
Aeshah A. Alsayyah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8043 – 8054

8043

ABSTRACT

Worldwide organizations use the benefits offered by Cloud
Computing (CC) to store data, software and programs. While
running hugely complicated and sophisticated software on
cloud requires more energy that causes global warming and
affects environment. Most of the time energy consumption is
wasted and it is required to explore opportunities to reduce
emission of carbon in CC environment to save energy. Many
improvements can be done in regard to energy efficiency from
the software perspective by considering and paying attention on
the energy consumption aspects of software's that run on cloud
infrastructure. The aim of the current research is to propose a
framework with an additional phase called parameterized
development phase to be incorporated along with the traditional
Software Development Life cycle (SDLC) where the developers
need to consider the suggested techniques during software
implementation to utilize low energy for running software on
the cloud and contribute in green computing. Experiments have
been carried out and the results prove that the suggested
techniques and methods has enabled in achieving energy
consumption.

Key words: Cloud Computing, Energy-efficient, Green
computing, Software Development Life cycle,

1. INTRODUCTION

The usage of green cloud computing became widely thought of
issue in large organizations. The large organizations have
targets to minimize the energy consumption and reduce
unnecessary resources. Cloud computing can help effectively in
this situation by allowing different services include storage with
different capacity, data processing, sharing information and so
on [1]. This improvements related to hardware side by
migrating the software, data and most computing to CC. whilst,
achieve great deal of efficiency by having hardware that
required minimal energy. Cloud computing is cost effective and
highly scalable infrastructure for running High Performance
Computing (HPC), enterprise and web applications. Moreover,
there has been drastically growing demand of cloud
infrastructure by different organizations which has resulted in

the increased consumption of energy to run these data centers,
which has become a critical issue. Where by High energy
consumption increases the high operational cost and reduces
the profit margin of cloud providers. Further, this leads to high
carbon emissions which is not eco-friendly [2].

Further, there is a need to consider the issues related to energy
consumption of cloud environment. So, the applications or
software must be prepared with energy efficient techniques at
the implementation phase. This means that the developers need
to design the software with Green Software Development Life
Cycle (G-SDLC). Parameterized phase will support and
enhance the source code of software; by identifying and
analyzing the hotspots in code, that causes energy consumption
with help of tools or methods. Cloud computing and software
development are the backbone to design software which is most
energy efficient for cloud based applications. They can be
merged as one framework of green cloud computing [3]. The
framework shown in Figure 1, contains two major components:
software and cloud structure.

Figure 1: Framework of green cloud computing [3]

Complex software application can deliver high efficient,
accurate and powerful work to modern organizations. However,
it causes resource and power consumption that will lead to a
vast negative influence on the environment. Nowadays green
computing is hot topic especially when it comes to software
development. Researchers mainly focus on efficient solutions to
achieve energy efficient as a feature for computer hardware.
Furthermore, energy efficient in software development life
cycle can be of valuable importance in achieving green
computing. Software can influence the environment indirectly
by running in hardware that causes for example, carbon dioxide
emissions.

Energy Efficient Software Development Techniques for

Cloud based Applications
Aeshah A. Alsayyah1, Shakeel Ahmed2

1,2 College of Computer Sciences and Information Technology, King Faisal University, Al-Ahsa, Saudi Arabia
aishamonem@gmail.com, shakeel@kfu.edu.sa

ISSN 2278-3091
Volume 9, No.5, September - October 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse163952020.pdf

https://doi.org/10.30534/ijatcse/2020/163952020

Aeshah A. Alsayyah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8043 – 8054

8044

As results, the researchers focus on the side of implementation
of cloud components that affect energy consumption. Thus,
components decide the type of cloud computing service models
that are being used in the environment of cloud. Our efforts in
this research project is on software implementation by
elaborating in energy optimization at software or application
level. Focusing on energy consumption of applications’

profiling at runtime and narrow down hotspots iteratively; to
achieve G-SDLC.

Figure 2: Services models of cloud [4]

Many efforts have been done to obtain green cloud framework
covered virtualization mechanism and data center operations.
Figure 2, shows the service models of cloud and the controller
for each component [4]. Some efforts proposed green cloud
framework for virtualization include virtual machine image
management, Virtual machine (VM) scheduling and advanced
data center design. Two areas in framework can show the
improvements by originating efficient scheduling system for
VM leads to minimize the operating costs of the cloud. Thus, an
optimization of power would be achieved on server equipment
or as reduction of data center temperature. This would reduce
the energy required for cooling system as well and contribute in
saving overall energy. Other general efforts, avoid such a waste
of power, by automatic shutdown for idle software with saving
its status and other shutdown for hardware no longer in use.

Developers need to understand the estimation of the program
energy consumption to avoid the power waste in early stage of
development. In the current research G-SDLC focuses on
elucidate of green software development life cycle, especially in
software implementation and parameterized methodologies to
contribute in reducing energy consumption when it is running
on cloud. The fact is that when the developers improve the
source code with the help of parameterized phase; energy

optimization of a software can be achieved by determining the
part of code that consume high energy during the runtime. In
alignment with regular five software development life cycle
phases that covers requirement specification and analysis,
design, implementation or coding, testing and maintenance.
Our enhancement is adding parameterized development phase
which focus on code generated in implementation phase. As
stated, the source code plays a vital role in achieving energy
efficient software. Therefore, all efforts focused on unnecessary
use of controls, libraries and some unnecessary instructions by
applying the parameters to reduce the energy consumption of
software when running in cloud environment.

