
Muhammed Basheer Jasser et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 105- 112

105

ABSTRACT

In software engineering, formal methods allow the design,
modelling and verification of hardware and software systems.
Formal methods introduce preciseness, remove ambiguity in
specifications, and support the verification of requirements
and design properties. Methods and approaches are needed to
manage the formal models and handle their complexity.
Refinement has been carried out for system artefacts ranging
from modelling and design levels like architectures, and state
machines to implementation and programming levels like
source code. Refinement is a significant way for building
complicated systems starting from simple ones by adding
features gradually. Refinement has to be understood carefully
in the context of formal specification and verification. This
article provides a survey on some refinement techniques and
methods and in the context of formal methods and software
engineering. We believe that this survey sheds a light on the
research direction in regards to the refinement of formal
methods. This survey also helps formal methods practitioners
and users in observing and understanding the advantages and
limitations of refinements methods and techniques of various
studied formal methods. Accordingly, they can decide which
formal method is to be used in modelling systems via
refinement or which formal method is to be extended with
new concepts and notions to support refinement.

Key words: Refinement, Formal Methods, Object-Oriented
Formal Methods

1. INTRODUCTION

In software engineering, formal methods [1], [2] allow the
design, modelling and verification of systems. Formal
methods introduce preciseness, remove ambiguity in
specifications, and support the verification of requirements
and design properties. The specifications in formal methods
could be viewed as mathematical models, which represent the
intended behaviour of the systems and they are used to model
several safety critical systems [3] such as: railway control
systems, nuclear power plant control systems, aircraft control
systems, intelligent transport systems, and medical systems.
There exist different kinds of formal specifications and each
has its own advantages and limitations. Some formal
specifications are considered at the system modelling like
(B-Method [2], Event-B [1], Z-Method [4] and VDM [5]),

while another type is viewed as part of the system
implementation level, in other words, the formal specification
is added as supportive statements to the source code like
Larch [6] and JML [7]. In this work, we concentrate on
refinement in formal methods that are considered at modelling
level.

Refinement is considered as obtaining a better version of
software than the original one during the development process
[8]. This is because refinement has been known as a familiar
technique and methodology to deal with the changing and
new requirements and to provide better concrete versions of
the system artefacts at hand. This includes: vertical refinement
in which the abstract requirements are refined into more
detailed ones and horizontal refinement in which new
requirements are handled in the refined model. Refinement
has been carried out for system artefacts ranging from
modelling and design levels like architectures, and state
machines to implementation and programming levels like
source code. Stepwise refinement is a powerful way for
developing complicated systems using simple ones by adding
features incrementally [9].

Several refinement methods and techniques have been
introduced in formal methods and software engineering. In
this article, we provide an overview of some refinement
methods and techniques in the context of software
engineering, formal methods and some object oriented formal
methods. We believe that the overview may help formal
methods users in understanding the refinements methods and
techniques of various studies formal methods.

In this article, we deal with some well-known formal methods
(B-Method, Event-B, Z-Method, VDM) and some
object-oriented formal methods. The research questions that
we handle in this work are: What are the main refinement
methods and techniques proposed in software engineering and
at which development phase/stage are they performed?, what
are the refinement methods and techniques proposed for the
formal methods studied in this work?. To answer these
questions, we survey the research articles, technical reports,
and theses from the known databases (ACM, IEEE Xplore,
Science Direct) and universities repositories. We only focus
on the sources that are related to the formal methods of
interest to us. In future, we will extend our work to cover more
formal methods and more refinement techniques.

A Survey on Refinement in Formal Methods and Software Engineering
Muhammed Basheer Jasser , Mar Yah Said , Jamilah Din , Abdul Azim Abdul Ghani

Faculty of Computer Science and Information Technology University Putra Malaysia
43400 UPM Serdang, Selangor, Malaysia

mbjasser@m.ieice.org; mbjasser@gmail.com

 ISSN 2278-3091
Volume 8, No.1.4, 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse1681.42019.pdf

https://doi.org/10.30534/ijatcse/2019/1681.42019

Muhammed Basheer Jasser et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 105- 112

106

This paper is organized as follows. Section 2 presents an
overview on some formal methods (B-Method, Event-B,
Z-Method, VDM) and some object-oriented formal methods.
Section 3 presents some refinement methods in software
engineering in general. Section 4 presents refinement methods
and techniques in formal methods. Section 5 concludes the
work.

