
Emad Al-Shawakfa et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 98 – 109

98

ABSTRACT

Recently, researchers have strived to enhance existing search
tools to enable the retrieval of a diversity of data types to help
users in finding what they are looking for from the Web,
however, very limited research is applicable to Arabic
content.
In this research, we introduce a rule-based approach to search
for mathematical expressions written in Arabic and/or
English from Arabic stored documents. A set of
normalization as well as math expressions’ equivalence rules
were built to enhance the capabilities of a math search engine.
Furthermore, rules for structural search to enable search for
sub-expressions were also built. An indexing mechanism and
a mapping between Arabic and English expressions during
the search process was also produced. The approach was
applied using a set of forty queries; written in Arabic and/or
English, was applied on a manually collected dataset of 100
documents which has produced an overall accuracy of 75%.

Key words: Math Information Retrieval, Arabic Math
Expression, Text-Based Search, Normalized Math Tree.

1. INTRODUCTION

Search engines were developed to help in locating data of
various types, including text, images, audio, and video over
the Internet. However, domain specific documents may
contain special forms and characters such as: mathematical
expressions (ME), drawings, charts, tables, and diagrams that
are more structured and difficult to retrieve using traditional
search engines. Furthermore, such types of data cannot be
effectively indexed and/or queried via conventional search
engines. As mentioned by [1], navigation by search engines
are either static or dynamic.
According to [2], web content can be categorized into two
major types: structured and unstructured. As defined in [3],
structured information is information that is ordered in a
particular way and combined with extra features to describe it
and to construct the relationship between its contents; a

mathematical expression is a very good example of structured

information. On the other hand, unstructured information is
defined as information that exists in random pieces which
does not contain any hidden information other than text; a
normal text-based information is a good example of
unstructured information.
Many existing web sites and digital libraries include huge
number of scientific papers and books in digital format that
contain mathematical expressions and formulae; an
essentiality to researchers of different scientific areas like:
Mathematics, Physics, Biology, Chemistry, etc. [4]. As
Arabic math content has grown extensively on the Internet
lately, and with the need by Arab researchers and/or students
to search for such content on the Internet, we feel the need to
provide a mechanism to search for such content easily.
Unfortunately, existing search engines do not provide suitable
ways to support the search for such documents containing
ME. Figure 1 gives a screenshot of an existing Arabic content
from a physics topic on the web [5].

Figure 1: Arab math content on the web [5]

As noted by [6], a math expression; whether written in Arabic
or English scriptures, could be categorized under structured
information and are very formal since they contain special
characters and symbols and contain both the structure and the
semantic of the information that tell much about the
expression itself; for which special attention and processing
tools are needed.
With traditional text-based search engines, when searching
for functions of symbols like sin, cos, log, and many others,
the search will be for the best text matching of symbols only,
and not their meaning. With the existence of many
expressions with the same meaning presented in different
ways, a math search engine must be able to retrieve all related
expressions of the same meaning and with different structures
than a given query, regardless of the language used; English

Recognition and Retrieval of Mathematical Expressions from

 Arabic Documents

Emad Al-Shawakfa1 , Mohammed Tawalbeh2
1Information Systems Department, Faculty of IT, Yarmouk University, Jordan, shawakfa@yu.edu.jo

2Information Systems Department, Faculty of IT, Yarmouk University, Jordan, mt@just.edu.jo

 ISSN 2278-3091
Volume 9, No.1, January – February 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse16912020.pdf

https://doi.org/10.30534/ijatcse/2020/16912020

Emad Al-Shawakfa et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 98 – 109

99

or Arabic. For instance, an expression like “a+b” is similar in
meaning to that of “x+y” while an expression like (x-y) is
mathematically different than (y-x). With traditional search
engines a search is performed, and an exact content match is
performed. So, the search for the “x-y” expression for
instance, will be searching only for x, y, as well as the minus
sign (-), regardless of their order hence, documents
containing expressions ‘x-y’ and ‘y-x’ will be retrieved even
though their meaning is different. A math search engine, on
the other hand, must retrieve all documents with all related
formulae of the same meaning and structure and simply not
an exact content match. A math search engine should allow
the search for sub-expressions.
Furthermore, traditional search engines are not equipped with
interfaces to enable the search for structured information and
thus, poor results are usually produced. Usually, it is not that
easy to get free tools, or even freely available Math editors to
support the input of math special characters and symbols and
arrange them in an appropriate and suitable manner to be
used by a search engine; a crucial need to enable users to write
and search for different types of mathematical information
and obtain good results.
When building a math search engine, two main things must
be addressed in addition to the meaning of an expression: the
representation of the mathematical expressions and the
mechanisms used to describe such expressions. In order to
properly search for mathematical expressions, they must be
represented in an efficient way; both in the database as well as
the query. There are many special purpose languages and
tools in existence today that could be used to represent math
expressions and their structures, like MathML [4], LATEX
format [6], OpenMath format [7], and Math Objects as in
Microsoft Word editor. Such formats describe ME and make
them available and readable to users. In addition, some math
styles and frames that are more consistent and less ambiguous
are used to represent and describe mathematical expressions’
content and structure, like that in [9]. These descriptions are
quite helpful in handling complex math notations and the
support for non-keyboard symbols.
As noted by [10], to process mathematical expressions
properly, we need to apply a math normalization process; a
process that should convert math expressions into unique
representation to enable the search for expressions
represented in different structures. For instance, expressions
like and “a*x*(1+y+z)” have the same
meaning, even though they have different structures.
Applying a normalization process makes the matching
process between expressions and equivalence detection
process possible, and hence, the similarity score becomes
measurable.
Another issue worth noting is that, the same math expression
can be represented in different equivalent forms; which is
similar to the usage of synonyms with text-based searches.
However, with text-based searches, thesauri are used to

