
Ismail MAMOUNI et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1952 – 1958

1952

ABSTRACT

The recognition of objects in digital images is a key problem
in the computer vision. It has received the attention of many
researchers in order to evaluate and improve the
performance of descriptors, especially that of the shape
descriptor.
 In this paper, we will consider the persistent homology as
an algebraic tool measuring the topological features of
shapes. To digital images, one can associate cubical
complexes instead of triangulation because it reduces
significantly the size of complexes. We implement this
algebraic characterization by an algorithm that represents
any digital image as bar codes in the form of finite union of
intervals. The benefits of this algorithm is not only to be the
shape descriptor, but also a shape comparator. Indeed, by
using the the Bottleneck distance of barcodes, the algorithm
allows us to answer how much close or far two shapes are.

Key words : Image analysis, topological data analysis,
persistent homology, cubical homology, digital images,
shape descriptor.

I. INTRODUCTION

 Actually, a huge amount of images is produced and
analyzed in different domains such as biology, industry,
astronomy, medicine, security, etc. This images contains
some interesting objects that have to be recognized,
classified and then identified. To represent an image or a
part of it and describe the pertinent information, we use the
features extracted there-from [1, 9].
 These extracted features are represented in different ways
(vector, signature, barcode, ...). This representation is called
a shape descriptor. The shape descriptors are a powerful tool
used in wide spectrum of computer vision and image
processing tasks such as object matching, classification,
recognition and identification.
 It is worth to point out that there exists a huge variety of
object recognition approaches, but the general concept
remains the same : An object recognition system uses
training data sets containing images with known and labeled
objects and extracts different types of information (color,
edges, shapes and so on) based on the chosen algorithm.

The first step of recognition system is to detect interest
locations (objects) in the images and describe them. Once
the descriptors are computed, they are compared to the
objects presented in an image to recognize and identify
them.

The shape descriptor rely on two types : The global features
and the local ones. In the global one, the image is
represented by one multidimensional feature vector,
describing the information in the whole image. In the other
hand, local features permit to detect interest regions in an
image and represent them as n vectors where each one
describes a certain feature, like color, texture, shape,
orientation, It is well know that local features are very
successful, powerful and faster than global ones. This is due
to the lack of accuracy for global features which generally
cannot distinguish foreground from background of an
image.
 However, recent mathematical developments are shedding
new light on such traditional ideas and techniques from the
relatively new discipline of Topological Data Analysis
(TDA). By using homology, a tool in algebraic topology,
one can measure several features of the shape including the
numbers of component, holes, and voids (higher-
dimensional versions of holes). By using persistent
homology, one can then represent the lifetime of such
features using a finite collection of intervals known as a
barcodes. The barcode, considered here as a shape
descriptor, will help us detecting an object in a certain
image and identify it.
 We develop here a shape descriptor, based in persistent
homology ideas. It is an algorithm, of input is a digital
image, and that issues as signature some barecodes. The
strength of our algorithm is that it combines the two classic
approaches mentioned above : the global one by involving
all the pixels, and the local one by associating to each pixel
8 new neighbors thanks to the Low Star Process (LSP) given
in Algorithm 2.
 LSP is based on two priority queues, the first one
associates to each pixel 8 neighbors and assign each new
neighbors some values following a well stated order that will
be discussed in Algorithm 2. The second queue builds from
this new values a filtration that enable us to compute the

From digital images to barcodes

Ismail MAMOUNI1, Hajar CHAWQI2
1CRMEF Rabat, Morocco, mamouni.myismail@gmail.com

2ENSIAS Rabat, Morocco, h.chawqi@gmail.com

 ISSN 2278-3091
Volume 9 No.2, March - April 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse161922020.pdf

https://doi.org/10.30534/ijatcse/2020/161922020

Ismail MAMOUNI et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1952 – 1958

