
Nguyen Dinh  et al., International Journal of Advanced Trends in Computer Science and  Engineering, 9(5),  September - October  2020, 8069–  8074 
 

8069 
 

 

Forecasting with Improved Model of Fuzzy Time Series  
Based on Hedge Algebras 

Nguyen Dinh Thuan1, Hoang Tung2  
1University of Information Technology, Vietnam, thuannd@uit.edu.vn 

2Dong Nai University, Vietnam, tungh@grad.uit.edu.vn 
 
ABSTRACT 
 
The aim of this paper is to introduce a new model of fuzzy 
time series (FTS) based on hedge algebras (HA) with three 
improvements compared with previous ones. Firstly, the 
new way of partitioning the universe of discourse is 
applied, secondly, the relationship groups following time 
points to determine relationships among fuzzy time series 
values are used, thirdly, weighs following time points are 
employed to build formula for computing forecasting 
values. The empirical results indicate that the proposed 
model outperform the existing models. 
 
Key words: Forecasting, fuzzy time series, hedge 
algebras, intervals.  
 
1. INTRODUCTION 
 
Time series forecasting continues to be a hot topic [1-3]. 
There are many approaches to solving this problem, in 
which using the fuzzy time series model is a fairly 
effective way. 
 
The fuzzy time series is firstly introduced in [4], since 
then, there are many papers that focus on applying the 
model of fuzzy time series for forecasting time series. In 
order to modelize fuzzy time series for this task, fuzzy sets 
are used to quantify the linguistic terms that are the values 
of the fuzzy time series. 
 
Beside fuzzy sets, hedge algebras is also considered as a 
tool for quantifying the linguistic terms. Paper [5] is the 
first study that applies hedge algebras, while paper [6] is 
the first one that introduces a fuzzy time series model 
based on hedge algebras for forecasting time series. Later 
study is improved in the paper [7]. 
 
In the case of using fuzzy sets for quantifying the linguistic 
terms, according to [8], the procedure used to apply the 
model of fuzzy time series for forecasting time series 
includes three phrases. 
 
Phrase 1, converting the time series need forecasting, 
called c(t),  into fuzzy time series f(t) by means of 
replacing each value of former one by a term belonging to 
the set of values of later one. After that, the intervals on the 
universe of discourse, U, of c(t) are determined, finally, the 
fuzzy sets, which are determined based on the intervals, are 
used to quantify the values of f(t). 

 
Phrase 2, setting relationships among values of f(t). 
 
Phrase 3, building defuzzification formula to compute 
forecasting values. 
 
The number of intervals in Phrase 1 is equal to the number 
of values of f(t). According to [9-13], the length of 
intervals strongly effect to forecasting results, so there are 
many studies that focus on optimizing the length of the 
intervals by different approaches. 
 
Model of fuzzy time series based on hedge algebras used 
to forecast time series is also built through three phrases as 
mentioned above. However, at Phrase 1, hedge algebra is 
used to generate linguistic terms. Next, the fuzziness 
intervals of the terms are taken for acting as the intervals 
on U. 
 
Paper [6] suggest the way using any hedge algebras to 
generate the linguistic terms, but it is rather difficult to do. 
Paper [7] introduce a hedge algebras with only two hedges, 
negative hedge and positive hedge, for generating the 
linguistic terms with an easier way to do. The paper also 
proposes using variations to improve forecasting quality. 
Accordingly, the time series need forecasting is converted 
into a variations, the paper’s model is applied for 
forecasting the variations instead of the time series. 
Because variations of a time series that need forecasting 
not only contain all information, but also exactly reflect 
fluctuation of the time series, the paper received rather 
good forecasting results. 
 
This paper suggest three improvements compared to paper 
[7], specifically, at Phrase 1, it applies the better different 
way of determining the linguistic terms, at Phrase 2, refer 
[14], it applies group of relationship following time to 
build relationships between among values of f(t), and at 
Phrase 3, it use defuzification formula in Yu’s work [15] to 
determine forecasting values. 
 
