
Manish Kumar Abhishek et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5327 – 5331

5327


ABSTRACT

In Cloud computing environment, researchers are actively
looking for opting containerization technology using various
tools to achieve better performance in High Performance
Computing (HPC) applications execution. In virtualization
world, containers are getting more popular and found suitable
in comparison of virtual machines as they are giving better
performance. Along with agility, support micro services and
integrated easily with management and monitoring tools. To
have containerization in place, Docker is one of the most
suitable open source platforms with Operating System (OS)
level virtualization. Singularity is also one of the popular
solutions to work with HPC applications. Before directly start
using the technologies and tools, they must be analyzed,
explored and have a proof of concept for performance first.
This paper presents (1) Containers evaluation using open
source platform Singularity and Docker (2) monitoring of
containers using orchestration and monitoring system
Kubernetes (3) feature analysis of scientific workloads using
Containers in cloud. Feature analysis reports having
performance result sets are primarily aimed for helping the
DevOps on making the decisions for choosing the right
technology and tools to run their parallel and high
performance computing applications.

Key words: Cloud Computing, Docker, High Performance
Computing, Kubernetes, Singularity, Virtualization.

1. INTRODUCTION

Containerization is totally based on operating system
virtualization where all the required libraries and
dependencies are going to be bundled in underlying layer.
During the deployment of an application generally developer
does not think from future perspective and over a period, a
requirement getting changed and same application is going to
be patch or grows with addition of feature implementation.
After few years, application code become legacy code and new
developers must dig their mind even to fix a small issue. To
overcome this kind of monolith behavior, micro services came
into picture that plays an important role in development and
deployment of an application. To deploy micro services,
Docker containers are going to be best choice which will

smooth the life cycle of software deployment [1]. It will
maintain not only upgrades, but also fix packs, patches that
need to be delivered to customer seamlessly. It will provide a
better testing environment via replacing the physical servers
in form of containers having same dependencies, libraries
bundled along with OS layer. There is no need to use
hypervisors like KVM, Xen etc. Containers will provide the
smooth environment for application maintenance, migration
of micro services via tagging Docker images time to time and
agility, continuous integration and delivery of software
implemented using various languages and several platforms.
During their starting phases, containers were very well
adopted in micro service kind of architecture instead of
parallel and high-performance computing applications like
MPI etc. for research domain. They were not primarily target
for handling scientific workloads. As micro service
architecture has been adopted by IT industry very well,
containers behavior of portability, reproducibility, elasticity
and scalability pushed its usage to try and evaluate its
performance in HPC community in research area. HPC was
already popular with its experiments in Cloud computing area
and here entrance of Docker gives it another positive insight
to achieve better performance as both core components were
same that is none other than Virtualization. Containers are
based on the OS level kind of virtualization instead of having
full server virtualization which makes it very light weight,
scalable, agile in nature and easily adaptable for software
development and deployment in emerging technologies.

Docker containers are meant for providing I/O, interconnect
network capabilities and independent computational
resources where Singularity containers are dedicated for HPC
application execution. In HPC environment, scheduler is
required for scheduling the jobs being queued and Slurm is
one of the popular one. It has been identified that YARN [2]
and Mesos [3] are also make their place as a suitable resource
manager in HPC. Apart from these open source technologies,
Kubernetes orchestrator also embarks their journey in HPC
community. One of the major benefits from containers is fault
tolerance. MPI applications can be easily run with Singularity
usage where isolation of execution can be achieved via
Docker. Singularity focus is to coarse grained the computing
resources instead of doing fine grain rank basis allocation
supported by Docker. During the starting phase of cloud
computing, industry was worried about the security [4] but as
it addresses all the challenges via opting root privileges to run
application along with different aspects like load balancing

Containerization for shipping Scientific Workloads in Cloud

Manish Kumar Abhishek1, D. Rajeswara Rao2
1Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India,

manish.abhishek@gov.in
2Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India, rajeshpitam@gmail.com