1953

persistent homology of our data. Here, the specialist will
well recognize the catching similarity between LSP, and the
folkloric Local Binary Patterns (LBP, see [HPS]) which
encodes the ordering relationship by comparing neighboring
pixels with the center pixel, that is, it creates an order based
feature for each pixel by comparing each pixel’s intensity
value with that of its pixels. The added value of our
algorithm based on LSP is that it still encoding the ordering
relationship but by adding new neighboring ”pixels” and
form a new matrix. All the data information are stored in
the new coordinates, and one can easily come back to the
initial matrix if necessary. The algorithm is smooth and
does not lose any information.
 Moreover, we will define a metric between the inputs
(i.e., between the digital images) and another one between
the outputs (i.e., between their associated barcodes). Thanks
to Theorem 1, we can claim that our algorithm is stable (i.e.,
two similar digital images will generate two similar
barcodes). Thus, we can conclude that our algorithm is not
only a performing and smooth shape descriptor, but also a
stable shape comparator.
 The rest of the paper is organized as follows. Section 2
covers the relevant algebraic topology background material,
like homotopy, simplicial homology or persistent homology.
Section 3 presents our algorithm for building barcodes from
a digital image. In section 4 we valid our algorithm is some
well known images databases. It also contains a discussion
of the computational complexity of our approach.

2. ALGEBRAIC TOPOLOGY PRELIMINARIES

 In this section, we will provide the necessary algebraic
topology background that will be used in the rest of the
paper. It is an accessible introduction to the relevant
notions, but it will be somewhat brief. The interested reader
is referred to [7] for further details in general algebraic
topology, to [5] for simplicial homology and to [3] for
persistent homology.

2.1 Homotopy
 Homotopy is an equivalence relation, that deforms
continuously a shape X, viewed as a topological space, to
another more simple shape Y . The two shape are said to be
the same homotopy type. Indeed : Two continuous maps
f0,f1:X →Y are said to be homotopic if there exists a
homotopy deforming continuously f0 to f1. That is a continuous
family (ft)0≤t.1 of continuous maps ft:X→Y, starting from f0

and arriving to f1. Then, we write f0~f1.
 Homotopy Equivalence. X and Y are said to be
homotopic or of the same homotopy type, if there exists
some continuous maps f0 : X → Y and g : Y → X such that
g ◦ f ~idX and f ◦ g ~ idY . Then we write X~Y.

2.2 Simplicial homology
 Holes of dimension n, are all shapes that bound a variety
of dimension n + 1. For example, a circle, an empty triangle
or an empty square are holes of dimension 1. One of the
strengths of the homology theory is to count, thanks to the
Betti numbers, how many holes a given shape contains.
Homology can therefore be viewed as a descriptor of the
topological structure of this given shape.
 Simplex. Let (a0,..,ap) be some geometrically independent
points in IRn . The convex hull of these points, denoted here
[a0,...,ap] is called a p-simplex. In other words,
[a0,...,ap] := {σ =Σ λi a i , with 0 ≤ λi ≤ 1, Σ λi = 1}. Faces of
[a0,...,ap] are all the (p-1)-simplicies [a0,..âi ..,ap] where âi
means omitted.

Figure 1: Simplicies with 0,1,2 dimensions

Thus one can define a simplicial complex, to be any
collection K of simplicies in IRn such that:
- Any face of a simplex from K is in K,
- Any non empty intersection of any two simplicies from K
is a common face of the both two simplicies.