The rest of this paper is organized as follows, secsion 2 
introduces the basis concepts of fuzzy time series and 
hedge algebras, section 3, the main of this paper, presents 
the proposed model, section 4 presents empirical results 
when applying the proposed model for forecasting three 
time series, and section 5, the last section, presents some 
conclusions. 
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2. FUZZY TIME SERIES AND HEDGE ALGEBRAS 
 

2.1. Fuzzy time series 
FTS is a set of terms, which are observed following time 
points, of a random variable. Some basis concepts of FTS 
are recalled from papers [1] in the following. 
 
Definition 1. Let Y(t) (t = …, 0, 1, 2, …), a subset of R1, be 
the universe of discourse on which fi(t) (i = 1, 2, …) are 
defined and  F(t) is the collection of  fi(t) (i =1, 2, …). 
Then F(t) is called FTS on Y(t) (t=…, 0, 1, 2, …). 
 
Definition 2. If for any fj(t)  F(t), there exists an fi(t - 1)  
F (t - 1) such that there exists a fuzzy relation Rij(t, t - 1 ) 
and fj (t) = fi(t - 1)  Rij(t, t - l) in which 'o' is the max-min 
composition operation, then F(t) is said to be caused by F(t 
- 1) only. Denote this as 
fi(t - 1)  fj(t)  
or equivalently 
F(t - 1)  F(t) 
If F(t) is caused by F(t-1) or F(t-2), …, or F(t-m), then F(t) 
is called first order. This paper use the model for 
forecasting time series. 
 

2.2. Hedge Algebras 
Some basic HA concepts referred from [16] are introduced 
in the following. 
 
The HA is defined by means of AX = (X, G, C, H, ), 
where X is set of terms, G= {c+, c-} is the collection of 
primary generators, in which c+ and c- are, respectively, the 
negative primary and positive term belong to X, C ={0, 1, 
W} is a set of constants in X, H is the set of hedges, “” is 
a semantically ordering relation on X.  
 
For each x X, H(x) is the set of terms uX, generated 
from x by applying the hedges of H. H = H+  H-, where 
H+= {h1<h2< ... <hp} , H-= {h-1<h-2< ... <h-q} is, 
respectively, the set of positive and negative hedges of X. 
The positive hedges increase semantic tendency and vice 
versa with negative hedges. 
 
If X and H are linearly ordered sets, then AX = (X, G, C, H, 
) is called linear hedge algebras, furthermore, if AX is 
added two operations  and  that are, respectively, 
infimum and supremum of H(x), then AX is called 
complete linear hedge algebras (ClinHA).  
 
Definition 1. Let AX = (X, G, C, H, ) be a ClinHA. An 
fm: X  [0,1] is said to be a fuzziness measure of terms in 
X if: 
(1).  fm(c)+fm(c+) = 1 and ( ) ( )

h H
fm hu fm u


 , for 

uX;  
(2).  For the constants 0, W and 1, fm(0) = fm(W) = fm(1) 
= 0; 

(3).  For x, y  X, h  H, ( ) ( )
( ) ( )

fm hx fm hy
fm x fm y

  

 

Proposition 1. For each fuzziness measure fm on X the 
following statements hold: 
(1).  fm(hx) = (h)fm(x), for every x  X; 
(2). fm(c) + fm(c+) = 1; 
(3). )()(

0,
cfmchfm

ipiq i  
, c {c, c+};  

(4). )()(
0,

xfmxhfm
ipiq i  

; 

(5).    1
)(

iq ih  and    pi ih
1

)( , where , 

 > 0 and  +  = 1. 
 
Definition 2. The fuzziness interval of the linguistic terms 
x ∈ X, denoted by (x), is a subinterval of [0,1], if |(x)| = 
fm(x) where |(x)| is the length of fm(x), and recursively 
determined by the length of x as follows:  
(1). If length of x is equal to 1 (l(x)=1), that mean x ∈ {c-, 
c+}, then |�(c-)| = fm(c-), |�(c+)|= fm(c+) and �(c-) ≤ 
�(c+);  
(2). Suppose that n is the length of x (l(x)=n) and fuzziness 
interval �(x) has been defined with |�(x)| = fm(x). The set 
{(hjx)| j  [-q^p]}, in which [-q^p] = {j | -q ≤ j ≤ -1 or 1 
≤ j ≤ p}, is a partition of (x) and we have: for hpx<x, 
(hpx) ≤ (hp-1x) ≤ … ≤ (h1x) ≤ (h-1x) ≤ … ≤ (h-qx); 
for hpx >x, (h-qx) ≤ (h-q+1x) ≤ … ≤ (h-1x) ≤ (h1x) ≤ … 
≤ (hpx). 
 