resolve this problem. In math-based search, a thesaurus
cannot be used to resolve equivalent math expressions
because they are sometimes too many. For instance, the
expressions (½) , (0.5) , (2ˆ-1) , , (2/4), are all
equivalents, also)"ظاس"(is equivalent to "س(جتا÷)س(جا"(,
and “tan(x)” is equivalent to ”sin(x)/cos(x)”, etc.
To better search for ME, an indexing process is needed.
According to [6], the most general indexing processes use
text-based mechanisms. Other techniques, however, do exist
such as tree-based [11] or image-based [12]. Nowadays, the
most widespread mechanism is the tree-based technique.
Due to the increase volume of Arabic content on the web, and
the increased percentage of Arab users of the Internet, more
and more requests to search for scientific content has risen.
The main objective of this research is to help in searching for
Arabic scientific content; documents with formulae written
either in Arabic and/or English. To achieve this objective, a
Rule-Based approach for the retrieval of math expressions
from Arabic Documents was built. We used existing
normalization and equivalence rules and developed new rules
to help in normalizing different structures of math
expressions. We represented structures as math-trees and
then converted them into a unique indexable and searchable
form.

2. RELATED WORK

Many math retrieval systems were built to deal with Math
content which were mainly based on the usage of MathML or
Latex formats in their representation. Such systems were
based on a Structural approach, a Textual approach, or a
Hybrid approach. Structural approach systems are concerned
with how to express the meaning of a content based on the
structure, like that of ([13]; [14]; or [15]), Textual approaches
are concerned with addressing math content as textual
information like the work of ([16]; [6]; [17]; and [18]).
Hybrid approaches, on the other hand, combine both
structural and textual approaches to search for math content
like that of ([19]; [11]; and [4]. Other systems existed like the
works of [8]; [20]; [21]; [6]; [22]; [23]; and [24].
Many enhanced systems were introduced into the literature
like that of (10]; [25]; [26]; [3]; [27]); [28]; [29]; [30]; and
[31]), as well as others. Techniques to search for
mathematical expressions from image documents were also
presented like that by ([32]; and [12]). A good survey on
mathematical information retrieval using
document-recognition technologies was provided in [33].
A standardization process to enhance mathematical
information retrieval and a set of normalization rules were
produced by [34]. In their research, the math-tree structure is
built and then transformed into a unified normal form using
math normalization rules. A research by [35] used a mapping
process to transform ME from an original form into an
equivalent one with the same representation. [36] presented a

Emad Al-Shawakfa et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 98 – 109

100

new framework for mathematical information retrieval that
helps in extracting the ME and then represent them as a Math
tree and convert them into a normalization form using
equivalence rules that were later expanded.
[37] used Data analysis techniques for math search, in which
the Lattice-based approach was used for math search. The
approach extracts features from MathML format to construct
a mathematical concept lattice using some definitions, or
rules where relations were represented as a term-document
matrix.
As for Arabic Math Search Systems, the only work we came
across was that of [38]. The author proposed a mathematical
information retrieval system that enables search for and
access mathematical information in Arabic. The indexing and
retrieval of ME was based on the similarity of formula
structures. In addition, the used indexed math expressions
were based on the hierarchy structure (tree-based), where
MathML format was used to represent the math expressions.
Many attempts were made to introduce query languages
suitable for the retrieval and understanding of math content.
Such query languages were introduced in the works of [9],
[39], [40], and [41].

3. RESEARCH METHODOLOGY

In our approach, we introduced a math style to represent math
expressions in the repository and in an index file based on the
plain text formats. Subsequently, we used the plain text
format to build math expressions in a tree format
representation; known as Math-Tree, and later on used it in
the matching process. Moreover, we adopted and built
equivalence detection rules to produce normalized-tree forms
of math expressions. The approach we followed to complete
this research is presented in Figure 2.

Figure 2: An Overview of the Research Methodology

3.1 Dataset Collection
For the purposes of this research, we could not find any
standard dataset of documents that contain mathematical
functions and/or expressions written in Arabic similar to that

of (DLMF) or (EuDML) datasets mentioned in [29]. For this,
we had to manually build our own dataset through collecting
at least 100 documents from different web sites dedicated to
online teaching. Our dataset contained different math
functions written in Arabic and/or English scriptures.
Furthermore, more documents were created via manually
adding some math expressions with different symbols and
structures. In our collected dataset, we assumed that the math
expressions should exist in the plain text format and are
represented in our proposed math style that was inspired from
the Microsoft Word Math Editor for which, we manually
reviewed and reformulated the dataset accordingly.

3.2 Research Phases
The research methodology is made up of several major
phases: Parsing, Indexing, Arrangement and Refinement of
Math Expressions, Tokenization and Generalization,
building a Tree, Normalizing Math Expression, Equivalency
Detection, Calculating Similarity and Ranking, and finally
retrieving documents and/or paragraphs of relevant math
expressions.

A. Parsing
In our approach, we dealt with three resources of
mathematical information that need to be parsed to extract
their semantic and structural meaning, two of them came
from user queries, while the third one has come from our
dataset. For user queries, in addition to the Math Expression
Editor Light (MEEL) shown in Figure 3, we built our own
math editor to enable the writing of Arabic math expressions.
Furthermore, our adopted math style; represented as a set of
linear strings, was used for both the Arabic-math editor and
the dataset and helped in resolving the ambiguity of script
characters. Non-keyboard symbols like the integral,
trigonometric functions and other symbols were also
supported and covered in our approach.