2. LITERATURE REVIEW

This section provides various solutions proposed by researchers
to optimize energy conservation at hardware and software
levels with different perspective. In reference [2] proposed
typical SDLC with vital role to build efficient software in a
systematic way by detecting energy-saving prospects in a
typical SDLC to make software application eco-friendly in
cloud. A framework of green cloud had been designed that
consists of two side work in parallel to achieve green cloud. The
first side is about the Service Level Agreement (SLA) in which
the level of service the cloud customer expected to get from
cloud providers. Both have to agree upon the required and high
performance software by outline SLA terms relating to energy
usage limits and responsibilities. The other side, concern about
cloud service models and different approaches to optimize the
energy of cloud components. In addition to some devices that
required physical facilities. The paper illustrates how
virtualization play significant role with scheduling schemes in
cloud. These techniques have the opportunity to reduce energy
cost and consumption through efficient resource use.
Virtualization allows for resource utilization, live migration of
VM, that all can minimize the cost of the energy [5] [6].

Reference [7] discusses the opportunities and challenges in
energy saving for cloud data center. They illustrated that energy
saving can be accomplished by turning servers not in use into
lower energy mode, and by increasing the utilization of servers
that already active. The approaches discussed include workload
prediction; the concept of this approach demonstrated two mode
of server that (turned on) based on time duration. The
experiment showed that the server being in idle mode and
turned on (while not needed) will consume much greater than
amount of energy instead of just keeping it active. If the server
in idle mode and not needed for a long period, then the power to
be saved by way of turning it off can be higher than that to be
consumed to turn the idle server back to be active. In addition,
user will notice some undesired delay during this switching.
This approach used to estimate cloud workloads in future and
decide whether and when turning the server modes. The other
approach is VM placement. Cloud centers consist of multiple

Aeshah A. Alsayyah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8043 – 8054

8045

clusters that are distributed in remotely geographic locations.
Cloud providers receive VM request, then the cloud scheduler
has to decide what a proper cluster should host and take care of
the submitted request, with the cheapest power prices and
highest confidence on green sources of energy in order maintain
the efficient energy and reduce carbon emissions. These
approaches manage entire cloud centers, which rely on
virtualization capable to make cloud datacenters more energy
efficient.

In reference [8] had built two levels of green software model
and software parameters promoting green and environmentally
manageable software. The first level covers the life cycle of a
software development. A green software engineering process
implemented with hybrid process taken the advantages of
developing software from waterfall, agile and iterative
development processes. Each stage evaluated with metrics to
measure the greenness to produce a green stage. The second
level, showed how the software with certain parameters make
the software itself as tools used to assist in green computing in
energy efficient manner. Such as use cloud computing with
model of Infrastructure as a Service, to get the full control while
developing the software and use of a reusable system and limit
some features to achieve energy efficiency.

In reference [9] framework of energy efficient software
development life cycle consisted of six phases similar to
tradition SDLC phases: “Requirement phase”, “Design phase”,
“Coding phase”, “Testing phase”, and “Maintenance phase” all
linked in cyclic manner with centralized phase named “Green
analysis phase”. This means that, when one phase is completed,
then each phase connected to green analysis phase to check
whether or not the particular phase follow the rules of green
computing. The green analysis phase contain different concept
of green computing such as green scheduler and compilers, grid
computing, cloud computing, fault tolerance and other concept.

In reference [10] presented framework that provide scalable
architecture of cloud computing to minimize the temperature
within the data center. It covers two main parts virtualization
and data center design. In virtualization, the target is to reduce
data center temperature based on functioning of VM in cloud
computing. This can be done by deriving efficient scheduling
system for VMs. The scheduling process addresses the location
of VMs within the cloud infrastructure while reducing
operating costs of the loud itself. This is achieved by optimizing
either server equipment power or the optimizing overall
temperature within the data center. In data center design, the
cooling system used is consisting of efficient Air Conditioners
(AC) with more efficient power supplies to cool the server area
which leads to optimize the power to operate the AC as well as
the temperature within the data center.

The proposed work in [11], [12] illustrates different approaches
for developing green software. Energy efficient SDLC for cloud
applications is affected by both the concepts of cloud computing
and green computing. The worldwide issue with any technology
is energy conservation. Energy wastage can occur in both
hardware and software levels. Different techniques are used to
minimize energy usages as a green computing approach at
cloud component and software engineering development.
3. PROPOSED SYSTEM

The aim of this work to propose and investigate the framework
of software development life cycle that introduces a new phase
called parameterized development phase to enhance the energy
efficiency of the software as shown in Figure 3, which helps the
developers to optimize energy efficiency of software
applications when it is being developed. Parameterized phase
improves the software code by generating energy efficient code
and to get efficient software which improves the source code for
optimizing energy consumption and to determine the highest
power consumption part in code. Therefore, the software
application would be environment-friendly in cloud and same
functionalities with other aspects of quality still maintained.
Which is of our interest in achieving and optimizing energy
efficiency by implementing G-SDLC in cloud computing
environment.