2. FORMAL METHODS

 In this section we provide an overview of some formal
methods (B-Method, Event-B, Z-Method, VDM) and some
object-oriented formal methods.

2.1. B-Method

B-method [2], [10] is a widely used formal method that allows
developing correct-by-construction systems through different
levels of abstraction. Specific conditions are determined and
must be preserved through refinement of the abstract
specification into more concrete specifications. The
specifications in B-Method are called machines where
abstract machines provide an abstract system view while the
refinement machines provide a more concrete view.
B-method is based on the predicates, set theory and first order
logic.

Each B-Method machine consists of the following clauses:
MACHINE, SETS, CONSTANT, PROPERTIES,
VARIABLES, INVARIANT, INITIALIZATION, and
OPERATIONS. MACHINE defines the machine name.
SETS introduces the used sets in the machine. CONSTANT
introduces the used constants in the machine. PROPERTIES
contains the constants definition. VARIABLES includes the
variables that represent the machine state. Variables are
restricted by conditions called the invariants that are
introduced in INVARIANTS. INITIALIZATION defines the
machine initial state. OPERATIONS includes the operations
that change the machine state.

2.2. Event-B

Event-B [1] is a variant of B-method and is based on action
systems [11]. The mathematical notation used in Event-B is
based on the set-theory [12]. One of the differences between
B-Method and Event-B is that the latter differentiates the
static and dynamic parts. An Event-B context contains the
types, axioms and constants, while an Event-B machine
represents the changes of the state variables via events.
Machines contain variables, events and invariants. Variables v
define the machine state, constrained by the invariants I(v).
The events change the state of the machine. They are
described by guards G(v,x), and actions A(v,x,v’). G(v,x)
represent the conditions under which A(v,x,v’) changes the
value of v to a new value v’. x represents the parameters that
are local variables of the event.

2.3. Z-Method

Z-method [4], [13], [14] is a formal specification language
initiated by the programming research group at Oxford
university to specify systems based on algebra set theory and
predicate calculus.

Every specified system in Z is started with an abstract state
and a sequence of operations which change the system state
and result in the system evolution. The abstract state is
represented by mathematical structures such as sets, relations,
functions and sequences without considering the
implementation mechanism, but focuses on making a system
specification more readable to users. The abstract state and
additional initial conditions should specify an initial state of
the system. Z specifications are structured as related schemas
which are mainly used to specify system state space,
operations and invariants. State space is represented by the
combination of system variables. Operations change the
system state leading to the existence of the before and after
states. Invariants are the general conditions, which must be
preserved and should relate the before and after states for all
the possible operations.

2.4. VDM

Vienna Development method VDM [5], [15], [16] is a formal
development method invented by the researchers of IBM
laboratories in Vienna. VDM is used for specification,
modelling, and design of computer based systems. VDM
started as a definition language at 1970s and evolved to
development method at 1980s. The specification language of
VDM is called VDM-SL [17] which is considered as a
notation for system specification.

VDM-SL specification language is structured as modules.
VDM-SL module consists of several basic clauses: types, inv,
state, init and operations. types clause defines the basic types
which are used for the system variables types definition. inv
clause defines the general conditions which must be always
preserved. state defines the system variables and their types
which are defined in types clause. init initializes the system
variables to their initial values. operations clause defines the
several system functionalities which change the system state
by changing the values of the system state variables.

2.5. Object-Oriented Formal Methods

Modelling systems using object oriented features benefits in
the structuring, organizing and reuse. Many methods and
languages are proposed to augment formal methods with
object oriented features in order to get the advantages from
both formal methods and object orientation.

Several variants of the conventional Z language have been
proposed to augment Z with the object-oriented structuring

Muhammed Basheer Jasser et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 105- 112

107

features [18]. Some of these are Object-Z [19], [20], [21], Z++
[22], OOZE [23], Hall’s style [24], and Schuman and Pitt’s
variant [25]. Object-Z is considered the most applicable and
the most supporting for object-oriented features [18].
Object-Z introduces the class construct to the conventional Z
that encapsulates the state and operations schemas, and allows
their inheritance.

VDM is extended in VDM++ [26] with class, object,
inheritance, and a formalism feature to specify the methods
invocation sequence.