Figure 3: Math Expression Editor Light (MEEL)

Although MEEL can be used to represent and express user’s
queries in an intuitive manner, it could produce ambiguous
keywords and notations with several restricted features, rules,
or drawbacks. Furthermore, MEEL suffers from some

Emad Al-Shawakfa et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 98 – 109

101

limitations like: the no support for Arabic right-to-left writing
style, Functions and Operators are omitted and must be
replaced by symbols or keywords, no support for Negation, no
support for compact numbers (numbers with 2 or more
digits), in addition to that complex operators and functions
are represented as single isolated letters and not as a whole
connected word.
The drawbacks in MEEL have motivated us to build our own
Arabic Math-Query Editor (ABME) based on the adopted
math style of the approach given in Table (1). ABME allows
Arab naïve users to type and express their own queries in an
accurate and simplified manner using Arabic terminology,
ABME is given in Figure 4.
The parser preprocesses and extracts mathematical
expressions written in Arabic and/or English from both the
dataset and the user’s query. This is done through recognizing
different math symbols and keywords from different
documents. If any math symbol is found, the mathematical
expression is then traced from its start to end. In addition, the
parser extracts all related data to each mathematical
expression, such as identifying file names that contains the
mathematical expressions, the page number, and paragraph
number, which shortens time to reach the needed ME. The
parsing process would be executed once for each document;
unless modified or changed; based on their date and size, to
enhance the searching process and reduce the time spent in
the searching process.

Figure 4: Arabic-Based Math-Query Editor (ABME)

Eventually, all mathematical expressions that have been read;
whether from user queries or the dataset, are converted into a
unified form to become easier to be addressed and
implemented. In our approach, we built our standard
structural plain text formats that are used to implement and
compute mathematical expressions.

B. Indexing
Because of the huge amount of information and documents on
the Internet, which makes it more difficult to search for ME,
an indexing process is needed to enhance the searching
process and reduce the time needed for parsing. To enhance
the retrieval process, without an index, a comprehensive
search through all documents must occur to extract all
mathematical expressions, which means more time is spent

and more machine resources are consumed. The usage of an
index table enhances the search process and offers shorter
time to retrieve relevant expressions.

Accordingly, we developed an indexing technique, for which,
we built two index files: a file called IndexFileNames; that
stores the names of documents containing the mathematical
expressions that were parsed previously, and an IndexTable;
that stores the extracted mathematical expressions. The main
goal of the created IndexFileNames is to reduce the time spent
in parsing documents. When the parsing process is initiated,
all file names from the directory containing the dataset are
read and stored. Furthermore, the IndexFileNames is invoked
and the names will be retrieved from IndexFileNames for
those files that are parsed and indexed previously. The output
of this process is a list of file names which were not parsed
previously, files with modified or changed date, or newly
added files that need to be parsed. Taking into consideration
the deletion or modification of files in our dataset, then the
IndexFileNames must be frequently updated.

Table 1: Developed Math Expressions representation style

The IndexTable file contains information about extracted
math expressions, their location; file name, page number, and
paragraph number, as shown in Table 2. The IndexTable is
associated with the IndexFileNames file. When changes occur
to IndexFileNames; deleting documents and/or modifying
their internal content, the IndexTable requires an update as
well. After building the index table, the search process will
use the IndexTable file as a reference for any math
expressions search; thus, reduces the time consumed in
finding needed expressions.
To avoid overloading of index terms, we extract; at run time,
sub-expressions from each expression in the IndexTable

Operators &
Functions

English Form Arabic Form

Arithmetic
operators + , - , * , / , ÷ * ,- ,+

Exponentiatio
n ˆ ˆ

Square Root √(Exp) √)التعبیر الریاضي(
Infinite

Integration ∫_(Exp) ∫_)التعبیر الریاضي(

Integration
∫(Lower-Limit)→(
Upper-Limit)_(Ex

p)

الحد (→)الحد الاعلى(∫
التعبیر (_)الادنى

)الریاضي
Logarithm
Function Log(Base, Exp) التعبیر , الأساس(لوغ

)الریاضي
Natural

Logarithm
Function

Ln(Exp) التعبیر الریاضي(لن(

Trigonometri
c Functions

sin(Exp)
cos(Exp)
tan(Exp)
cot(Exp).

)التعبیر الریاضي(جا
)التعبیر الریاضي(جتا
)التعبیر الریاضي(ظا

)التعبیر الریاضي(ظتا

Emad Al-Shawakfa et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 98 – 109

102

through a tokenization process, so that both expressions and
their sub-expressions are used as a reference for a user query.

Table 2:: Structure of the IndexTable
Expression File

name
Page
number

Paragrap
h number

ص+ب+ا word2 1 2
xˆ-2+√(a+b+c)+y*y*y+z word5 3 2

ي-ˆا word14 1 3
: : : :

))ص(جا+س(ˆأ Word50 20 7

C. Arrangement and Refinement
This process produces a Layout representation of
mathematical expressions written in Arabic and English. The
layout representation is produced through multifaceted
sub-processes like removing a space, removing duplicate
parentheses, converting the math expression into a unified
format in which parentheses are added based on
mathematical operations priority rules that must be followed
by the user, otherwise the semantic meaning of the math
expressions would definitely change. The intelligence of this
process is to extract and determine dummy variables in
Integral functions as well. For example, the dummy variable
in “∫(a)→(b)_(xˆ2+4x+1)” is dx and the expression will be
converted into a simple unified format, hence, the
representation will be as following: “∫((xˆ2+4x+1),x,b,a)”.
The layout representation describes both the content and the
structure of the mathematical expression. Figure 5 gives the
roduced layout representation for the expression

"2ˆس+ت*ب+ص*ا" .

Figure 5: Layout representation for "2ˆس+ت*ب+ص*ا"

D. Tokenization and Generalization
After producing the layout representations for both dataset
and a user’s query, we extract different sub-expressions using
tokenization, where each sub-expression is called a token. For
example, the sub-expression “)ب*ا(” is a token of
“)ت)+ب*ا((”. Tokenization is a straightforward process for
obtaining sub-expressions from an expression and is a
technique that improves the results, where the expressions are
tokenized and subtrees are built to allow the searching for
sub-expressions.
In our approach, tokens (or sub-expressions) are extracted
through what is known as Math Expression Tokenizer [4],
[18]. All tokens are stored in the location related to the
original expression to avoid overloading of terms in the
tree-based indexing method, and to help in searching for
sub-expressions from the original ones, when needed.