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse166942020.pdf

https://doi.org/10.30534/ijatcse/2020/166942020

Manish Kumar Abhishek et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5327 – 5331

5328

allows cloud computing to “scale up to increasing demand”
[5], Docker containers make their place in this era for
executing HPC applications. But on other hand orchestration,
containers placement, performance, scheduling of jobs,
allocation of computing resources was still a concern and
need to be quantified.
This paper includes, 1) Containers evaluation using open
source platform Singularity and Docker (2) monitoring of
containers using orchestration and monitoring system
Kubernetes (3) feature analysis of scientific workloads using
Containers in cloud. Our experimental results are captured
via maintaining private cloud infrastructure using OpenStack
which offers the provisioning of Docker containers using
Cent OS 7 version as OS. Within HPC cluster we are running
MPI application. For doing evaluation, we have considered:

 Run the MPI application on Docker containers vs bare

metal and computed the performance.
 Using Kubernetes, overlay network has been established.

Each node within HPC cluster is going to have one
container lying over the same overlaying network layer
but with different IP addresses.

 One stack built with multiple containers on a single node
connected with same network layer.

 For benchmarking, we have used different set of
computing resources for MPI application in form of
different classes. Testbeds are going to have result report
with constant count of MPI rankings which clearly
showing the variance during the placement of nodes or
allocation of nodes changes within HPC cluster.

2. MATERIAL AND METHODS

We have explored and analysis the various Open source
technologies in terms of virtualization, orchestration,
monitoring, schedulers, open resource managers and picks
Docker containers, Kubernetes, Singularity respectively for
having all as a combination to quantifying the performance of
HPC applications. Figure 1 shows the containerization
approach for HPC.

Figure 1: Containerization approach for HPC

A. Docker Containers
In Linux systems, to support isolation from host; Linux
containers provider one layer of virtualization over the

Operating system so that multiple processes can run on single
host and this idea is leverage by the Docker to build, deploy
and shipment of containers across nodes. It separates the
execution environment in form of light weight virtual
machine [6] along with fixed computational resources and
network bandwidth. in short, it provides the encapsulation
and abstraction of underlying guest OS instead of from the
underlying layer of hardware. It provides virtual network to
interconnect with other containers deployed on same node
with the help of private network addresses. With the help of
CLI commands containers can be easily provisioned and
managed with the help of container images.

B. Singularity Containers
Singularity containers are targeted for coarse grained
resources allocation rankings as well as its in-built support for
MPI application integration makes its popular for scientific
workloads in HPC community [7]. It is facilitating a
mechanism for application packaging in addition to execution
environment. Singularity containers will run like an
individual normal process on computing node instance of
HPC cluster that makes its integration quick with scheduler.
Instead of keeping images in file format like Docker does, it
will persist the whole image as a single file. It has its hub
where images can be registered in repository having support
of CRUD operation which can be public in nature.

C. Kubernetes
Kubernetes is an open source orchestration tool [9] used to
manage, monitor, automate the deployed container pods for a
better prediction of hosting the containers as well as to easily
scale up or down the container pods within cluster.
Kubernetes master node is going to manage all the deployed
pods via command line interface kubectl. It is easily
integrated with Docker or singularity containers along with
computing resource specifications. It is very beneficial for
handling the scientific workloads in form of running process
as individual containers.

3. RESULTS AND DISCUSSION

3.1 Experimental Setup

Experimental testbeds have included four bare-metal compute
instances using OpenStack cloud infrastructure. Table 1 is
having details of our stacks.