3. PROPOSED MODEL 
 
Suppose that TS(t) is a time series that we need forecasting. 
The model used to forecast TS(t) are built through three 
procedures as follows: 
 
Fuzzification 
 
Step 0: Convert TS(t) into a variation called VTS(t). Add a 
integer q into VTS(t) such that all values in this time series 
are more than 0. 
 
Step 1: Determine the number of linguistic terms, denoted 
k, used to qualitatively describe values of TS(t). 
 
Step 2: 
 
Determine the universe of discourse of VTS(t), U = [Dmin 
– D1, Dmax + D2] where Dmin, Dmax, D1 and D2 are, 
respectively, minimum, maximum historical values of 
VTS(t) and proper value which are chosen so that all the 
values of VTS(t) belong to FU. 
 
Step 3: 
Denote FTS(t) is the fuzzy time series generated after 
doing fuzzification of TS(t). At first, FTS(t) = . 
 
Use AX = (X, G, C, H, ≤), in which H includes only two 
hedges, h-1 and h+1 and G = {c-, c+}, to generate terms.  
Let p be FiFo list, Lo and Hi respectively be primary 
generators, and t be a interger number. 
Add Lo and Hi to p; 
t=2; 
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While (t ≤ k){ 
 Let x be a linguistic term 

x = first element of p; 
Use h-1 and h+1 operate to x in order to generate 

two new linguistic terms, h-1x and h+1x 
Add h-1x and h+1x to rear of p; 

t=t+1;} 
 
Sort p in ascending order of semantically ordering relation. 
 
(3) Calculate fuzziness intervals of the linguistic terms. 
Assign each fuzziness interval to a interval based on U. 
The intervals create a list of consecutive intervals on U. 
 
(4) Remove the intervals which do not contain any 
historical values. Suppose that the number of the intervals 
is m (m  1). 
 
(5) 
(a) Find the interval which is leftmost position and 
containing the maximum number of distinct historical 
values, suppose that this interval is referred to Ai, to 
partition it into two sub intervals corresponding two 
linguistic terms, h-1Ai and h+1Ai.  
(b) Add two new terms to p. 
(c) Remove the terms that its fuzziness interval do not 
contain any historical values. 
(d) Loop (a), (b) and (c) until get m terms (to get k terms) 
or do (e) if all the terms’s intervals have only one historical 
value or same historical values. 
(e) Do: 
Retake the terms at left position, from right to left, were 
removed from (4) to get k terms (equal to k intervals). If 
the number of the left terms is not enough, then get the 
right terms, from left to right. 
(h) Replace each value of TS(t) by an appropriate term 
getting from p and add the term to FTS(t). 
 
Building relationship groups 
 
Relationships groups are setup following the time points: 
- Build relationship for couples of consecutive values of 
the FTS(t) at time point tk where tk  t. For convenient, 
denote each value of the FTS(t) by Ai (i = 1, 2, …), so each 
relationship like the following: 
Ai  Aj where Ai and Aj is, respectively, value of FTS(tk-1) 
and FTS(tk).  
- Group relationships having same left side, for instance: 
If we have 
Ap  Au, 
Ap  Aq, 
Ap  Av, 
then the relationships are grouped into Ap  Au Aq Av.  
 
Defuzzifications 
 
Suppose that the value of VTS(t) at tt is qualitatively 
describe term Ai.  
If Ai is left side of relationship Ai  Aj … Ak,, then, the 
forecasting value at tt+1 of VTS(t), called ff, is calculated 
by following formula: 

ff =  

Where TB(Aj), TB(Ak) respectively is average of historical 
values falling into fuzziness intervals of Aj … Ak. 
If Ai is left side of relationship Ai  , then ff is TB(Ai). 
 
- Take forecasting values of VTS(tt+1) minus q. 
 
- The forecasting value of TS(t) at tt +1 is computed by 
mean of following formula: 

TS(tt+1) = TS(tt) + VTS(tt+1). 
 