Furthermore, we satisfy the hierarchal tokenization and order
based on the different levels of the parse-tree. The top level
takes more significance than the lower level during a
searching process. Whenever necessary, we go deeper into
lower levels to find appropriate relevant sub-expression.
Figure 6 describes the searching strategy for the expression
()2ˆس))+(ت*ب)+(ص*ا(() and its sub-expressions given in
Table (3) .
The weakness of the tokenization process is that extracting
sub-expressions is mainly based on the priority and location
of parentheses. For example, the sub-expression
“))2ˆس)+(ت*ب((” of the original expression
“()2ˆس))+(ت*ب)+(ص*ا(()” will be ignored due to the priority
and usage of parenthesis.
In this research, we repurposed the working principle of the
generalization process to increase the accuracy in finding
needed math information. In our approach, we extract the
structure of a user’s query and retrieve all mathematical
expressions that are generalized from such query based on the
structure. Figure 7 describes a generalization process.
As shown in Figure 7, the lowest level of the parse-tree will be
ignored, and the search process is concerned around the
structure of the math expressions. For example, if a user types
an expression like “))2-د(ˆ)غ+ع((” the structural expression is
represented as “))؟-؟(ˆ)؟+؟((” and the math search must
retrieve all math expressions that have exact, or similar
structures, such as “()2-د(ˆ)غ+ع()”, and/or
“()2-ش(ˆ)س+ص()”, and/or “))2-ث(ˆ)ب+ا((”.

Figure 6: Searching strategy for ()2ˆس))+(ت*ب)+(ص*ا(()

Table 3: Sub-expressions for))2ˆس))+(ت*ب)+(ص*ا((using priority
rules

Level Tokens
))2ˆس))+(ت*ب)+(ص*ا((((1)
)2ˆس((2)))ت*ب)+(ص*ا((
(3) (ت*ب)ص*ا((

Num# of
sub-expressions=5

،)) 2ˆس))+(ت*ب)+(ص*ا(((
،) ص*ا(،) 2ˆس(،)) ت*ب)+(ص*ا((

 (ت*ب)

Emad Al-Shawakfa et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 98 – 109

103

Figure 7: Generalization Process

Furthermore, the generalization process of our approach
maps between equivalent trigonometric functions. For
example, if a user types “)؟(ظا ” then the math search must
retrieve “)؟(ظا ”, and/or “)؟(جتا\)؟(جا ”, and/or “tan(?)” and/or
“sin(?)/cos(?)”. In addition, our approach performs mappings
between Arabic and English complex functions (sin↔ جا),(
cos↔ جتا),(tan↔ظا), (cot↔ظتا),(ln↔لن),(log ↔لوغ).
To increase the recall, we integrated the tokenization and
generalization processes, and applied them to the original
expressions as well as their sub-expressions. For instance, the
tokens and the generalization terms of the expression

“ ” are given in Table (4).

To resolve the ultimate number of equivalent constants, we
built the numbers calculation rule. In this rule, constant
children of each function, or operator, will be calculated and
the function, or operator, will be replaced by the result. For
instance, in the expression, “)بˆ)4÷6((” the division
operation (÷) is replaced by (1.5) and thus, the expression
will be transformed into “)بˆ1.5(”.

Table 4: Tokens & generalization terms for
Level of

Parse-Tree
Tokens Generalization

1

2

2

To simplify the representation of math expression items and
eliminate parentheses, we have adopted the prefix notation
like that in [19]; which has helped us in building a math-tree
structure. For example, given the expression

))2ˆس))+(ت*ب)+(ص*ا(((the corresponding prefix notation is
)ص,س,ˆ,ت,ب,*,ص,ا,*,+,+). Figure 8 gives the prefix notation

of the expression " 2ˆ)ص+س"(.
Furthermore, this process applies two of the normalization
rules; the Associative Property rule and the Grouping
Property rule. The parentheses are only used to identify the
priority and to extract sub-expressions from the whole
expression.

Figure 8: Prefix notation of the expression)"2ˆ)ص+س"

E. Building the Math-Tree
To convert the math expression from the layout
representation to the semantic representation (tree-based),
and after obtaining the prefix notation for each math
expression, each mathematical expression can then be
transformed into its basic components. The most important
advantage of this process; tree representation, is to express the
structure of a mathematical expression and provide extra
features that could determine relevant expressions.
In building a Math-Tree in this research, in addition to simple
math expressions, we covered the list of functions and
keywords shown in Table (5); considered as parents, which
have different number of arguments. On the other hand,
constants, variables, and numbers, are considered leaf nodes,
which are the lowest levels of a parse-tree. Initially, we have
built a mixed algorithm (Top-Down and Bottom-Up) to build
the Binary Tree, which later became more flexible,
modifiable, and transferable (Figure 9). In building a tree, we
took into consideration that the priority decreases from top to
down and decreases from left to right at the same level.
In the binary tree, each parent have either one or two other
children however, an Integration function has more than two
arguments so, we added two children to the integration
function, FromTo child; to connect the lower limit and the
upper limit, and the Derivation child; to connect the
Expression with its dummy variables, taking into account that
the lower and upper limits may not only be constants or
variables, but may be math expressions. In other words, we
assign, at most two children for all parents to achieve the
principle of the binary tree.

Table 5: Functions and Number of Arguments
Keywords # Arguments

Square Root
Natural Logarithm Function
Trigonometric Functions
Infinite Integration

One Argument

Arithmetic operators
Exponentiation
Logarithm Function

Two Arguments

Integration Four Arguments

For example the structural math-tree for the expression
“∫(t+1)→(t+2)_(x+1)” is represented in Figure 10(a) and the
Tree-View representation for the expression
((∫(a)→(b)_(x+1)/x+y)) is given in Figure 10(b).

Emad Al-Shawakfa et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 98 – 109

104

F. Normalizing Math Expressions
In this research, we used the concept “normalizing math
expression” adapted by [10] to refer to the sequence of
transformations needed to transform an original expression
from its (algebraic/structural) format into a unified text
format. So, different math expressions, with the same
meaning, are converted into one uniform format, or
transforming the expression-tree into a normalized-tree
(semantic tree), to ensure a high recall of the relevant math
expressions.