Several studies have been proposed in the literature to
combine the formal preciseness of B-Method and the object
oriented features of UML. In [27], transformation rules are
proposed to translate the UML behavioural diagrams to
formal B specifications. This work is extended in [28] to
support mapping UML class operations to B operations where
a class operation and its related data are mapped to the same B
abstract machine. In addition, the automatic derivation from
UML behavioural diagrams into B specifications is addressed
in [28]. The integration of UML and B is extended in [29] to
support the transformation of UML object constraint language
OCL into B considering the class invariants, guard conditions
in state-machines and the OCL specifications in class
operations. In [30], a more extensive account is provided
completing the work in [27]-[29] where the transformation
rules are formalized and the formal verification is introduced
for behavioural elements of UML models into B abstract
machines.

UML-B [31]-[34] is a graphical front end of Event-B. It
shares similar properties with UML object oriented modelling
language, but UML-B has its own meta-model. UML-B is
supported by a tool which provides the user with an
environment for drawing its diagrams. These diagrams are
translated to Event-B in order to be verified using Rodin
theorem provers. UML-B offers four types of diagrams which
are package diagram, in which contexts and machines are
represented with the interconnecting relationships, context
diagram where static part of system is defined, class diagram
where classes, variables, events and invariants are defined and
state machine diagram which represents system state changes
when executing transitions.

3. REFINEMENT IN SOFTWARE ENGINEERING

This section reviews some refinement techniques and
methods in software engineering context covering different
software development lifecycles. This section also compares
the techniques and methods by their application level and the
refinement proof type. The refinement proof is to prove that
the refined model/ specification of the system refines
correctly the abstract version.

System models could be represented by state space in [35]. A
refinement mapping [35] could be considered between low
level specification state space Sm1 and high level
specification state space Sm2. State machine behaviour is

represented by transitions or steps allowed in different
scenarios. Allowed behaviour by Sm1 is mapped to allowed
behaviour by Sm2, this research answers the question on how
to ensure that the low level specification represented by Sm1
is a correct implementation of high level one Sm2. A complete
practical hierarchical specification method has been resulted,
and it showed that, under some assumptions and
circumstances about specifications, if low level specification
Sm1 is implementing high level specification Sm2, the
existence of refinement mapping between the two
specification levels is guaranteed by adding auxiliary
variables.

A refinement is considered as system classes and operations
changes during evolution [36]. It has also a concept where
features are added incrementally. These features encapsulate
individual characteristics, where they are used to distinguish
programs among other different related programs. Most
systems nowadays are collaborating individual’s
subcomponents with each other like: client-server
architectures and tool-suites such as Microsoft Office. Several
tools exist to compose feature refinements which are usually
used to generate source code of individual programs. This
study introduces AHEAD (Algebraic Hierarchical Equations
for Application Design) model to show how step-wise
refinement scales to synthesize several programs and
non-code system representations and that software could have
a mathematical structure represented as a set of equations.
One individual program represented by source code is started
with, and GenVoca model is used to show that this code
representation could be expressed by an equation. Then,
AHEAD model is introduced to handle multiple programs and
generalize the equational specifications to their multiple
representations. The proposed AHEAD model is related with
other models like Aspect Oriented Programming and
multidimensional separation of concerns. AHEAD model is
supported by tools to show the applicability of this study.

Refinement could be considered a way for handling system
programming complexity [37]. Better programming tools are
needed to overcome the complexity of integrating large
systems, so a tool program development system (PDS) to
support the overall program production is introduced. This
software production is covering the several system lifecycle
levels starting from requirement and ending with the
implementation and coding. PDS tool is a programming
environment supports stepwise refinement allowing changes
from high level specifications to be reflected at lower
specification levels. Different levels of specifications are not
necessarily created from abstract high levels to more concrete
lower ones, but the order is not important and any requirement
of the system at hand could be reflected directly at its
corresponding system level.

As some refinement techniques focuses on specific
implementation levels or the overall levels, other studies put
the interest solely on software architectural level as base for
creating the most concrete level later. Focusing on
architecture refinement as in [38] ensures a good level of
architectural integrity, consistency and quality. Step-wise

Muhammed Basheer Jasser et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 105- 112

108

refinement is also considered for software architecture to cope
the complexity of architecture conversion process from its
abstract version to concrete one. Component-based
refinement method, called refinement pattern, is proposed
which is a framework for refining architecture. This method
concentrates on components refinements with several steps. It
starts with defining the architecture style, describing the
abstract component which needs refinement, refining the
component, and it ends with defining the resulted refined
architecture. Refinement pattern uses novel design language
π-ARL for architecture refinement considering date, port and
component refinements.