Table 1: Test Bed Specifications

Resource Details
Operating System CentOS 7.0
Processors Count 12 X Intel Xeon X5650

@2.67GHz
Memory 226GB
Network Emulated 1GigE
CPU 32 cores
RAM 100GB
OPEN MPI 3.0.0

Manish Kumar Abhishek et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5327 – 5331

5329

Instances are configured with 32 cores of CPU and 226 GB,
100GB in terms of memory and RAM. To understand the
features of MPI application, it is profiled for benchmarking.
Later, we have move towards the setup of containers to derive
the variance in performance factor. Computational work has
been computed via HPCG and from memory perspective; we
have used KMI Hash [10]. We have used iterative approach
with a count of eight to find out the average of each
experimental test.

3.2 Evaluation

MPI application is in form of Singularity image has been
deployed in form of Docker containers bundled with needful
MPI libraries running within HPC cluster on the top of
OpenStack [11] Cloud and all container pods within HPC
cluster has been managed via Kubernetes master node. Using
ansible script, spawn the whole cluster via helm install and
later monitored via Rancher that is an open source platform to
address the security and management challenges across
Kubernetes clusters for better handling of container
workloads within HPC cluster. We have done settings for
multiple containers in such a way that it will get configured
per computing node and split the ranks of MPI among
containers throughout nodes. In the starting phase one
container is aimed for only one MPI rank and slowly grows
the ranking count per container and keeping the total count a
constant value. Pods were equally spread across computing
nodes where every container is going to have similar count of
MPI rankings.

A. HPCG
We have evaluated the performance factor via HPCG
benchmarking with a variance of MPI ranks. In the first set,
we have considered 64 ranks with bare metal physical server,
then one Docker container with its own underlying overlay
network and with singularity container. In second set of
execution, we have considered 64 MPI ranks spread across
the containers and in last set evaluated the 18 MPI ranks with
variance in count of computing nodes within HPC cluster.
Figure 2 (a), 2 (b) and 2 (c) are showing the difference of
performance computation having all the considered use cases.

Figure 2(a): MPI execution strategies

We can clearly see that results are comparable where
Docker container with overlay network is having higher
performance downgrade rather than singularity container
which slightly degrading the performance in comparison
of bare metal.

Figure 2(b): MPI rankings per container

Evaluating MPI ranks per container, we found that when rank
as one, performance was poorly downgraded in comparison to
bare metal but once MPI ranking has been incremented by a
factor of 2 or four, its performance become equivalent to bare
metal.

Figure 2(c): MPI rankings with variance of nodes

Incrementing the number of nodes in HPC results in higher
performance. When within cluster, number of nodes in form
of container pods has been increased; we gain a hit in
performance around 30%. Incrementing from four to eight
nodes, it was even better and having a gain of approx. 8%.

B. KMI Hash
From memory perspective we have done benchmarking using
KMI hash which is data centric in nature and using mainly
hashing technique. When we have experimented, the tests
covering similar use cases that we have computed in case of
HPCG benchmarking, found that Docker containers are
providing similar throughput in comparison with bare metal.
On another hand, Singularity containers provides within
0.5%.

Manish Kumar Abhishek et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5327 – 5331

5330

Figure 3(a): MPI execution strategies

Figure 3(b): MPI rankings per container

Figure 3(c): MPI rankings with variance of nodes

Figure 3(a), 3(b) and 3(c) shows clearly the comparison of
performance factor in case of different strategies. Here,
Docker container is performing well in comparison to bare
metal throughput where Singularity containers are ahead
from the Docker containers. Having one MPI rank does not
have significant results but with increment in number of pods
in terms of nodes has significantly improved the performance
where total count of ranking was a constant value that is 28.

3.3 Related Work

In IT industry, Docker containers are now a buzz but due to its
root privileges, it is not fully adapted in HPC environment.
However, it has been overcome via developing a secure
execution of containers in HPC environment using Slurm
[12] scheduler but still containers throughput and network
bandwidth is a concern. Singularity is now a days very
popular for handling the HPC application. It is mainly for
handling the scientific workloads only and its in-built

integration support is one of the major reasons to use it for
running HPC applications.