Figure 9: Adopted Algorithm to build the binary tree

Most of the previous research produced and embraced
normalization rules in their approach to make math search
identical to text search in a concept in which mathematical
expressions are converted into a normal form, to progress the
matching process. In this research, in addition to covering
and matching simple math expressions, we extracted and
adopted the normalization rules used by [10]; and [8] and
built new ones, to reduce the complexity of the math-tree in
order to simplify the matching process (see Table (6)). Rules
were built to search for the following types of expressions:
Trigonometric Functions, Calculating numbers,
Denominator negative power, Multiplication to power,
Extraction of co-factors (variable), Power of one, and
Multiplication of one.

(a) (b)

Figure 10: Math-tree (a) and Tree-View representation (b)

In addition, other rules were also developed like: Grouping
Property rule; which deals with expressions according to
priority (Figure 11 a), Tree Height Reduction rule; which
combines similar parent nodes that descend form the same
node with the lowest level parent node (Figure 11 b).

Table 6: Developed Normalization Rules
Rule Original

Expression
Equivalent
Expression after
applying rule

Associative
Property

)ز+ ص + (س ز) + ص+ س (

Commutative
Property

س* ص ص* س

Distributive
Property

)ع+ ص * (س)ع* س) + (ص*س(

Calculating
Numbers

ص) + 2*5+ (س ص+ 10+ س

Denominator
Negative power

2ˆس

Numerator
Negative power

2-ˆس)2ˆس(÷1

Power of one 1ˆص+(س(ص+س
Multiplication of
one

)1*ص+(س ص+س

Multiplication to
power

ص)+س*س*س(ص)+3ˆس(

Extraction of
Co-Factors

ش*ص*س+ص*س)ش+1)*(ص*س(

Furthermore, a Reorder Rule was built. This rule reorders the
leaves of each parent node according to the priority rules
according to the following: (-,+) < (*,/) < Power ^ < Numbers
< Complex Operators and Functions < Alphabetic
(Strings,Characters) (Figure 12).
Rules to search for Trigonometric functions, or identities,
were also built. Such functions are classified into ten types
[42]: Reciprocal identities, Pythagorean Identities, Quotient
Identities, Co-Function Identities, Parity Identities, Sum &
Difference Formulae, Double Angle Formulae,
Power-Reducing/Half Angle Formulae, Sum-to-Product
Formulae, and Product-to-Sum Formulae. Additionally, the
trigonometric functions have special relationship between
each other and have a lot of synonyms which make the
similarity measure difficult. In this research, we have limited
our scope to the following functions only, (جا , جتا , ظا , ظتا ,sin
, cos , tan , cot). Table (7) gives the Synonyms expressions for
(tan / ظا) and (cot/ ظتا) based on the Reciprocal and Quotient
identities.

(a) (b)

Figure 11: (a) Grouping Property, (b)Tree Height Reduction
property

Emad Al-Shawakfa et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 98 – 109

105

Figure 12: Reorder Rule property for the expression

" 1)+س*ص+(ب "
G. Detecting Equivalency and Calculating Similarity and
Ranking

This process is responsible for detecting the equivalency of
math expressions during the searching process and ranking
the results based on calculating the similarity distances
between the expressions and the user’s query. Rather than the
ON-OFF detection of equivalency followed in previous
research, we built a detection mechanism; that we think
effective, that looks for more details in detecting the
equivalency, increase recall of relevant expressions, and
enhance the accuracy of the retrieved expressions. This
developed mechanism was based on developing and
executing three equivalency detection algorithms in the
following order: Exact Matching, Structure Matching, and
Arabic-English Matching. If a match is found using one of the
algorithms, the remaining algorithms are then skipped.
The Exact matching algorithm searches for two math trees;
representing expressions and queries, that are of the same
meaning and structure. The Structural matching, on the other
hand, is a complementary process and an application of the
generalization concept in which the matching is performed on
math trees of similar structure. The Arabic-English Matching
algorithm is performed to look for similarities between
expressions that are of the same structure, but, written in two
different languages: Arabic and English. To check for
complex functions and operators, an Arabic/English
(Ar↔En) mapping table was created for the transformation
process like the matching of (sin↔جا).
In case of no match between a query and an expression is
found, a search for sub-expressions is then performed.
Moreover, we classified the searching process into three
strategies: Query vs Expression, Query vs SubExpression,
and SubQuery vs SubExpression. Figure 13 gives this strategy

Table 7: Synonyms expressions for (tan, cot, ظا (ظتا ,

Normal Form
Synonyms expressions

Reciprocal
identities

Quotient
Identities

Tan(x)

Cot(x)

)س(ظا

)س(ظتا

Figure 13: Searching Strategy

4. EXPERIMENTS AND EVALUATION

Due to the lack of related Arabic datasets, our experiments
were carried out on a dataset of 100 documents (50 in Arabic,
50 in English). The dataset includes 1,479 mathematical
expressions of different formats of functions and operators.
Our approach was executed using 40 queries, we classified the
queries into 10 queries for complex functions and operators,
10 queries for simple functions, while the rest of queries
represents different forms. Tables (9a and 9b) give sample of
Complex Queries (English and Arabic) and the covering
rules.
To rank the retrieved expressions, we must measure the
similarity distance between both a user query and the
retrieved expressions. We could not find any suitable
measures to be followed in determining the value of similarity
between the Math-Trees. For this purpose, we built our own
similarity distances between a user query and the retrieved
expression using a weight value that was set based on the
percentage of match type between similar expressions during
a searching process. The values are assigned during the
searching time, and accordingly, the location of similar
expressions can be used to determine the similarity distance
value between the location of the original non-tokenized
expression and the location of the similar expression. The
assigned similarity weight values in our approach are given in
Table (8).