Refinement may be used in model driven engineering context
for object model [39]. An appropriate notation of object
models refinement is discussed in this study. A formal support
for model driven object oriented development is introduced in
the objective of generation process for software artefacts from
structural models and investigating applicability of data and
refinement to object models.

Table 1 presents a comparison between the different
refinement methods and techniques considering factors like:
the software development life cycle where refinement is
applied and the type of refinement proof.

Table 1: Refinement methods comparison

Study Level/ Stage Refinement Proof
"The existence
of refinement
mappings." [35]

Modelling- State
Machine

Behavioural
simulation of low
level state machines
to high ones

"Scaling
step-wise
refinement.”
[36]

Specification(M
athematical) and
implementation
(source code)

Source code
automatic
generation from
mathematical
specification

"A system for
program
refinement."
[37]

several system
lifecycle levels

Problem
understanding of the
system at a specific
level

"A
component-base
d method for
software
architecture
refinement."
[38]

Architectural
level

Each level is
decomposed to get a
set of components
which represents the
later concrete level
until no more
component is
decomposable

"Compositionali
ty and
refinement in
model-driven
engineering."
[39]

Modelling
(Object Models)

Formal proof
support

4. REFINEMENT IN FORMAL METHODS

Several refinement methods and techniques are introduced in
formal methods. In this section, we present refinement in
formal methods (B-Method, Event-B, Z-Method, VDM) and
object-oriented formal methods.

4.1. Refinement in B-Method

Refinement in B-Method [2], [10] allows capturing
requirements in modelling gradually by a sequence of
machines where an abstract machine may be refined by a
refinement machine. This may have sets, concrete variables,
constants and properties. Also, the refinement machine may
include one or several machines.

There are two refinement types: data refinement and
algorithmic refinement. In data refinement, new variables
may be added to the refinement machine and they are linked
to the variables of the abstract machine by gluing invariants.
In algorithmic refinement, the operations of the abstract
machine may be refined by more deterministic operations in
the refinement machine.

4.2. Refinement in Event-B

Refinement allows modelling in Event-B gradually through
an ordered sequence of models where each model refines its
preceding one [1], [40], as in Figure 1. Two refinement types
exist for Event-B: super-position and data refinement.

Figure 1: Refinement in Event-B

Super-position or so-called horizontal refinement is to extend
the model with new requirements that corresponds to the
model spatial extension focusing on the mathematical
representation using the set-theoretic notation specifying the
state-space invariants and its transitions. The state is expanded
by adding new variables, strengthening events guards, adding
new guards, and new events. This type of refinement stops
when there is no more new requirement to be taken into
account in the model.

Data-refinement or so-called vertical refinement is performed
when no more new requirements are needed for consideration.
The same state space variables and transitions are refined to
more discrete details facilitating the model implementation

Muhammed Basheer Jasser et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 105- 112

109

using some programming languages. In data-refinement,
variables could be replaced by new ones where gluing
invariants are required to relate the abstract and refined states.
An example of data-refinement is refining a variable of the
type integer number to a new one of the type natural number.
In both super-position, and data refinement, proofs are
required to show that the refinement steps do not violate the
invariants of the abstract steps. Generally speaking, machines
are refined in terms of variables and events while contexts are
extended in Event-B models.

During the refinement, the state variables are extended by new
super-position or data-refined variables. In the refinement
machine, existing events are refined, new events that refines
"skip" step are introduced using only the new variables.

Event-B events could be refined by retaining them, renaming
or splitting into several cases. In the case of retention or
renaming, event parameters could be added or replaced
provided that a witness is introduced for every removed
parameter. Event guards could be changed or added provided
that the event overall guards are not weakened. New event
actions may be added provided that they only modify new
variables. Existing event actions may be modified correctly
provided that they simulate the same behaviour in the abstract
event specification. Event splitting is done when more than
one event in the refinement specification is refining one
abstract event which does not show the detailed cases
provided in its refining events.

4.3. Refinement in Z-Method

Refinement in Z [41], [42] includes: data refinement,
operations schemas refinement, simulation and functional
refinement. An operation schema in Z corresponds to a
relation on the states of the specified system. An operation is
correctly refined when the relation is correctly refined. A
retrieve relation R is defined to represent the relationship
between abstract and concrete schemas. To decide if R is a
simulation, operations of the abstract and concrete schemas
have to be compared. Functional refinement is a special case
that occurs when the relations used in refining Z
specifications are functions.