Figure 2: Example of simplicial and not simplicial complexes

Let K a given simplicial complex, a p-chain of K is any
formal and finite sum σ =Σ (-1)i ni σi , where ni ∈ Z and σi a
p-simplex. On the Z-module of such chains, denoted Cp (K),
we define the boundary operator ∂p : Cp (K) → Cp-1 (K)
to be formal sum ∂p σ =Σ (-1)i ni σi . It is easy to prove that
∂ p−1 ◦ ∂ p = 0. Thus, we obtain a chain complex

0 → C p (K) → C p−1 (K) → ... → C 0 (K) → 0,
with Im∂ p ⊂ ker ∂ p−1 at each connection. Elements of Im∂p
are called boundaries, those of ker ∂ p−1 are called cycles.
 Homology groups. The quotient group

Hp (K) = ker∂ p−1 / Im∂ p
is the p-th simplicial homology group of K, and its rank,
denoted βp (K), is the k-th Betti number of K. Since
homology is invariant up to homotopy, then in the case of
simplicial homology, one can replace any shape by a
simplicial complex, that is a triangulation of the same type.
This is feasible for applications in real life situations such as
in image analysis process. It is an algebraic tool for
measuring topological features of shapes and functions. It

Ismail MAMOUNI et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1952 – 1958

1954

has widespread applications in computer vision and image
analysis.

Figure 3: From a topological space to a simplicial complex

2.3 Persistent homology
 This section remains the theory of persistent homology
and its concepts. Persistent homology, as a topological data
analysis tool, is a young and quickly-developing research
area at the intersection of mathematics, statistics, and
computer science. It seeks to use topology to discern
structure in a complex data by studying its shape. Topology
takes on two main tasks : the measurement of shape and the
representation of shape. Both tasks are meaningful in the
context of large, complex, and high dimensional data-sets.
They permit to measure shape related properties within the
data, such as the presence of holes. Given a point cloud, we
want to use homology to describe data, but our data is a
point cloud and homology operates on simplicial complexes.
 For any real number ε > 0, the first step is to associate to
any points cloud X = (xi), the Čech complex C(ε) whose
p-simplicies are the [x 0 , . . . , x p], whenever the balls

B(x i,ε/2) have a common point.
Figure 4: An example of a points cloud (left) and the cor-

responding Česh complex

While ε is growing, other Čech complexes will appear, and
this yields to a filtration of complexes

 = K 0 ⊆ K 1 ⊆ ⊆ · · · K m = K.

Figure 5: Example of filtered Česh complex

The associated homology of that kind of chain of complexes,
is what we call the persistent homology of the initial cloud
of points X = (ai)i . The key idea of persistent homology is to
look for features that persist for some range
of parameter values. Typically a feature, such as a hole, will
initially not be observed, then will appear, and after a range
of values of the parameter it will disappear again. The
resulting persistent Betti numbers are usually given as
barcodes, and represent how the homology changes through
the filtration.

Figure 6: From points cloud to barcodes

The beginning of a barcode can be thought of as a birth time
of a persistent homology class and its end as the death time.
The significance of a homological feature is given by the
length of the corresponding barcode. It is a way to encode
the persistent homology of a data set in the form of a
parametric version of a Betti number and represents each
persistent generator with a horizontal line beginning at the
first filtration level where it appears, and ending at the
filtration level where it disappears. Persistence diagram is
another equivalent way to visualize the evolution of the
topological features in the filtration, by summarizing the
filtration as two dimensional point sets with multiplicities.
A point (x, y) with multiplicity m represents m features that
all appear for the first time at scale x and disappear at scale
y. Features appear before they disappear, So the points lie
above the diagonal x = y. The difference y − x is called the
persistent of a feature. A class of homology that appears at
times i and disappears in another value j will be represented
by the point of coordinates (i, j). The persistent of a class
will be the real value of j − i, this diagram is called
persistent diagram because it will encode the persistent of
the homology groups of the simplex. An interesting case of
persistent diagrams is that associated to R-valued functions f
: X → R, where the filtration is given by the sub level sets X
ε := f −1 (−∞, ε].

Ismail MAMOUNI et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1952 – 1958

1955

Figure 7: Example of persistent diagram

One way to compare how two persistent diagrams are closed
or not, is the Bottleneck distance used to calculate the
distance between two persistence diagrams D1 and D2 by
setting dB (D1 , D2) := inf μ supx∈D1 || x − μ(x) || ∞ , where μ
: D1 → D2 range all the bijections from D1 to D2 .