Table 8: Weights of Similarity Values

Searching Strategies Type of
Matching

Weight
value

Query↔Expression Exact matching 100%
Query↔SubExpression Exact matching 90%

Query↔Expression Structural
matching 80%

Query↔SubExpression Structural
matching 70%

Query↔Expression Arabic-English
matching 60%

Query↔SubExpression Arabic-English
matching 50%

SubQuery↔SubExpression Exact matching 40%

SubQuery↔SubExpression Structural
matching 30%

SubQuery↔SubExpression Arabic-English
matching 20%

Emad Al-Shawakfa et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 98 – 109

106

To evaluate and interpret our results properly, we have
adopted a modified set of equations for recall and accuracy
[43] depending on the number of expressions. The main
reason behind this refers to the fact that the matching is
performed based on different matching types and ignoring
irrelevant expressions, thus, the number of relevant
expressions may be of no influence. Equations are as follows:

Table (10) gives some Simple queries and their results, while
Table (11) gives a sample of the complex queries with their
results.
From Table (10), we can notice that some simple expressions’
queries have the same accuracy values for both approaches.
This can be referred to that either the Normalization rules are
not applicable to such queries or that the normalization rules
did not change their structure.
The Normalized Math-Tree search substituted the variance of
weight by the quality of the retrieved expressions and not by
the quantity, so the search for different expressions with the
same meaning would be gives higher weights than search
using traditional approaches which usually will not retrieve
such expressions. For example, if a user types x^-1, the math
tree search does not retrieve expressions like 1/x while the
normalized math tree search will retrieve 1/x and gives it a
weight of 100%. The number of retrieved expressions written
in Arabic for an English query or vice versa is influenced by
the number of applicable normalized rules and by the total
number of retrieved expressions.

Table 9a: Complex English Queries and Covered Rules

Table 9b: Complex Arabic Queries and Covered Rules

 Table 10: Simple Queries and their results

As shown in Table (11), we can observe an enhancement in
the recall and accuracy values after applying the
normalization rules, especially, when applied to complex
queries. We can also observe some queries with the same
value of recall in both cases (0.7, 0.8, and 0.9) but have
different accuracy values. This is due to the importance of
applying the normalization rules and our adopted searching
mechanism, some expressions are similar, but the Math-tree
search retrieved them as subexpressions and not as a whole
expression, which influenced the result and reduced the
overall weight. The approach obtained an overall accuracy of
75%.

Query Covered rules
 Extraction of co-factors.

Denominator negative power
Multiplication to power.

Trigonometric Functions.

Denominator negative
power.
Power of one.
Multiplication of one.
Trigonometric Functions.

Calculating numbers.

Query Covered rules

Denominator negative
power.
Multiplication of one.

Trigonometric Functions.

Denominator negative
power.

Denominator negative
power.
Multiplication of one.

Crossed complex function

Queries Accuracy

Math-Tree Normalized
Math Tree

 38% 42%

 32% 34%

32% 32%

30% 30%

32% 33%

 30% 50%

29% 30%

 39% 42%

30% 31%

 33% 34%

Emad Al-Shawakfa et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 98 – 109

107

5. CONCLUSION AND FUTURE RESEARCH

In this research, we have developed a rules-based approach to
search for mathematical expressions; especially Arabic math
expressions from Arabic documents, with enhanced
capabilities of math search of ME using normalization forms.
In this research, the semantic meaning of math expressions
was produced by transforming them into math-tree
expressions. Techniques and algorithms were developed for
detecting equivalency between different math-tree
represented expressions. In addition, we explored some
existing normalization rules and developed new ones to
transfer both the dataset content and user queries into normal
forms. The normal form is then used to compare a user query
against the searchable index table. Using the normal form, the
search process was found to retrieve the most similar
expressions of a common meaning, but with different
structures. This process showed very good and promising
enhancements in retrieving complex expressions and slight
enhancement for simple expressions.
The normalization process has enhanced the precision and
recall in a way that could enhance a mathematical
information retrieval system; especially, for complex math
expressions. The normalization process works in a similar
principle to the stemming process in text-based searches,
where the normal form is used to improve the comparison and
the matching during the searching process.
To enhance the search process, sub-expression search was
performed through a tokenization process, if an expression is
found to be irrelevant, we segment it into smaller pieces that
are included in the search. Structural search is performed
through a generalization process. Structures of math
expressions were used to retrieve expressions with similar
structures. Both related Arabic and English expressions of the
same structure are retrieved through a mapping process
between the two languages.

An effective graphical user interface that satisfies the
visualization of results for the users was built which also
helped in determining users' targets through enabling them to
write their queries in an easier manner needed to reach
intended results. Many challenges were faced in building our
approach; where the major challenge for us was the lack of
Arabic resources to support the approach. Some of these
challenges and problems were resolved in our approach while
others; like the writing of some Arabic Math Symbols have
remained and determined unresolved.
A dataset of 100 documents (doc and rtf formats) that are rich
in Mathematical Expressions; Simple and Complex, was built
in this research. To test the approach, two sets of queries were
used; one to test the approach in search for simple math
queries, while the other was used to test for search of complex
expressions. Forty (40) different queries were used to test the
approach; 10 in Arabic, 10 in English, and 20 generic ones
with mixed content. The overall obtained accuracy was 75%.

The limitation of our approach lies in the following; which
constitute some possible directions for future work:
 Employing the approach to search for Arabic math content

on the web.
 Expanding Normalization rules to cover more math

content.
 Covering more complex expressions and functions for both

Arabic and English contents.
 Dealing with different types of document formats; other

than doc and rtf.
 Dealing with mathematical expressions represented in

Image-based formats that requires proper segmentation of
characters like the works of [44] and [45].

 Enhancing the built Arabic Math Editor and expanding the
math style to represent more Arabic math content.