4.4. Refinement in VDM

The refinement in VDM has been introduced in [43]. System
development in VDM is a sequence of specifications starting
from abstract specifications and gradually following with
more concrete specifications. The concrete specification is a
valid refinement of the abstract one if refinement proof
obligations hold. The refinement in VDM is defined as data
reification in which data objects are refined to the level of the
machine or the language constructs and at this stage operation
decomposition is carried out.

4.5. Refinement in Object-Oriented Formal Methods

Refinement methods and techniques are introduced for
Object-Z in [42]. A method of refinement is introduced in [44]
for the integration notation Object-Z and CSP
(Communicating Sequential Processes). The method has two
approaches: First is the failures approach, and second the
state-based approach. The former is based on CSP refinement
where the failures and divergences are calculated for two
processes/classes P1 and P2 and it is said that P2 is a
refinement of P1 if failuresP2 ⊆ failuresP1 and
divergencesP2 ⊆ divergencesP1. The state-based approach
enables the refinement to be verified at the specification level
when calculating the failures is a difficult task. Two
simulation-based refinement relations are introduced, called
upward and downward simulations, where an object-Z class C
is a simulation of a class A if a retrieve relation exists such that
every abstract relation in A is recast in a concrete one in C.
The work in [44] does not consider the situation where classes
contain objects as state-variables. This is extended and
considered in [45]. Two refinement techniques are proposed
in [45] for Object and operation in Object-Z specifications
changing their granularity. This provides flexibility when
refining specifications by supporting refinement to various
language notions. A class C may be split during refinement
into interacting classes C1,..Cn. A class operation C.Op may
be split to a sequence of concrete operations C.Op1,...C.Opn.
It is either the case that one concrete operation C.Opn refines
the abstract one C.Op, and the rest refines the stuttering step
called skip, or all the concrete operations C.Op1,...C.Opn
refines C.Op. A methodology for class composition
refinement is introduced in [45]. The methodology considers
the conjunction of operations from different classes
supporting the refinement of individual classes
compositionally by isolating constraints that couple the
classes.

Refinement methods and techniques are proposed for
VDM++. In [47], a method of sub-typing and sub-classing is
proposed for VDM++. In [48], a method for annealing and
data-decomposition is introduced. In this work, the main class
may be decomposed into communicating classes. In [49],
VDM++ is extended by VDM-R since VDM++ is limited in
terms of the refinement consistency checking called
inter-specification consistency verification. In this work, the
relationships between specifications are formally verified by
VDM-R annotations.

UML-B refinement has been introduced in [50], [51] and is
based on Event-B refinement notion. Class and state machine
refinement has been covered in [50]. Two main features exist
for UML-B refinement: Data-refinement and
event-refinement. Data-refinement is reflected in class-types,
classes, attributes, states and variables. Class-types are
introduced in contexts and retained in the extended context,
and only the new features that are added to the class type are
introduced. Classes in refinement may be refined (retained),
newly introduced (super-position), or data-refined where the
gluing invariants are necessary. Attributes in refinement

Muhammed Basheer Jasser et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 105- 112

110

maybe inherited, newly introduced (super-position), or
data-refined.

UML-B events refinement is similar. UML-B events are
represented by: class events, state machines transitions and
machine events. A class event may be retained, refined or
split. Class event refinement may be done by adding or
replacing event parameters, guards or actions to perform
UML-B class data refinement. It is not necessary to preserve
the containment feature for class event and they could be
moved to different classes or to the machine level and the
witness for the previous lost class instance parameter must be
introduced. Considering the abstract class C that has class
events: ce1, ce2, ce3, ce4 and ce5. Five different class event
refinement cases exist: First, ce1 could be introduced in the
refined class RC as refining event of abstract ce1 (ce1 refines
ce1). Second, new namely event ce6 may introduced in RC as
refining event of ce2 (ce6 refines ce2). Third, ce3a and ce3b
class events could be introduced in RC as individual cases that
refine the abstract event ce3 (ce3a refines ce3, ce3b refines
ce3). Fourth, ce4 could be refined and transferred to another
class D, but a witness must be provided in this case for the lost
class RC instance parameter (Class D event ce4 refines ce4).
Fifth, class event ce5 could be transferred to machine level as
machine event, where an event parameter which reveals the
event belonging of the abstract class and a witness for
replacing the lost parameter are introduced (Machine event
ce5 refines ce5). State machine transitions are refined
similarly as class events, but with a small difference in that
transition source state or target cannot be modified since this
is related to state transition guards and actions respectively
and must consistent with their abstract version. State
machines could be refined by detailed elaborating models.
State transition may be refined by splitting in which several
transitions representing the abstract state transition individual
cases may be introduced. A state may be elaborated by a
nested state machine which represents a more detailed
behaviour of its abstract version.

