(n) and that required for searching an ‘IS’ in A2 is
again n/2, which is θ(n). Therefore, the total time requirement
is O(n log n) in best case.
 If the input is almost sorted, the number of calls to swap()
procedure are a small constant. Thus, the algorithm performs
much better than O(n² log n), as the factor of n² reduces to
O(n).
 The performance of this algorithm can be further
improved by studying the pattern (arrangement) of items in
the input list. If smallest item in A1 is also computed
alongwith the largest item and if same procedure is repeated
on A2, then, a simple comparison of largest item in A1 and
smallest item in A2, followed by swapping of all items in A1
with all in A2, can save the number of comparisons by a factor
of n in each recursive call, thus resulting in a running time of
O(n log n). This optimization can work if the input list is
completely unsorted.

6. CONCLUSION
The algorithm partitions the array by repeatedly swapping
larger and smaller items and the same procedure is
recursively applied on the sub-arrays. Thus, it uses a Divide
and Conquer paradigm to sort an array. The SLSort algorithm
performs better if the input array is almost or completely
sorted. This is because, for an almost sorted input, the array is
traversed only once in each partition. Since, the algorithm
does not use any auxiliary space; hence SLSort is an in-place
sorting algorithm. Similar to quicksort and mergesort [9],
parallelized and concurrent version of this algorithm can be
designed for faster execution on large inputs. Further, the
worst case performance of the algorithm can be improved by
the proposed optimization, for completely unsorted list.

REFERENCES
1. Donald E. Knuth et al. The Art of Computer

Programming, 2nd ed. Volume 3, Adssison-Wesley,
Sorting and Searching,pp.212-224, pp.115-118

2. Cormen et al. Introduction to Algorithms, 3rd ed., City :
pub, 2009, ch. 2, pp. 170-190

Hirkani Padwad, International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1991 – 1995

1995

3. Skiena, Steven S. 4.5: Sorting by
Divide-and-Conquer. The Algorithm Design Manual,
2nd ed. Springer, pp. 120–125, 2008

4. Wikipedia: Timsort "Class: java.util.TimSort<T>".
5. Peters, Tim,"[Python-Dev] Sorting", Python Developers

Mailinglist
6. Nicolas Auger, Vincent Jugé, Cyril Nicaud, and Carine

Pivoteau. On the Worst-Case Complexity of TimSort,
26th Annual European Symposium on Algorithms (ESA
2018), Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany, Article No. 4, pp.
4:1–4:13

7. Wikipedia: Sorting Algorithm, Retrieved from
http://en.wikipedia.org/wiki/Sorting_algorithm

8. John Harkins, Tarek El-Ghazawi, Esam El-Araby,
Miaoqing Huang. Performance and Analysis of Sorting
Algorithms on the SRC 6 Reconfigurable Computer,
The George Washington University, 2 Nov. 2005.

9. Dhirendra Pratap Singh, Ishan Joshi , Jaytrilok
Choudhary , Survey of GPU Based Sorting Algorithms,
International Journal of Parallel Programming, Volume
46, 1017–1034,2018
https://doi.org/10.1007/s10766-017-0502-5