Table 11: Sample Complex Queries and their Results
Qry Math-Tree Search Normalized Math-Tree search

Accuracy Recall A↔E Accuracy Recall Ar↔En

 33% 0.5 105 (Ar) of total 247 40% 0.7 62 (Ar) of total 130

42% 0.6 153 (Ar) of total 374 54% 0.8 74 (Ar) of total 146

48% 0.7 58 (Ar) of total 133 60% 0.7 58 (Ar) of total 105

60% 0.6 79 (Ar) of total 198 64% 0.9 85 (Ar) of total 173

56% 0.9 162 (Ar) of total 374 63% 0.9 111 (Ar) of total 345

70% 0.6 75 (En) of total 133 90% 0.9 68 (En) of total 168

52% 0.8 75 (En) of total 134 70% 0.8 47 (En) of total 105

70% 0.5 75 (En) of total 133 83% 0.6 47 (En) of total 105

Emad Al-Shawakfa et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 98 – 109

108

42% 0.9 142 (En) of total 247 90% 0.9 92 (En) of total 192

60% 0.7 90 (En) of total 160 64% 0.7 71 (En) of total 145

REFERENCES

1. Lakshmi, K. Pushpa Rani, and M. Purushotham Reddy. A

Comparative Study of Navigation Techniques and
Information Retrieval Algorithms for Web Mining.
International Journal of Advanced Trends in Computer
Science and Engineering, Vol. 8, no. 1.3, pp. 10-14,
2019.
https://doi.org/10.30534/ijatcse/2019/0281.32019

2. G. Weglarz,. Two worlds of data - Unstructured and
structured. Information Management, Vol. 14, no. 9, p.
19, (2004)

3. M. Shatnawi and Q. Abuein. A Digital Ecosystem-based
Framework for Math Search Systems. International
Journal of Advanced Computer Science and
Applications (IJACSA), Vol. 3, no. 3, pp. 78-83. (2012).

4. L. Gao, Y. Wang, L. Hao, and Z. Tang. ICST Math
Retrieval System for NTCIR-11 Math-2 Task, in
Proc. of the 11th NTCIR Conference, Tokyo, Japan
,9-12. (2014)

5. Awa2el Website Math review sheets. Available at
https://www.awa2el.net/ accessed January 15th, 2020.

6. A. Adeel, H. Cheung, and S. Khiyal. Math GO!
Prototype of A Content Based Mathematical Formula
Search Engine. Journal of Theoretical and Applied
Information Technology, Vol. 4, no. 10, pp. 1002–1012.
(2008).

7. P. Kumar, A. Agarwal, and C. Bhagvati.. A Structure
Based Approach for Mathematical Expression
Retrieval. in Proc. of the International Workshop on
Multi-Disciplinary Trends in Artificial Intelligence
2012, (23-34). Springer Berlin Heidelberg.

8. P. Libbrecht and E. Melis. Methods to Access and
Retrieve Mathematical Content in ActiveMath. In
International Congress on Mathematical Software 2006,
(331-342). Springer Berlin Heidelberg.

 https://doi.org/10.1007/11832225_33
9. M. Altamimi, and A. Youssef. A Math Query Language

with an Expanded Set of Wildcards. Mathematics in
Computer Science, Vol. 2, no. 2, pp. 05-231. (2008).

10. M. Shatnawi and A. Youssef. Equivalence detection
using parse-tree normalization for math search. In
Proc. of the 2nd IEEE International Conference on
Digital Information Management 2007, Vol.2, 643–648.

11. S. Kamali and F. Tompa. Improving mathematics
retrieval. Towards a Digital Mathematics Library.
Grand Bend, Ontario, Canada, 2009, (37-48).

12. R. Zanibbi and B. Yuan. Keyword and image-based
retrieval for mathematical expressions. In Proc. of
Document Recognition and Retrieval XVIII, 2011, Vol.
7874, p. 787401.

 https://doi.org/10.1117/12.873312
13. S. Kamali and F. Tompa. Structural Similarity Search

for Mathematics Retrieval. In Proc.of the International
Conference on Intelligent Computer Mathematics 2013,
(pp. 246-262). Springer Berlin Heidelberg.

14. Y. Qin, H. Karimi, A. Zhang, and Q. Leng. A Novel
Mathematical Formula for Retrieval Algorithm,
Mathematical Problems in Engineering, Vol. 2014,
Article ID 859157, (5 pages). 2014.

15. W. Zhong. A Novel Similarity-Search Method for
Mathematical Content in LaTeX Markup and Its
Implementation. M.S. Thesis,
http://tkhost.github.io/opmes/thesis-ref.pdf., Accessed 9
Oct 2016.

16. S. Kim, S. Yang, and Y. Ko. Mathematical Equation
Retrieval Using Plain Words as a Query. In Proc. of
the 21st ACM international conference on Information
and knowledge management. 2012, 2407-2410.

 https://doi.org/10.1145/2396761.2398653
17. J. Zhao, M. Kan, and Y. Theng. Math Information

Retrieval: User Requirements and Prototype
Implementation. In Proc. of the 8th ACM/IEEE-CS
Joint Conference on Digital libraries, 2008, 187–196.

18. P. Sojka and M. Líška. Indexing and Searching
Mathematics. In Proc. of the International Conference
on Intelligent Computer Mathematics, 2011, 228-243.

19. J. Mišutka and L. Galamboš. Extending Full Text
Search Engine for Mathematical Content. Towards
Digital Mathematics Library. Birmingham, United
Kingdom, July 2008, pp. 55-67.

20. M. Kohlhase and I. Sucan. A Search Engine for
Mathematical Formulae. In Proc. of the International
Conference on Artificial Intelligence and Symbolic
Computation, 2006, 241-253. Springer Berlin
Heidelberg.

 https://doi.org/10.1007/11856290_21
21. T. Schellenberg, B. Yuan, and R. Zanibbi. Layout-Based

Substitution Tree Indexing and. Retrieval for
Mathematical Expressions. In Document Recognition
and Retrieval XIX, Vol. 8297, P.N. 82970I. 2012,
International Society for Optics and Photonics.