Figure 3: Green Software Development Life Cycle

Parameterized phase provides guidelines and appropriate
methodologies for developers that promote software’s
implementation phase. Set of parameters works as checklist
that help in software code development. Such as data structure
design, architectural design, abstract specification, and
algorithm design. Applying the parameters should be based
upon programming language used, application function and
engineering hardware architecture. All these should be
presented in earlier phase of software’s specification and
requirement. Thus, developers can modify those parts
consuming the energy instead of re-writing the code from
scratch. Energy optimization comes with best practice and
experience; developers will be able to identify the part of the
code demand a particular pattern to be modified.

Application development depends on of the three model of
cloud provided. The cloud provider, in case of software as a
service (SaaS) is responsible for software development while it
only provides a platform in case of platform as a service (PaaS)
to allow developing an application. Whilst in an infrastructure
as a service (IaaS) model, customers are able to take the all

Req. Specifi.
& Analysis

Design

Implementation Testing

Maintenance

Parameterized

Aeshah A. Alsayyah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8043 – 8054

8046

responsibilities of application development and maintenance in
cloud as shown in Figure 2.The proposed research is designed
as initial energy optimization model to be deployed on IaaS
which allows full control for the user to manage the services
remotely and other resource. IaaS allows the control over
operating systems, storage, applications deployed and
possibility of selecting network components [3]. This will help
the developer later to manage the resources along with the
optimized website/application. Thus, it will work in parallel
with the optimized website/application to contribute in
reducing the energy consumption expected from other
perspective of cloud components.

Efficient code can be cost effective using different
programming techniques that are used as parameters to adopt
on source code. As result, developers can undertake code
manually. Such as loop unrolling mechanism by executing the
instructions within the loop in parallel. This will optimize
compiler time as well as the energy required to compile the
sequence instruction of loop. For example, if there is a program
that deleting 100 items. Simply, For loop can accomplish this
task by calling function, delete () as shows in Table 1. As a
result of this adaptation, the enhancement with “loop
unrolling” only 20 iterations of the jumps and conditional
branches need to be run, instead of 100. Developers are
responsible to choose loop control variables and number of
operations inside the unrolled loop structure. So, the output is
same as the original code produced.

Table 1. Difference between normal loop and loop unrolling
Normal For-loop After applying loop unrolling
int item;
for(item=0; item<100;
item++)
{
 delete(item);
}

int item;
for(item=0; item <100; item+=5)
{
 delete(item);
 delete(item + 1);
 delete(item + 2);
 delete(item + 3);
 delete(item + 4);}

The scope and declaration of variables, variable types, nested
loops, switch statements and are other programming techniques
can influence processing as well as energy consumption. For
example, int variable can be stored in form of double, whereas
in this case it will use 8 bytes of memory instead of 4 bytes as if
stored as int. All these techniques which apply to cloud
applications targeting energy saving. In the cloud environment,
applications may be needed to share parameters and
communicate across the networks. In order to optimize energy
consumption, number of parameters must be controlled during
information transmission. The programming language can
affect energy consumption of application. As few programming
languages are effective in use of memory and CPU by applying
techniques of garbage collection and multithreading. For
example, ASP.NET garbage collector provides good use of

memory with high speed allocation services. It preforms
minimization that will give developer much less than optimal
performance and keep the memory usage effective [13].

4. ENERGY OPTIMIZATION IN CLOUD COMPUTING

Today, energy efficiency is the most vital constraints for cloud
computing. It decides the operational costs and the benefits of
capital investment. Since CC depend on data center industry
deployed worldwide. Cloud applications optimization will not
only reduces the data centers energy consumption, rather also
will contribute in optimize overall cloud computing systems
globally. In [14], issues are addressed in regards to reducing
energy consumption of data centers, as well as in cloud
computing. They include but not limited to virtual machines
placement workload scheduling or load balancing as illustrated
below:

Virtual Machines placement: Virtualization is an efficient
operation in cloud data centers. The physical equipment that is
energy consumption can be replaced virtually in data center.
VMs consolidation strategies try to accommodate lowest
possible number of physical machines to host a certain number
of VMs. In virtualized environment, scheduling and load
balancing are some techniques used effectively to manage
operation in data centers. VM is ensuring efficient utilization of
storage to serve hosted application workloads and then lead to
minimize energy consumption in data center.

Workload scheduling: It contributes in improving the efficiency
of data center in a way that specifies the resources that would be
used to complete the work. The work could be data flow,
processes or threads that are in turn waiting to being processed.
The focus is to achieve efficient utilization of resources selected
from the server with cost and energy effective. Additionally,
energy efficient workload scheduling tends to ponder all active
workloads on a minimum set of servers with least possible
communication resources.

Load balancing: Load balancing aims to optimize resource use,
maximize throughput, minimize response time, and avoid
overload for any particular resource. Load balancing can
efficiently distribute the incoming traffic among available
servers in fast and reliable manner. It ensures that no one server
has overloaded more than other, that may cause it to be down.
As the inactive server (in case of shutdown) require energy to
turn it on, and then heat is generated more and cooling system
will consume electrical energy to keep good temperature. Load
balancing is the important enabler for saving energy by
avoiding unnecessary power consumption. However, recoveries
after the server turned ON will causes some delays.