5. CONCLUSION

Refinement is considered as obtaining a better version of
software than the original one during the development
process. This is because refinement has been known as a
familiar technique and methodology to deal with the changing
and new requirements and to provide better concrete versions
of the system artefacts at hand.

Formal methods in the software engineering discipline allow
the design, modelling, verification, and maintenance of
hardware and software systems. Formal methods introduce
preciseness, remove ambiguity in specifications, and support
the verification of requirements and design properties.
Several refinement methods and techniques have been
introduced in formal methods and software engineering.
Refinement has to be understood carefully in the context of
formal specification and verification. In this article, we

provide an overview of some formal methods and refinement
methods and techniques in the context of software
engineering, formal methods and some object oriented formal
methods. We believe that this survey sheds a light on the
research direction in regards to the refinement of formal
methods. This survey also helps formal methods practitioners
and users in observing and understanding the advantages and
limitations of refinements methods and techniques of various
studies formal methods. Accordingly, they can decide which
formal method is to be used in modelling systems via
refinement or which formal method is to be extended with
new concepts and notions.

In this article, we focus on refinement in formal methods at
the modelling level. We intend to extend this work to cover
more formal methods at other development levels such as
implementation.

6. ACKNOWLEDGEMENTS

Thanks to the Faculty of Computer Science and Information
Technology, UPM and the MOHE for the financial support
via Fundamental Research Grant Scheme, Project Code:
08-02-13-1368FR.

REFERENCES

[1] J. R. Abrial. Modeling in Event-B: System And

Software Engineering, Cambridge University Press,
2010.
https://doi.org/10.1017/CBO9781139195881

[2] J. R. Abrial. The B-book: Assigning Programs To
Meanings, Cambridge University Press, 2005.
https://doi.org/10.1109/INFOCT.2019.8711369

[3] S. P. Nanda and E. S. Grant. A survey of formal
specification application to safety critical systems, in
Proc. 2019 IEEE 2nd International Conf. on Information
and Computer Technologies (ICICT) IEEE, March 2019,
pp. 296-302.

[4] J.P. Bowen. Formal Specification and Documentation
Using Z: A Case Study Approach, London: International
Thomson Computer Press, 1996.

[5] D. Bjørner. The Vienna Development Method (VDM),
in Mathematical Studies of Information
Processing, Lecture Notes in Computer Science, vol.
75, E.K. Blum, M. Paul and S. Takasu, Ed. Berlin,
Heidelberg: Springer, 1979, pp. 326-359.
https://doi.org/10.1007/3-540-09541-1_33

[6] S. J. Garland, J. V. Guttag and J. J Horning. An
Overview of Larch. in Functional Programming,
Concurrency, Simulation and Automated Reasoning,
Berlin, Heidelberg: Springer, 1993, pp.329-348.
https://doi.org/10.1007/3-540-56883-2_15

[7] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby,
D. Cok, and, W. Dietl. JML Reference Manual, 2008.

[8] A. Cavalcanti, A. Sampaio, and J. Woodcock
(Eds.). Refinement Techniques in Software

Muhammed Basheer Jasser et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 105- 112

111

Engineering: First Pernambuco Summer School on
Software Engineering, PSSE 2004, November
23-December 5, 2004, Revised Lectures, vol. 3167.
Recife, Brazil: Springer, 2006.
https://doi.org/10.1007/11889229

[9] E. W. Dijkstra and E. U. Informaticien. A discipline of
programming, vol. 1, Englewood Cliffs: Prentice-hall,
1976.

[10] K. Lano. The B language and method: a guide to
practical formal development, London: Springe-Verlag,
1996.
https://doi.org/10.1007/978-1-4471-1494-9

[11] R. J. Back and R. Kurki-Suonio. Decentralization of
process nets with centralized control, Distributed
Computing, vol. 3, no. 2, pp. 73-87, 1989.

[12] J. R. Abrial. From Z To B And Then Event-B:
Assigning Proofs To Meaningful Programs,
in International Conference on Integrated Formal
Methods, Berlin, Heidelberg: Springer, 2013, pp. 1-15.