4. EXPERIMENTAL RESULTS 
 
This section presents experimental results when applying 
the proposed model to forecast three time series, 
enrollments at University of Alabama (ALA) from 1971 to 
1992, TAIEX (TAI, from 01/12/1992 to 29/12/1992) and 
Unemployment Index (UNE, from 01/01/2013 to 
11/01/2013) in  Taiwan [13]. 
 
cov(x) and Ld respectively are denoted for mapping of 
(x) from [0, 1] to the universe of discourse and width of 
the universe of discourse. 
 
Similar to many papers in the references, this paper uses 
root of mean squared error (RMSE) to evaluate forcasting 
quality. 

RMSE =  where xi’ is a forecasting 

value, xi is a historical value and n is the number of 
forecasted values. 
 
This paper uses HA, AX = (X, G, C, H, ) in which G = 
{Low, Hight}, C = {0, 1, W}, H = {Very, Little} for 
applying the proposed model. 
 
Low, Hight, Very and Little, respectively, are denoted by 
Lo, Hi, V and L for short. And HisD and PM mean 
Historical data and Proposed method. 

Forecasting result of ALA 
 
The historical values and its variations of ALA time series 
are shown as below. 
 

Table 1. The values and variations of Alabama 

Year HisD Values of 
variations 

1971 13055 9 
1972 13563 508 

1973 13867 304 

1974 14696 829 

1975 15460 764 

1976 15311 -149 

1977 15603 292 
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1978 15861 258 

1979 16807 946 

1980 16919 112 

1981 16388 -531 

1982 15433 -955 

1983 15497 64 

1984 15145 -352 

1985 15163 18 

1986 15984 821 

1987 16859 875 

1988 18150 1291 

1989 18970 820 

1990 19328 358 

1991 19337 9 

 
Because 9 is the minimum value of the variations, so 

place this value to the first position of the variations. Next, 
take all values of the variations plus 1000 and called the 
new variations as VT.  

 
Table 2. The variations and changed variations 

Values of 
variations Values of VT Fuzzified VT 

9 1009 A4 

508 1508 A6 

304 1304 A6 

… … … 

-531 469 A2 

-955 45 A1 

64 1064 A5 

… … … 

820 1820 A7 

358 1358 A6 

9 1009 A4 

 
We assign VT’s universe of discourse to U = [0, 2400], so 
we have Ld = 2400. If we suppose that a value of VT is less 

than 14000 that is called low, then we can setup following 
parameters:  
 
fm(low) = (2400-1380)/2400 = 0.425, fm(hight) = 1-0.425 
= 0.575 and respectively, cov (low), cov(hight): fm(low) 
x Ld = 0.425 x 2400 = 1020, fm(hight) x Ld = 0.575 x 2400 
= 1380. 
 
We can assign (Little) = 0.4, (Very) = 0.6. From 
(Little) and (Very) we have  = 0.4, = 0.6. 
 
Use the HA to generate 07 linguistic terms: VVLo, LVLo, 
VLLo, LLLo, LLH, VLH, VH. The fuzziness intervals of the 
terms, respectively, are [0, 367), [367, 612), [612, 857), 
[857, 1020), [1020, 1241), [1241, 1572), [1572, 2400]. 
These ones are taken as the intervals on the universe of 
discourse, denoted by Ik (k = 1, …, 7). 
 
From Table 2 we have group of relationships in the 
following: 
 

Table 3. Group of relationships following times 
Years Variations Time 

points 
Group of relationships 

1972 1508 t = 2 A4 A6 

1973 1304 t = 3 A6  A6 

1974 1829 t = 4 A6  A6A7 

1975 1764 t = 5 A7  A7 

1976 851 t = 6 A7  A7A3 

1977 1292 t = 7 A3  A6 

1978 1258 t = 8 A6  A6A7A6 

1979 1946 t = 9 A6  A6A7A6A7 

1980 1112 t = 10 A7  A7A3A5 

1981 469 t = 11 A5  A2 

1982 45 t = 12 A2  A1 

1983 1064 t = 13 A1  A5 

1984 648 t = 14 A5  A2A3 

1985 1018 t = 15 A3  A6A4 

1986 1821 t = 16 A4  A6A7 

1987 1875 t = 17 A7  A7A3A5A7 

1988 2291 t = 18 A7  A7A3A5A7A7 

1989 1820 t = 19 A7  A7A3A5A7A7A7 

1990 1358 t = 20 A7  
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A7A3A5A7A7A7A6 