In regards to energy efficiency of SDLC in cloud computing
focused on optimizing the code that cause's energy consumption

Aeshah A. Alsayyah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8043 – 8054

8047

which can be achieved by applying a list of parameter proposed
to the developer and help in writing efficient code. In this
section first the code generation stages are discussed, and
various effective parameters (techniques) to optimize the
generated code are illustrated.

A. Code Generation
 Programmers at implementation phase are recommended to
optimize power as much as possible in all components of
software. Subsequently, energy efficient software can be
delivered. Code generation can be defined as the process of
generating target instructions to implement the source code
[15]. It is the translation of UML diagrams into executable
code. In code generation, the compiler actually converts
intermediate representation that is data structure or internal
code used in compiler, into executable source code. Then, the
compiler maps the source code with registers (storage
allocation) or memory locations for each targeted
variables/symbols [16]. This will produce a set of instructions
that perform the function of developed software that are spaced
and time efficient.

Lexical analysis is the first phase of compiler. It scans the
characters to make up the stream of code and produce lexemes
that are meaningful sequence (token stream). The second phase
is syntax analyzer (parsing), it use the components produced by
lexical analyzer (token stream) to create intermediate
representation in form of tree-like. This representation
represents the operation as node and the leaves as arguments of
the operation. In semantic analyzer phase, the meaning of
structures of the syntax-tree formed in syntax analyzer phase is
analyzed and verified. It checks the authority of semantic.
Therefore, each operator has matching operands. At code
generation phase, the targeted machine code is generated. It
may include optimization of code, operations and structure.

1) Major Tasks in Code Generation

There are some major tasks that are typically part of code
generation phases. These tasks should be taken in account at
earlier stage to achieve energy efficient code. Register is the
preferred location for operands. It makes the instructions
execution faster since the fetched operands reside on the
specified registers. Despite the fact, there is a need in some
circumstances to assign memory location due to registers
scarcity. There are major tasks illustrated in [17] that related to
registers in code generation:

a) Register allocation: It is a phase of code generation,
responsible for deciding which value can most profitably be
held in registers and at what points in program. Operands
accessed from registers require less energy than those that
accessed from memory. In some cases instructions cannot
access memory directly, so the operands explicitly loaded to
register for use.

b) Instruction scheduling: It determines the order of
instruction to be performed. It has critical effect on speeding
the optimization on pipelined machines. It is important to

ensure that the instruction scheduler handle the delay-load of
instructions that completed with several cycles. So, only load
the instructions that facing the pipeline.

c) Instruction selection: It is the phase where the
instruction has been selected to perform the required
computation. Instruction selection is the process of selecting the
best instruction to perform computation. In other words, what
instruction to use. The selected instruction should be able to
perform the computation as fast as possible, combined well with
the surrounded instruction of computation. The selector must
choose the best instruction that can produce the best code with
minimum size and execution time. A good code generator is
easier to implement, test and maintain. Thus, careful
assignment of variables and expressions to registers lead to
increase the efficiency of compiler.

B. Code Optimization
The term optimization means that the compiler produces code
which is more efficient than the obvious code. Since there is no
way that guaranteed that the code produced by a compiler is
faster than any other code that performs the same task.
Therefore, developer intervention is required to enhance the
source code. Code optimization is one of the main goals to
achieve energy efficient software. It is the heart of the proposed
parameterized development phase. It attempts to improve the
code, so that the code occupies less space, executes fast and
consumes less power. Optimization of code is done at
compilation stage by applying set of the proposed parameters
without influencing existing coding.

To get better code at code generation stage; developer
recommended to reuse already computed values (avoiding extra
computation). Since the reuse is less expensive than
re-computing. More efficiency can be achieved by avoiding
unnecessary stores of variables, extra loads of memory and
register-to-register moves. Minimizing the movement of data
can save the energy by writing software with appropriate data
structures. Therefore, all efforts will work on unnecessary use of
controls, libraries and some unnecessary instructions; by
applying the parameters to reduce the energy consumption of
software when running in cloud environment. There are plenty
of approaches to observe the code parts that influence more in
the total energy consumption (i.e. energy hotspots). Different
programming techniques are established for code level
optimizations and used as parameters that developers
undertaken them manually.

1) Code Optimization Techniques

Code optimization techniques target to reduce execution time
and reduce space and consume less energy. There are several
techniques which can help a software run faster. These
techniques aim to improve the code in a way, so that CPU time
and memory are optimized. The goals of code optimization are
to reduce the execution time, memory consumption and remove
unnecessary/unreachable or redundant code without affecting
the output of code. Below are various methods of manual

Aeshah A. Alsayyah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8043 – 8054

8048

optimization that often yield to improve the source code. These
techniques include but not limited to constant propagation,
constant folding, strength reduction, common sub expression
elimination, unreachable code elimination/dead code
elimination and loop optimization.

a) Constant propagation: Developer recommended
replacing the variable by its constant value, without creating
declaration/definition statement for variable. Directly
propagate the constant value at use of the variable in code.

b) Strength reduction operation: Replacing an expensive

operation with a cheaper operation that can produce same
results. It replaces slow mathematical operations with faster
one.