Figure 8: Example of Bottleneck distance

Stability theorem. Let f, g : X → IR two tame functions,
then dB (Dgm(f), Dgm(g)) ≤ || f − g|| ∞ .
The scientific recognition that persistent homology enjoys
now is due to this fundamental result which states that a
small perturbation in the input filtration leads to a small
perturbation of its persistence diagram.

3. THE ALGORITHM

 Our algorithm aims to represent the objects of an image
(classes) as barcodes to get a shape signature (descriptor).
This descriptor will be an efficient tool to recognize an
object and identify it, this will be satisfied when we will
build a knowledge database that contains the objects of our
interest with their barcodes and their label (identification).
The output of the algorithm will be compared to all the
objects present in the database until we find the most similar
barcode.
 To the best of our knowledge, the only algorithm that
encodes digital images into barcodes is that implemented in
[5]. The lack in this paper is not only that the its algorithm
compute just the spatiotemporal 0-barcode encoding lifetime
of connected components, but unfortunately the output 0-
barcode may not coincide with the one provided by the 0-
barcode encoding the 0-persistent homology. In [8], the

authors use Morse theory to implement an algorithm for
determining the Morse complex of a 2- or 3-dimensional
gray scale digital image, but they do not go further to the
crucial stage: that of drawing barcodes. In [10], the authors
present an efficient framework for computation of persistent
homology of cubical data in arbitrary dimensions. Based on
their ideas, we go further by issuing for each image a
barcodes. This enables us to compare how two images are by
calculating the Bottleneck distance of their respective
barcodes. Many figures used is this paper are copied from
this manuscript.
 For our purpose, we opt for cubical persistent homology
as an efficient application of persistent homology in
domains where the data is naturally given in a cubical form,
like the case of digital images. By avoiding triangulation of
the data, we significantly reduce the size of the complex.
The approach is to use n-cubes [0, 1] n instead of n-
simplicies, the remainder (like boundary operator or
boundary matrix) still roughly speaking the same.
Simplicial complex is now called cubical homology, its
persistent homology is called cubical persistent homology.
In this new context, the non-null pixels play the point cloud.

Figure 8: Cubical complex triangulation vs.
complex triangulations

The cubical complex is kindly built as follows: To any pixel
B(i, j) (considered as 0-cube and colored in yellow in Figure
9), we associate 8 neighbors (four 1-cubes colored in blue
and four 2-cubes colored in red).

Figure 9: From pixels to cubical complex

This representation of cubical complexes from images
permit us to have an idea about the relationship between
cells by reading their coordinates. For each pixel, we can
store the necessary information in 3x3 array. The
coordinates of any cell gives immediately its dimension :
 - it is an 0-cube when its coordinates are (even,even);
 - it is a 1-cube when its coordinates are (even,odd) or
(odd,even);
 - it is a 2-cube when its coordinates are (odd, odd).

Ismail MAMOUNI et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1952 – 1958

1956

The benefit is that we can track down the past coordinates of
any pixel by dividing by two the new ones. For purpose of
simplification, we implement our approach on gray scale
images (2D image array). The image is converted to a
matrix where each element (pixel) represent the intensity or
any other feature that we will precise after.

Figure 10: Cubical complex built over a gray-scale 2D im-
age with 4x4 pixels

Before building the cubical complex. The first idea is to
apply the function

f : B[i, j] → B[i, j] +(i + I . j)/(α . I . J)
where α equals the minimum non null difference between
all the values of the matrix, and I, J its length-width sizes.
Sometimes, when applying this function, the new values
may grow hugely. To avoid this ”bad” situation, we
normalize all the values by dividing it by their maximum

B[i, j] ←B[i, j] / max B[i, j]
The goal of changing the values of the matrix is to get
distinct values, and so get the ”best” filtration, by avoiding
any confusion that can be induced by two similar values. As
f is linear, the the effect of this perturbation can be removed
later by applying the inverse-map. In all the rest of this
paper, B := (B[i, j], i = 1..I, j = 1..J) denotes the initial
matrix that contains the pixels-values, while
C := (C[i, j], i = 1..2 . (I − 1), j = 1..2 . (J − 1)) denotes its
associated complex.