22. G. Kristianto G. Topic, F. Ho, and A. Aizawa. The
MCAT Math Retrieval System for NTCIR-11 Math
Track, In Proc. of the 11th NTCIR Conference, Tokyo,
Japan, 2014, pp. 120-126.

23. M. Líška, P. Sojka, and M. Růžička. Similarity Search
for Mathematics,
http://www.fi.muni.cz/usr/sojka/posters/ruzicka-sojka-li
ska-ntcir2014.pdf, Accessed 9 Oct 2016.

24. M. Schubotz, A. Youssef, V. Markl, and H. Cohl,
Challenges of Mathematical Information Retrieval in

Emad Al-Shawakfa et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 98 – 109

109

the Ntcir-11 Math Wikipedia Task. In Proc. of the
38th International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2015, pp.
951-954.

 https://doi.org/10.1145/2766462.2767787
25. T. Watanabe and Y. Miyazaki. Development of IR Tool

for Tree-Structured MathML- based Mathematical
Descriptions. In Proc. of the International Conference
on Computers in Education (ICCE2010), 2010, pp.
310-312.

26. K. Ma, S. Hui, and K. Chang. Feature Extraction and
Clustering-Based Retrieval for Mathematical
Formulas. In Proc. of the 2nd International Conference
on Software Engineering and Data Mining (SEDM),
IEEE, 2010, pp. 372-377.

27. J. Mišutka, Scaling Feature Based Mathematical
Search Engine for Real-World Document Sets.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.417.3031 , 2013, Accessed 4 Jul 2016.

28. D. Stalnaker and R. Zanibbi. Math Expression Retrieval
Using an Inverted Index Over Symbol Pairs. In: Proc.
of the Document Recognition and Retrieval XXII., 2015,
Vol. 9402, p 940207.

29. M. Líška, P. Sojka, and M. Růžička. Combining Text
and Formula Queries in Math Information Retrieval:
Evaluation of Query Results Merging Strategies. In
Proc. of the First International Workshop on Novel Web
Search Interfaces and Systems, 2015, pp. 7-9. ACM.

30. P. Pakray and P. Sojka. An Architecture for Scientific
Document Retrieval Using Textual and Math
Entailment Modules. In Proc. of RASLAN 2014 8th
Workshop on Recent Advances in Slavonic Natural
Language Processing, Karlova Studánka, Czech
Republic, 2014, pp. 107-117.

31. M. Schubotz, A. Grigorev, M. Leich, H. Cohl, N.
Meuschke, B. Gipp, and V. Markl, Semantification of
Identifiers in Mathematics for Better Math
Information Retrieval. In Proc. of the 39th
International ACM SIGIR conference on Research and
Development in Information Retrieval, 2016, pp.
135-144.

32. L. Yu, Image-Based Math Retrieval Using
Handwritten Queries, M.S. Thesis, Rochester Institute
of Technology, 2010.

33. R. Zanibbi and D. Blostein. Recognition and Retrieval
of Mathematical Expressions. International Journal on
Document Analysis and Recognition (IJDAR), Vol. 15,
no. 4, 2012, 331-357.

 https://doi.org/10.1007/s10032-011-0174-4
34. A. Youssef and M. Shatnawi. Math Search with

Equivalence Detection Using Parse- Tree
Normalization. In the 4th international conference on
computer science and information technology, 2006.

35. Q. Abuein and M. Shatnawi. Expanded Grammar for
Detecting (GER) Equivalence in Math Expressions.

International Journal of Computer Applications, Vol.
43, no. 15, pp. 44-51, 2012.

36. R. Batyha.. Building a new framework for
Mathematical Expression, PhD dissertation,
Department of information technology and computer
science, The Arab Academy for Banking and Financial
Sciences, Jordan, 2012.

37. T. Nguyen, S. Hui, and K. Chang. A Lattice-Based
Approach For Mathematical Search Using Formal
Concept Analysis, Expert Systems with Applications: An
International Journal, Vol. 39, no. 5, pp. 5820-5828,
2012.

38. A. Al-Zubi. Normalizing Different Representations of
an Arabic Math Expression Based on a Context Free
Grammar (CFG): Toward an Intelligent MathSearch
Engine, M.S. thesis, Department of information
technology and computer science, Jordan University of
Science and Technology, Irbid – Jordan, 2011.

39. C. Sasarak, K. Hart, R. Pospesel, D. Stalnaker, L. Hu, R.
Livolsi, S. Zhu, and R. Zanibbi. M-in: A Multimodal
Web Interface For Math Search. In Symposium on
Human-Computer Interaction and Information Retrieval
(HCIR), Cambridge, MA. 2012.

40. I. Abu Doush and S. Al-Bdarneh, Automatic Semantic
Generation and Arabic Translation of Mathematical
Expressions on the Web. International Journal of Web-
Based Learning and Teaching Technologies (IJWLTT),
Vol. 8, no. 1, pp. 1-16, 2013.

 https://doi.org/10.4018/jwltt.2013010101
41. S. Yang and Y. Ko. Mathematical Formula Search

using Natural Language Queries. Advances in
Electrical and Computer Engineering, Vol. 14, no. 4, pp.
99-104. 2014.

42. Trigonometric Identities. http://www.sosmath.com/
trig/Trig5/trig5/trig5.html Accessed 8 Dec 2017.

43. R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval, Addison- Wesley Longman
Publishing Co., Inc., Boston, MA, 1999.

44. L. Bany Melhem et al. Frame Removal For Mushaf
Al-Quran Using Irregular Binary Region.
International Journal of Advanced Trends in Computer
Science and Engineering, Vol. 8, no.1.3, pp. 109-114.

 https://doi.org/10.30534/ijatcse/2019/2181.32019
45. M. Abdullah, A. Agal, M Alharthi, and M. Alrashidi.

Arabic Handwriting Recognition Model based on
Neural Network Approach. International Journal of
Advanced Trends in Computer Science and Engineering,
Vol. 8, no.1.1, pp. 253-258.