Original code Transformed code

int y = 2 ;
int x = y^3;

int y = 2 ;
int x = y*y*y;

c) Constant folding: It is similar to constant propagation.
However, in constant folding, constant expressions evaluated
and recognized at compile time better than that of computing
them at run time. So, constant folding delivers the constant of
an expression. It considered as algebraic simplification method.

Original code Transformed code

int a = 30;
 int b = 9 - (a / 5);
 int c;
 c = b * 4;
 if (c > 10) {
 c = c - 10;
 } return c * (60 / a);

int a = 30;
 int b = 3;
 int c;
 c = b * 4;
 if (c > 10) {
 c = c - 10;
 } return c * 2;

d) Common sub expression elimination: In the body of
code i an expression repeated more than once, it is better to have
common sub expression. Common sub expression can be local
within single basic block or global on entire procedure.
(Constraint: the value of the expression and its operands should
not change across various occurrences).

Original code Transformed code

a = (b + c)*m;
x = b + c;
y = (b + c) * z;

Tmp = b + c; a = Tmp *m;
x = Tmp;
y = Tmp * z;

e) Dead code elimination/Unreachable code elimination:
Unreachable code is a fragment of the source code that can
never be executed and also known as dead code as there is no
control flow path exist to make it executed. The optimization
can be in this case by removing the portion that does not affect
the function results. The definition int Z = X * Y; is certainly
not reached and executed as the function returns before the
definition is get hold of. Thus, Z definition can be castoff.

Original code Transformed code

int addition (int X, int Y)
{
 return X + Y;
 int Z = X * Y;
}

int addition (int X, int Y)
{
 return X + Y;
}

f) Loop Optimization: Loop optimization is the process of
enhancing the execution speed of the loop and reducing the
number of iteration. Loop optimization can improve the
performance of the cache as most of the spaces and time spent
on loop. Many techniques are established to consume less
energy and make the execution of the loop faster. These
techniques include loop invariant detection and code motion,
loop unrolling and loop fusion.

g) Loop invariant detection and code motion: If the body
of the loop consists of expressions or statements, it is better to
move them outside loop’s body. This would improve efficiency
by computing specific value once before the loop starts. The
calculation x = y + z and x * x are moved outside the loop.

Original code Transformed code

for (int i = 0; i < n; i++) {
 x = y + z;
 a[i] = 6 * i + x * x;
}

x = y + z;
t1 = x * x;
for (int i = 0; i < n; i++) {
 a[i] = 6 * i + t1;
}

h) Loop unrolling: It is a technique of optimization in

which increasing the speed of program by eliminating or
reducing instructions that control the loop. Developer suggested
injecting body of the loop with some expression, in direction to
make shortcut of the condition execution.

Original code Transformed code

int item;
for(item=0;item<100;
item++)
 {
 delete(item);
 }

int item;
for(item=0;item<100;item+=5
)
{ delete(item);
 delete(item + 1);
 delete(item + 2);
 delete(item + 3);
 delete(item + 4);
}

Original code Transformed code

int N = 10; int C = 2;
for (int i =0; i<N; i++)
{
s = s + i*C;
}

for (int i =0; i<10; i++)
{
s = s + i*2;
}

Aeshah A. Alsayyah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8043 – 8054

8049

i) Loop fusion: It is the process of replacing multiple loops
that have same iteration over same identified range with single
loop.

Original code Transformed code

int i, a[100], b[100];
for (i = 0; i < 100; i++)
a[i] = 1;
for (i = 0; i < 100; i++)
b[i] = 2;

int i, a[100], b[100];
for (i = 0; i < 100; i++)
 { a[i] = 1;
 b[i] = 2;
 }

5. RESULTS

 In this section, the factors affecting the energy consumption of
code are illustrated. CPU utilization and memory allocation are
the factors that impacted the way of implementing and
designing the software application. Performance profiler tool
embedded in Microsoft Visual Studio 2017 is used to measure
the performance of code in local host. Two experiments are
proposed in their original status and after applying the suitable
parameter. Further, the performance of code with respect to
CPU utilization and memory allocation is measured.

A. Code Performance Measurement
 The energy consumption depends on the application itself. If
the application is long running with high CPU and memory
requirements then its execution will result in high energy
consumption. Therefore, energy consumption will be directly
proportional to the application’s profile. Developer must put
more efforts in regards to optimize the performance of code.
Performance optimization is endless process. There is always
an opportunity for the developer to improve and make the code
run fast in efficient manner. Hence, software should be
developed to be energy efficient either at earlier stage or during
runtime.

 The measurement of these parameters is the roadmap to know
whether the software has good or low performance in terms of
CPU utilization and memory it consumes. In other words,
efficient application has good performance when its execution
takes less time. However, inefficient application has low
performance that leads to higher CPU and memory utilization,
then higher energy consumption more time to execute.
Object-Oriented Programming Language most probably
provides integrated garbage collection that helps in free the
developer from dealing with memory de-allocation. However,
garbage collection may consume resources in computation to
take decision of which memory to free. Therefore, this could
lead to decreased performance of the code [18]. Manual
optimization remains mostly important at the source code level.
Developer can use his/ her experience and knowledge to
perform optimization in creatively manner and obtain good
performance [19].