Figure 11: Persistent homology workflow in a Nutshell

3.1 Step 1 : Build the cubical complex.
Firstly, it is worth to point out, that if (i, j) are the
coordinates of a pixel in the original binary matrix, those in
the cubical complex should be (2i, 2j). This is another
strong point to count in favor of our algorithm; that to
switch smoothly between the initial and the final coordinates
by dividing or multiplying by 2. Thus we define a function
”neighbors”, whose aim is to associate to each pixel B[i, j]
its 8 neighbors C[2i + ε, 2j + ε’], where

∈ε,ε’ {−1,0,1}, with some excluded values, especially when
the pixel is on the border. For example, ε ‘= −1, whenever
the pixel locates in west border. Our function (see

Algorithm 1) take in account this technical but useful detail.

Input: A matrix and the position of an element
Output: Position of the neighbors of the element
for X − 1 < x1 < X + 2 do

for Y − 1 < y1 < Y + 2 do
if −1 < x < X

and −1 < y < Y
and (X! = x2||Y ! = y2)
and 0 < x1 < X
and 0 < y1 < X
then return(x1,y1)

end if
end for

end for
Algorithm 1: Function neighbors((x,y),X):(x1,y1)

Once the empty cubical complex is defined, which should be
a (2I−1)×(2J−1)-matrix, the values of a pixel in this cubical
complex should be the same than those in the original
matrix. The next algorithm respects this rule. To fill the
other values, we use the low-star rule, which say that any n-
cube and all its faces should have the same values. We
firstly start by the pixel of high value, and assign this value
to all its neighbors (see Algorithm 2).
We move on to the next one and assign the not yet assigned
neighbors and so on.

Input: Matrix filled with the pixels form
Output: Matrix representing the cubical complex
lp[],flag=-1
List L: elements of the matrix sorted in descending way
for i ← 0 to len(L) do

posM ax ← P ositionOf L[i]inB
Lneighbors ← neighbors(posM ax[0], posM ax[1], B)
Lp ← add(Lneighbors)
f lag ← f lag + 1
for k ← 0 to len(lp) do

for p ← 0 to len(lp[k]) do
if b[Lp[k][p][0], Lp[k][p][1]] == 0

then [Lp[k][p][0],Lp[k][p][1]]=neighbors[f lag]
end if

end for
end for

end for
Algorithm 2: Function BuildComplex(B)

Maybe some values in the cubical complex will be equals or
else extremely huge, in this case on can re-apply the
transformations

B[i, j] ← B[i, j] + (i+I.j) / (α.I.J)

B[i, j] ← B[i, j] / max B[i, j]

Ismail MAMOUNI et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1952 – 1958

1957

Figure 12: An example of a cubical complex computed from a
digital image

3.2 Step 2: Build the boundary matrix.
This is the crucial and important stage. The first step is to
build a filtration. We will follow this natural ordering :
 - K 0 := ;
 - K 1 := the 2-cube of high value and all its faces;
 - K 2 := the next 2-cube and all its faces;
 - Once all the 2-cubes are swept, we pass to the 1-cubes.
The boundary matrix should be a (N × N)-array, where N is
the number of all different values that appear in the cubical
complex. It should encode the evolution of the filtration here
above. Thus in the 0-th stage all values will be null. In the
first stage, we put boundary matrix(i,j)=1, once the j-th
cube is a neighbor of the i-th cube, where the filtration
indices are assigned from higher to lower

Input: Cubical matrix C (each cube has faces named Bj
Output: Boundary matrix
for each cube C i of K do

Column ←filtration index of C i
for each cube B j in boundary of C i do

row ← filtration index of B j
boundaryMatrix(row,column) ← 1

end for
end for

Algorithm 3: Function boundaryMatrix(Cubical complex C:
matrix)

Figure 13: An example of a boundary matrix computed from a
cubical complex.