4. CONCLUSION
Containers can be easily used for achieving portability in HPC
applications. They are very flexible, easy to use and managed
easily in terms of computing nodes for HPC application. We
have performed our experimental results with different
benchmarks having mainly three use cases around MPI
rankings and number of queries in terms of memory
computation. Different containers running within HPC
cluster has provided flexibility with a minimum overhead of
performance. The results were mostly comparable
irrespective of bare metal. Singularity containers performed
very well to support MPI application but splitting of MPI
rankings per container having restriction on allocation of
resources is not supported but it can be achieved via Docker
easily. On another hand in case of Singularity, there is no need
of external installation of interconnected drivers to have fast
communication across pods where Docker needs it.
Performance using HPCG and KMI hash has been computed
and shred the results where Docker containers are having its
own requirement to handle the big data and its traits in public
sector [13] and singularity is going to have its own. Mainly
Singularity containers are aimed for handling scientific
workloads but still there are open items in this area that can be
addressed in future. The dynamic allocation of resources can
be targeted as a future scope to avoid the overhead of
appropriate resource utilization and how we can use the free
computational resources for running non -HPC applications.
A scalable framework can add more value to it.

ACKNOWLEDGEMENT

A special vote of thanks to the Koneru Lakshmaiah Education
Foundation for supporting and facilitating me required
infrastructure to carry out the analysis work and my guide as
well as staff members who have helped me to analyze and
complete this research work.

REFERENCES

1. Sarita and S. Sebastian, "Transform Monolith into
Microservices using Docker," 2017 International
Conference on Computing, Communication, Control and
Automation (ICCUBEA), Pune, 2017, pp. 1-5, doi:
10.1109/ICCUBEA.2017.8463820.

2. Vavilapalli, Vinod & Murthy, Arun & Douglas, Chris &
Agarwal, Sharad & Konar, Mahadev & Evans, Robert &
Graves, Thomas & Lowe, Jason & Shah, Hitesh & Seth,
Siddharth & Saha, Bikas & Curino, Carlo & O'Malley,
Owen & Radia, Sanjay & Reed, Benjamin &
Baldeschwieler, Eric. (2013). Apache Hadoop YARN:
yet another resource negotiator. Proceedings of the
4th Annual Symposium on Cloud Computing, SoCC
2013. 10.1145/2523616.2523633.

Manish Kumar Abhishek et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5327 – 5331

5331

3. B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.
D. Joseph, R. Katz, S. Shenker, and I. Stoica, “Mesos: A
platform for fine-grained resource sharing in the data
center,” in Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation, ser.
NSDI’11. Berkeley, CA, USA: USENIX Association,
2011, pp. 295–308: http://dl.acm.org/citation.
cfm?id=1972457.1972488.

4. P. Patel, V. Tiwari and M. K. Abhishek, "SDN and NFV
integration in openstack cloud to improve network
services and security," 2016 International Conference
on Advanced Communication Control and Computing
Technologies (ICACCCT), Ramanathapuram, 2016, pp.
655-660, doi: 10.1109/ICACCCT.2016.7831721R.

5. Karimunnisa, Syed & Kompalli, Vijaya. (2019). “Cloud
Computing: Review on Recent Research Progress
and Issues”. International Journal of Advanced Trends
in Computer Science and Engineering. 8. 216-223.
10.30534/ijatcse/2019/18822019.

6. Dirk Merkel. 2014. Docker: lightweight linux
containers for consistent development and
deployment. Linux Journal 2014, 239 (2014), 2.

7. V.Sande Veiga et al.,"Evaluation and Benchmarking
of Singularity MPI containers on EU Research
e-Infrastructure," 2019 IEEE/ACM International
Workshop on Containers and New Orchestration
Paradigms for Isolated Environments in HPC
(CANOPIE-HPC), Denver, CO, USA, 2019, pp. 1-10,
doi: 10.1109/CANOPIE-HPC49598.2019.00006.