 Optimizing the code will indicate good performance in
regards to CPU and memory utilization. This can be measured
by using performance profiler to identify code bottleneck. The
code bottleneck can be found, for example, in loop that is
executed hundreds/ thousands of times. Developer can redesign
the body of loop in order to form in way that does not need to be
executed hundreds/thousands of times [20].

1) Measure the Performance Using Performance Profiler
Tool in Microsoft Visual Studio 2017

 Microsoft Visual Studio 2017 profiling tool, allows
developer to analyze performance issues in their application
code that is written with any programming languages of
ASP.NET. It reports the performance from different
perspective, including CPU usage, memory usage, performance
wizard and others. It reports the performance of code by
collecting information about the functions that performing
work. Furthermore, provides timeline graph the developer can
use to focus on specific segments of code [21]. Measuring the
performance of code can be done using performance profiler in
two steps: collect CPU/memory usage data and analyze
CPU/memory usage data. To measure the time CPU is spending
the CPU usage tool are used so that the developer can modify
the code accordingly. Similarly, memory allocation shows the
total memory allocated to execute the subject code [22] [23].

2) Performance Optimization Experiments Using
Proposed Parameters

 One cannot really know about performance of code without
measuring it. However, the function code of an application can
be measured to see how long it takes and memory occupies. The
good performance is defined by the function that taking less
time to be executed with less memory utilization. On other
hand, the low performance is defined by function that taking
more time to be executed and consuming the system resources.
The various Code Optimization techniques/parameters
introduced in the earlier section are performed on two
experiments discussed below by applying these parameters to
observe how memory and CPU usage is optimized to enhance
the source code and makes it performs efficiently. These
experiments illustrate the performance of the original piece of
code compared to the performance of the transformed code. For
ease, different names given for two fragments of code "Original
Method1 and Original Method2" that are the codes need to be
improved, and the other fragments named by
"TransformedMethod1 and TransformedMethod2" which are
manually enhanced code.

Experiment 1: Constant Propagation

The OriginalMethod1 () is piece of code written to perform
some calculation within the body of for loop. The calculation
operated using values assigned to variables which required
accessing the registers to read their values.

Aeshah A. Alsayyah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8043 – 8054

8050

Figure 4: Hot Spot of OriginalMethod1

Now let’s evaluate the OriginalMethod1 () performance side. It
is recommend to start analyzing the code by evaluating the CPU
usage and identifying the peak of the CPU usage. This means
that the peak point is the part of code that you need to work on
it, in order to improve it. Using the performance profiler tool in
Microsoft Visual Studio, Figure 4, highlights parts of code that
have a chance to be improved by developer. These highlights
can be accessed by investigating the peak point reported by CPU
usage or running time addressed in Figure 4. Moreover, Figure
5 illustrates the overall percentage of CPU usage or running
time of code execution with total of 2,145 samples. The
sampling is recommended method for starting the investigation
of code and is useful for finding issue of processor utilization
[24].

Figure 5: CPU usage of OriginalMethod1

Figure 6, is snapshot of the total memory allocated for
OriginalMethod1 (). It is executed with total of 7,949 bytes of
memory allocation as per the memory profiling report.

Figure 6: Total memory allocated for OriginalMethod1 ()

The OriginalMethod1() is completely run in 2,518 seconds as
illustrated in Figure 7, as per instrumentation profiling report.

Figure 7: Total execution time of Original Method1

 After getting the above performance data, developer manually
applied the suggested parameter which transforms the code in a
way that the performance optimized. In TransformedMethod1
(), the value of the constant propagated directly in expression as
shown below:

public int TransformedMethod1()
 { int s = 0;
 for (int i = 0; i < 200000000; i++)
 { s += ((i * i) * 200000000);
 } return s;

Performance evaluation procedures applied to
TransformedMethod1 (). The results showed an improvement
of CPU usage which reduces the total number of the collected
samples to 1,690 as illustrated in Figure 8. This is an
improvement of 21% compared to the OriginalMethod1 ().

Figure 8: Total CPU usage of TransformedlMethod1

Furthermore, in Figure 9, the total memory allocated for the
TransformedMethod1() was 7,937 bytes which shows the
decrease of 0.15 % compared to the OriginalMethod1 (). It is
very slightly decrease but means a lot for the developer. In
Figure 10, the total execution time reported by instrumentation
profiling is 2,044 seconds. This means that
TransformedMethod1() takes less time than the
OriginalMethod1 () to be completed. Thus, it becomes light
code.

Aeshah A. Alsayyah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8043 – 8054

8051

Figure 9: Total memory allocation of TransformedlMethod1

Figure 10: Total execution time of TransformedlMethod1

Experiment 2: Constant Folding

 In this experiment, the piece of code is evaluated in which the
body of while loop handled some calculation as shown below:

public int OriginalMethod2()
 { int total = 0;
 int i = 0;
 int a = 2500000;
 while (i < 250000000)
 {
 int b = (500000000/a)-9;
 int c;
 c = b * 4;
 if (c > 10)
 { c = c - 10;
 }
 i++;
 total = c;
return total ;
}

Same evaluation procedure proposed on experiment 1 are
followed in this experiment. Figure 11 shows the part of code
that reported by CPU usage as peak point of OriginalMethod2 ()
execution. This means that the developer should modify these
highlighted parts.