[13] J. P. Bowen. Comp. specification. Z and Z FORUM
frequently asked questions, in International
Conference of Z Users, Berlin, Heidelberg: Springer,
1998, September, pp. 407-416.
https://doi.org/10.1007/978-3-540-49676-2_25

[14] J. P. Z. Bowen,: A formal specification notation,
in Software specification methods, London: Springer,
2000, pp. 3-19.

[15] C. B. Jones. Scientific decisions which characterize
VDM, in Formal Methods, FM’99, J.M. Wing, J.
Woodcock and J. Davies, Ed. Berlin, Heidelberg:
Springer, 1999, pp. 28-47.

[16] C. B. Jones. Systematic Software Development Using
VDM, Vol. 2, Englewood Cliffs: Prentice Hall, 1990.

[17] V. S. Alagar and, K. Periyasamy. Specification of
Software Systems. Springer Science & Business Media,
2011.

[18] S. Stepney, R. Barden, R. and D. Cooper. A survey of
object orientation in Z. Software Engineering
Journal, vol. 7, no.2, pp. 150-160, 1992.

[19] G. Smith. An object-oriented approach to formal
specification, Ph.D. dissertation, University of
Queensland, 1992.

[20] R. Duke, G. Rose and G. Smith. Object-Z: A
specification language advocated for the description
of standards, Computer Standards & Interfaces, vol.
17, no. 5-6, pp. 511-533, 1995.
https://doi.org/10.1016/0920-5489(95)00024-O

[21] G. Smith. An Object-Oriented Development
Framework for Z, in Z User Workshop, Cambridge
1994, J.P. Bowen, Ed. London: Springer, 1994.

[22] K. Lano. Z++, An Object-Orientated Extension To Z,
in Z User Workshop, Oxford 1990, J.E. Nicholls, Ed.
London: Springer, 1991.
https://doi.org/10.1007/978-1-4471-3540-1_11

[23] A.J. Alencar and J.A. Goguen (1991) OOZE: An
Object Oriented Z Environment. In: America P.
(eds) ECOOP'91 European Conference on
Object-Oriented Programming. ECOOP 1991.
Lecture Notes in Computer Science, vol. 512. Berlin,
Heidelberg: Springer, 1991.

[24] A. Hall. Using Z as a specification calculus for
object-oriented systems, in VDM '90 VDM and Z —
Formal Methods in Software Development. VDM
1990, Lecture Notes in Computer Science, vol. 428, D.
Bjørner, C.A.R. Hoare and H. Langmaack, Ed. Berlin,
Heidelberg: Springer, 1990, pp. 290-318.

[25] D. Carrington. ZOOM Workshop Report, in Z User
Workshop, Workshop in Computing, J. E. Nicholls, Ed.
London: Springer-Verlag, 1992, pp. 352-364.
https://doi.org/10.1007/978-1-4471-3203-5_16

[26] E. Durr and J. Van Katwijk. VDM++, a formal
specification language for object-oriented designs,
in Proc. Computer Systems and Software Engineering,
The Hague, Netherlands, 1992, pp. 214-219.

[27] H. Ledang and J. Souquieres. Formalizing UML
behavioral diagrams with B, in Tenth OOPSLA
Workshop on Behavioral Semantics: Back to Basics,
Tampa Bay, Florida, USA, October, 2001.

[28] H. Ledang and J. Souquières. Modeling class
operations in B: application to UML behavioral
diagrams, in Proc. 16th IEEE International Conference
on Automated Software Engineering (ASE 2001), 2001,
pp. 289-296.

[29] H. Ledang and J. Souquières. Integration of UML and
B specification techniques: Systematic
transformation from OCL expressions into B.
in Proc. Ninth Asia-Pacific Software Engineering
Conference, 2002, pp. 495-504.

[30] N. T. Truong and J. Souquieres. Verification of
behavioural elements of UML models using B,
in Proc. 2005 ACM symposium on Applied computing,
2005, pp. 1546-1552.
https://doi.org/10.1145/1066677.1067024

[31] C. Snook and M. Butler. UML-B: Formal modeling
and design aided by UML, ACM Transactions on
Software Engineering and Methodology (TOSEM), vol.
15, no. 1, pp. 92-122, 2006.

[32] C. Snook and M. Butler. UML-B and Event-B: an
integration of languages and tools, in Proc. IASTED
International Conference on Software Engineering (SE
'08), Claus Pahl (Ed.), California, USA, 2008, 336-341.

[33] C. Snook and M. Butler. UML-B: A plug-in for the
Event-B tool set, in Abstract State Machines, B and Z.
ABZ 2008, Lecture in Computer Science, vol. 5238:
Springer-verlag, 2008.