8. Hideto Saito, Hui-Chuan Chloe Lee, and Ke-Jou Carol
Hsu. 2016. Kubernetes Cookbook. Packt Publishing.

9. Andrew J. Younge, Kevin Pedretti, Ryan E. Grant, and
Ron Brightwell. 2017. A Tale of Two Systems: Using
Containers to Deploy HPC Applications on
Supercomputers and Clouds. In 2017 IEEE
International Conference on Cloud Computing
Technology and Science (CloudCom). IEEE, 74–81.
https://doi.org/10.1109/CloudCom.2017.40.

10. “KMI HASH Benchmark Summary”
https://asc.llnl.gov/CORAL-benchmarks/Summaries/K
MI_Summary_v1.1.pdf.

11. Kumar, Rakesh & Gupta, Neha & Charu, Shilpi & Jain,
Kanishk & Jangir, Sunil. (2014). Open Source Solution
for Cloud Computing Platform Using OpenStack.
10.13140/2.1.1695.9043.

12. Andy B. Yoo, Morris A. Jette, and Mark Grondona.
2003. SLURM: Simple Linux Utility for Resource
Management. Springer, Berlin, Heidelberg, 44–60.
https://doi.org/10.1007/10968987 {_}3

13. Wook, Muslihah. (2020). Big Data Analytics
Application Model Based on Data Quality
Dimensions and Big Data Traits in Public Sector.
International Journal of Advanced Trends in Computer
Science and Engineering. 9. 1247-1256
10.30534/ijatcse/2020/53922020.

14. Beltre, Angel & Saha, Pankaj & Govindaraju,
Madhusudhan & Younge, Andrew & Grant, Ryan.
(2019). Enabling HPC Workloads on Cloud
Infrastructure Using Kubernetes Container
OrchestrationMechanisms.10.1109/CANOPIE-HPC4
9598.2019.00007.

15. S. Sreepathi et al., "Application Characterization
Using Oxbow Toolkit and PADS Infrastructure,"
2014 Hardware-Software Co-Design for High
Performance Computing, New Orleans, LA, 2014, pp.
55-63, doi: 10.1109/Co-HPC.2014.11.

16. Park, J., Smelyanskiy, M.: Optimizing Gauss-Seidel
Smoother in HPCG. In: ASCR HPCG Workshop,
Bethesda MD, 25 March 2014.

17. Phillips, E.H., Fatica, M.: Implementing the Himeno
benchmark with CUDA on GPU clusters. In: IEEE
International Symposium on Parallel & Distributed
Processing IPDPS, pp. 1–10 (2010).

18. R. Escobar and R. V. Boppana, "Performance
Prediction of Parallel Applications Based on
Small-Scale Executions," 2016 IEEE 23rd International
Conference on High Performance Computing (HiPC),
Hyderabad, 2016, pp. 362-371
doi: 10.1109/HiPC.2016.049.

19. E. Vermij, L. Fiorin, C. Hagleitner and K. Bertels,
"Boosting the Efficiency of HPCG and Graph500
with Near-Data Processing," 2017 46th International
Conference on Parallel Processing (ICPP), Bristol, 2017,
pp. 31-40, doi: 10.1109/ICPP.2017.12.

20. Y. Demiral, N. Çarkacı and U. Çekmez, "Bulut Üzerinde
DevOps Mimarisi DevOps Architecture in the
Cloud," 2019 27th Signal Processing and
Communications Applications Conference (SIU), Sivas,
Turkey, 2019, pp. 1-4, doi: 10.1109/SIU.2019.8806433.

21. McCalpin, J.D.: Memory bandwidth and machine
balance in current high-performance computers. In:
IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter, December
1995.

22. Dongarra, J., Heroux, M.A.: Toward a New Metric
for Ranking High Performance Computing
Systems. Sandia report SAND2013-4744 (2013).