Figure 11: Hot spot of OriginalMethod2

Figure 12, illustrates the overall percentage of CPU usage or
running time of code execution with total of 5,435 samples were
collected as per the sample profiling report.

Figure 12: CPU usage of OriginalMethod2

Figure 13, illustrates that OriginalMethod2 () executed with
total memory allocation of 7,949 bytes as per the memory
profiling report.

Figure 13: Memory allocation of OriginalMethod2

Aeshah A. Alsayyah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8043 – 8054

8052

Figure 14: Total execution time of OriginalMethod2

The OriginalMethod2() is completely run in 5.86 seconds as
illustrated in Figure 14, based on instrumentation profiling
report. Instead of computing the values at run time, the
developer manually calculated the expression and then constant
folding can be delivered directly as follow:

 public int TransformedMethod2()
 {
 int i = 0;
 int c = 0;
 while (i < 250000000)
 {
 c = 764 - 10;
 i++;
 }
 return c;
 }

A significant improvement is observed on Figure 15, as the line
of code in the TransformedMethod2() becomes less. This yield
that 1,782 total samples were collected which is less than
OriginalMethod2() by 67%.

Figure 15: Total CPU usage of TransformedlMethod2

Moreover, 7,937 bytes are the total memory allocated after the
modification which is slightly less than the OriginalMethod2()
by 0.15%. Figure 16, illustrates the memory profiling report for
TransformedMethod2().

Figure 16: Total memory allocation of TransformedlMethod2

Overall, the improvement can be observed in execution time.
TransformedMethod2() takes 1.507 seconds an improvement of
74% compared to OriginalMethod2() as showed in Figure 17.

 Figure 17: Total execution time of TransformedlMethod2

Note: CPU (Usage %) shows in memory allocation is different
from the one showed in CPU usage analyzer. The reason is that
the CPU usage analyzer shows the percentage of CPU time with
samples collected and spent in calling and the called functions
[24]. Since the proposed experiments are called in console
class.

class Program
 {
 static void Main(string[] args)
 {
 Class1 c1 = new Class1();
 c1.OriginalMethod1();
 Console.WriteLine("Press ‘Enter’ to start
analysis..");
 Console.ReadKey();
 }
 }

However, the CPU (Usage %) shows in memory allocation is
referred to the percentage of CPU time spent in the function
body only [22]. In addition, the actual reported values will be
different depending on the machine environment.

Aeshah A. Alsayyah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8043 – 8054

8053

3) Summary of Experiments Analysis

 The summary and the result obtained after implementing
proposed parameters/optimization techniques. Table 2, shows
comparison of total execution time of two experiments with
improvement of 18% and 74%, respectively which indicates
that the code becomes fast and takes less time in execution.

Table 2: CPU execution time improvement

 Original
code CPU
execution
time
(Seconds)

Trans.
code
execution
time
(Seconds)

Performance
improvement
(%)

Experiment 1 2.518 2.044 18
Experiment 2 5.86 1.507 74

Table 3, demonstrates the improvement of total memory
allocation. It slightly decrease because of the small fragment of
code. Hence, energy can be saved by reducing data movement.
This can be achieved by using appropriate methodology of data
structures, understanding and exploiting the underlying
memory hierarchy. Moreover, it can be achieved by designing
multi-threaded code that reduces data movement then the
memory allocation will be reduced [25].

Table 3: Memory performance improvement

 Original code
memory
allocation
(Bytes)

Trans.
code
memory
allocation
(Bytes)

Performance
improvement
(%)

Experiment 1 7,949 7,937 0.15

Experiment 2 7,949 7,937 0.15

 An improvement in CPU execution time and memory usage is
evidenced in the performance of codes using the proposed
parameters in SDLC. This can be observed clearly in Figure 18
and 19, respectively. Figure 18, shows the improvement on
CPU utilization. Despite the fact that, the differences are slight
but have impact in code execution. Memory allocation
decreases in both experiments as reflection of performance
optimization. Thus, the performance optimization will be more
evident across entire website/application developed with
G-SDLC.

6. CONCLUSION

Software has effect on cloud environment same as hardware
despite that it is indirect. Cloud architecture and its component
are not the only factors to be managed to achieve energy
efficiency environment; software running on cloud with taken

into account the software development life cycle will play
significant role to achieve this target. The developer with
advanced programming skills is in the first line of the process of
getting energy efficient software. Performance profiler tools
helps one to identify the hot spot/part of code that consumes the
resources and time of execution. The two experiments proposed
are clearly presenting the improvement in performance
optimization on local machine.

Figure 19: CPU execution time improvement

Figure 20: Memory performance improvement

 Software development improvement leads to reduce
power costs. Therefore, getting green cloud and saving money.
The latest processors have improved energy efficiency in
hardware side. In software side, developer needs to contribute
and follow appropriate parameters in implementation phase, as
small change to software engineering process can make a large
difference in regards to energy.

REFERENCES
1. A AlNuaim and S Ahmed, Fog computing: A novel

approach to provide security in cloud computing, Indian
Journal of Science and Technology, Vol. 11, no. 15, April
2018.