1991 1009 t = 21 A6  A6A7A6A7A4 

1992 539 t = 22 A4  A6A7A2 

 
The average of the values belonging to Ik (k = 1, …, 7), 
respectively, are 45, 504, 749.5, 1012, 1088, 1344 and 
1907.  
 
From these values and the group of relationships in Table 3 
we determine the forecasting result of VT, after that, take 
these values minus 1000, next, forecasting result of the 
variations are obtained.  
 
For example, forecasting value at t = 22 is calculated as 
follows: 
 
Using relationship at t = 22, A4  A6A7A2, we have 
forecasting value of VT at this time point: = 
(TB(I6)+2*TB(I7)+3*TB(I2))/(1+2+3) = (1344 + 2* 1907 + 
3*504)/6 = 1111.52; 1111.52 – 1000 = 111.52. The 
enrollment of 1992 is = enrollment of 1991 + 111.52 = 
19337 + 111.52 = 19448.52. 
 
The forecasting result of ALA, as well as some forecasting 
results of other models, is presented in following table. 
 

Table 4. Forecasting values of ALABAMA 

Year Lu 
2015 

Bisht 
2016 

HN 
2019 

Tinh 
2019 PM 

1972 14279 13595.
67 

13307 13169.
5 

1339
9.00 

1973 14279 13814.
75 

14066 13661.
09 

1390
7.00 

… … … … … … 

1992 19257 19168.
56 

19589 18421.
6 

1944
8.52 

1993 N/A N/A N/A 18932.
2 

N/A 

RMSE 445.2 428.63 384.34 374.2 278.
96 

 
 
Forecasting result of TAI and UNE 
 
Do the same as [13], we apply the proposed model for 
forecasting two time series TAI with 07 intervals and UNE 
with 09 intervals. Forecasting results are printed in the 
following. 
 
 
 
 
 
 

Forecasting result of TAI 
 

Table 5. Forecasting values of TAI 
HisD  

 
Wang 
2014 

Lu 
2015 

HNV 
2016 

HN 
2019 

PM 
 

3635.7 3564.5 3693.1 3709.8 3611.9 3611.90 

3614.1 3564.5 3693.1 3709.8 3600.8 3600.80 

3651.4 3564.5 3693.1 3709.8 3639 3649.93 

… … … … … … 

3742.6 3859.9 3693.1 3709.8 3699.4 3699.40 

3696.8 3859.9 3693.1 3709.8 3717.2 3717.20 

… … … … … … 

3327.7 3413.3 3519.4 3442.3 3421.1 3421.10 

3377.1 3413.3 3519.4 3491.4 3352.6 3352.64 

RMSE 107.2 75.7 68.9 39.38 38.43 
 
Forecasting result on UNE 
 

Table 6. Forecasting values of UNE 

HisD 
Wang 

2014 

Lu 

2015 

HNV 

2016 

HN 
2019 PM 

7.7 7.62 7.58 7.51 7.70 7.70 

7.5 7.62 7.58 7.51 7.55 7.55 

… … … … …  

7.2 7.13 7.07 6.99 7.12 7.12 

7.0 7.13 7.07 6.99 7.12 7.12 

RMSE 0.19 0.17 0.16 0.10 0.09 

5. CONCLUSION 
This work introduced a novel fuzzy time series model 
based on hedge algebras for forecasting time series with 
three new improvements compared to previous ones. In 
this model, a new algorithm for determining intervals from 
the universe of discourse is applied, as well as the 
relationship groups and weighs following time points are 
used to determine relationships among fuzzy time series 
values and forecasting values. 
 
The proposed model was applied for forecasting three time 
series, enrollments at University of Alabama, TAIEX 
index and Unemployment rates. Forecasting results were 
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also compared to some existing methods and it 
demonstrates that the proposed model gives higher 
forecasting quality. 
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