[34] C. Snook, I. Oliver and M. Butler. The UML-B profile
for formal systems modelling in UML, in UML-B
specification for proven embedded systems design,
Boston: Springer, 2004, pp. 69-84.

[35] M. Abadi and L. Lamport. The existence of refinement
mappings, Theoretical Computer Science, vol. 82, no. 2,
pp. 253-284, 1991.

[36] D. Batory, J. N. Sarvela and A. Rauschmayer. Scaling
step-wise refinement. IEEE Transactions on Software
Engineering, vol. 30, no. 6, pp. 355-371, 2004.
https://doi.org/10.1109/TSE.2004.23

[37] T. E. Cheatham, J. A. Townley and, G. H. Holloway. A
system for program refinement, in Proc. 4th
international conference on Software engineering, NJ,
USA: IEEE Press, 1979, pp. 53-62.

Muhammed Basheer Jasser et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 105- 112

112

[38] J. Zhang, X. Ban, Q. Lv, J. Chen and D. Wu. A
component-based method for software architecture
refinement, in Proc. 29th Chinese Control Conference,
Dalian, China, July 2010, pp. 4251-4256.

[39] J. Davies, J. Gibbons, D. Milward and J. Welch.
Compositionality and refinement in model-driven
engineering. in Formal Methods: Foundations and
Applications. SBMF 2012. Lecture Notes in Computer
Science, vol. 7498, Berlin, Heidelberg: Springer, 2012,
pp. 99-114.

[40] J. R. Abrial and S. Hallerstede Refinement,
decomposition, and instantiation of discrete models:
Application to Event-B. Fundamenta
Informaticae, vol. 77, no. 1-2, pp. 1-28, 2007.

[41] J. Woodcock and J. Davies. Using Z: Specification‚
Refinement and Proof, UK: Prentice Hall, 1996.

[42] J. Derrick and E. A. Boiten. Refinement in Z and
Object-Z: foundations and advanced applications,
London: Springer-Verlag, 2014.

[43] C. B. Jones. Systematic software development using
VDM, vol. 2, Englewood Cliffs: Prentice Hall, 1990.

[44] G. Smith, and, J. Derrick. Refinement and verification
of concurrent systems specified in Object-Z and CSP.
In Proc. First IEEE international conference on Formal
engineering methods, Hiroshima, Japan, 1997, pp.
293-302.

[45] J. Derrick and E. Boiten. Refinement of objects and
operations in Object-Z. in Formal Methods for Open
Object-Based Distributed Systems IV. FMOODS 2000.
IFIP Advances in Information and Communication
Technology, vol. 49, S.F. Smith and C.L. Talcott,
Ed. Boston, MA: Springer, 2000, pp. 257-277.
https://doi.org/10.1007/978-0-387-35520-7_13

[46] T. McComb and G. Smith. Compositional class
refinement in Object-Z. In Formal Methods. FM
2006, Lecture Notes in Computer Science, vol. 4085.
J. Misra, T. Nipkow and E. Sekerinski, Ed. Berlin,
Heidelberg: Springer, 2006, pp. 205-220.

[47] K. Lano and S. J. Goldsack. Refinement, Subtyping
and Subclassing in VDM++. in Theory and Formal
Methods, pp. 341-363, 1994.

[48] S. J. Goldsack and K. Lano. Annealing and data
decomposition in VDM. ACM Sigplan Notices, vol. 31,
no. 4, pp. 32-38, 1996.

[49] Y. Kawamata, C. Sommer, F. Ishikawa and S. Honiden.
Specifying and checking refinement relationships in
VDM++, in Proc. Seventh IEEE International
Conference on Software Engineering and Formal
Methods, Vietnam, 2009, pp. 220-227.

[50] M.Y. Said, M. Butler and C. Snook. Language and tool
support for class and state machine refinement in
UML-B. in FM 2009: Formal Methods. FM 2009,
Lecture Notes In Computer Science, vol. 5850, A.
Cavalcanti and D.R. Dams, Ed. Berlin, Heidelberg:
Springer, 2009, pp 579-595.
https://doi.org/10.1007/978-3-642-05089-3_37

[51] M.Y. Said, M. Butler and C. Snook. A method of
refinement in UML-B, Software & Systems
Modeling, vol. 14, no. 4, pp. 1557-1580, October 2015.
https://doi.org/10.1007/s10270-013-0391-z