2. Saurabh Kumar Garg and Rajkumar Buyya. 2012. Green
cloud computing and environmental sustainability. In
Harnessing Green IT: Principles and Practices, San
Murugesan and G. R. Gangadharan. Wiley, UK, 315-340.

3. Nitin Singh Chauhan and Ashutosh Saxena, A Green
Software Development Life Cycle for Cloud
Computing, IT Professional. Vol.15, pp. 28-34, 2013.

Aeshah A. Alsayyah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 8043 – 8054

8054

4. Laghari, Asif Ali, Hui He, Imtiaz A. Halepoto, M.
Sulleman Memon, and Sajida Parveen. Analysis of
Quality of Experience Frameworks for Cloud
Computing. IJCSNS 17, no. 12 (2017): 228

5. M. Nageswara Prasadhu, Dr.M.Mehfooza, An Efficient
Hybrid Load Balancing Algorithm for Heterogeneous
Data Centers in Cloud Computing, International
Journal of Advanced Trends in Computer Science and
Engineering, 9(3), May – June 2020, 3078 – 3085.

6. Syed.Karimunnisa, Dr.Vijaya Sri Kompalli, Cloud
Computing: Review on Recent Research Progress and
Issues, International Journal of Advanced Trends in
Computer Science and Engineering, 8(2), March - April
2019, 216 – 223.

7. Mehiar Dabbagh, B. Hamdaoui, M. Guizani and Ammar
Raye, Toward Energy-Efficient Cloud Computing:
Prediction, Consolidation and Over commitment, IEEE
communications society. Vol.29, pp. 56-61, 2015.

8. Sara S. Mahmoud, Imtiaz Ahmad, A Green Model for
Sustainable Software Engineering, International
Journal of Software Engineering and Its Applications
Vol.7, pp. 55-74, 2013.

9. S. K. Sharma, P. K. Gupta, R. Malekian, Energy efficient
software development life cycle - An approach towards
smart computing, 2015 IEEE International Conference
on Computer Graphics, Vision and Information Security
(CGVIS), Bhubaneswar, 2015, pp. 1-5

10. Andrew J. Younge et al., Efficient Resource
Management for Cloud Computing Environments,
International Green Computing Conference, Chicago,
USA, 2010

11. H. Huang, A Sustainable Systems Development
Lifecycle, Pacific Asia Conference Information Systems
(PACIS 08), Stockton, USA, pp.1-12, 2008.

12. Bob Steigerwald and Abhishek Agrawal, Developing
Green Software [Online]. Available:
http://software.intel.com/en-us/articles/developing-green-
software.

13. Rico Mariani (2003, April 30). Garbage Collector Basics
and Performance Hints [Online]. Available:
https://msdn.microsoft.com/en-us/library/ms973837.aspx.

14. Dzmitry Kliazovich et al., Energy Consumption
Optimization in Cloud Data Centers, in Cloud Services,
Networking and Management, 1st ed, New Jersey, 2000,
pp 10-27.

15. Sathishkumar Udayanarayanan and Chaitali Chakrabarti,
Energy Efficient Code Generation for DSP56000
family, International Symposium Low Power Electronics
and Design, Rapallo, Italy, pp. 247-249, 2000.

16. Alfred V. Aho et al., The Structure of a Compiler, in
Compilers Principles, Techniques and Tools 2nd ed.
Boston, USA, pp.5-6, 2007.

17. Todd Alan Proebsting, Code Generation Techniques,
Ph.D. dissertation, Dept. Computer Science, University of
Wisconsin, Madison, USA, 1992.

18. Matthew Hertz and Emery D. Berger, Quantifying the
Performance of Garbage Collection vs. Explicit

Memory Management, San Diego, California, USA,Rep.
1-59593-031-0/05/0010, October 2005

19. Rudrik Upadhyay et al. (2017, September 7). A Practical
Approach to Optimize Code Implementation [Online].
https://www.einfochips.com/wp-content/uploads/resource
s/a-practical-approach-to-optimize-code-implementation

20. Michael E. Lee, Optimization of Computer Programs in
C, Ontek Corporation, Laguna Hills, USA, 1997.

21. Mike Jones et al. (2017, February 27). Profile application
performance in Visual Studio [Online].
https://docs.microsoft.com/en-us/visualstudio/profiling/be
ginners-guide-to-performance-profiling?view=vs-2017.

22. Theano Petersen et al. (2018, April 11). Analyze CPU
usage [Online]. Available:
https://docs.microsoft.com/en-us/visualstudio/profiling/cp
u-usage?view=vs-2017.

23. Genevieve Warren et al. (2018, February 1). Analyze
memory usage [Online]. Available:
https://docs.microsoft.com/en-us/visualstudio/profiling/an
alyze-memory-usage?view=vs-2017.

24. Mark McGee et al. (2017, February 27). Beginners guide
to CPU sampling [Online]. Available:
https://docs.microsoft.com/en-us/visualstudio/profiling/be
ginners-guide-to-cpu-sampling?view=vs-2017.

25. K. Eder and J. P. Gallagher, Energy-Aware Software
Engineering, in ICT-Energy Concepts for Energy
Efficiency and Sustainability, G. Fagas, L. Gammaitoni,
J. P. Gallagher, and D. J. Paul, Eds. Rijeka, Croatia:
IntechOpen, 2017.