3.3 Step 3: Reduce the boundary matrix
To get the reduced boundary matrix, we follow the [EH]
approach, where the Smith normal form of the boundary

matrix is used to record the face relationship between
simplicies of dimension p and p − 1. Let low(j) be the row
number of the lowest non-zero entry in column j, where we
set low(j) = 0 if the entire column is zero. A matrix is called
reduced when each row has at most one entry that is the
lowest 1 for a column. To reduce our boundary matrix, we
proceed from left to right by using only column additions
(see Algorithm 4).

Input: Boundary matrix
Output: Reduced boundary matrix
for j ← 1 to n do

while ∃j 0 < j with low(j 0) 6 = low(j) do
add column j 0 to column j

end while
end for

Algorithm 4: Smith reduction algorithm

4. CONCLUSION

Fast and robust feature extraction is crucial for many
computer vision applications. The performance of shape
descriptor or the efficiency of shape features is related to
some essential properties, for example the location, the
rotation and the scaling changing of the shape. Since our
algorithm is based on the the pixel coordinates, which it
never loses thanks to its ability to track it at any time in the
process, then such essential properties are not affect the
extracted features which still as robust as possible against
noise.
 The classical hurdle is that when we are in a real situation
with huge amount of data, not only, algorithms can not be
run on devices with limited computational capabilities but
also we lose a lot of information hidden in
details and they are not invariant to significant
transformations and sensitive to clutter and occlusion. That
is what create a growing need for local descriptors that even
if they are not faster in computing but more efficient, and
yet exhibiting good accuracy. Based on these features we get
the shape descriptor whose it is performance is judged from
the accuracy of the result and the computation time. Most of
the time either we have a great accuracy but very slow
computing time or the contrary. This because of the
complexity of the data which includes situations in which it
is noisy, high-dimensional, and/or incomplete. The use of
clustering techniques and other ideas from areas such as
computer science, machine learning, and uncertainty
quantification along with mathematical and statistical
models are often very useful for data analysis. One way to
perform our algorithm may be the distributed computation
of persistent homology (as stated in [BKR]). Once this done,
a direct application may be :

Ismail MAMOUNI et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1952 – 1958

1958

 - Consider an universal database of images;
 - Consider two almost similar images, produce their
codebare, compute their Bottleneck distance, which should
be roughly small;
 - Consider two images clearly very different, produce
their codebare

REFERENCES

1. Alvin S. Alon, Rufo I. Marasigan, Jr. , Jennalyn G.

Nicolas- Mindoro and Cherry D. Casuat. An Image
Processing Approach of Multiple Eggs’ Quality
Inspection. International Journal of Advanced Trends
in Computer Science and Engineering (IJATCSE), Vol.
8, No.6, pp. 2794–2799, November–December 2019.
https://doi.org/10.30534/ijatcse/2019/18862019

2. U. Bauer, M. Kerber, and J. Reininghaus. Distributed
Computation of Persistent Homology, in Proc. The
Sixteenth Workshop on Algorithm Engineering and
Experiments (ALENEX14), 2014, pp. 31-38.
https://doi.org/10.1137/1.9781611973198.4

3. H. Edelsbrunner, J. Harer. Persistent homology: a
survey. Contemporary mathematics, Vol. 453, pp. 257-
282, 2008.
https://doi.org/10.1090/conm/453/08802

4. R. Gonzalez-Diaz, M.-J. Jimenez, B. Medrano.
Spatiotemporal Barcodes for Image. Sequence
Analysis, Combinatorial Image Analysis, pp 61-70,
2015.
https://doi.org/10.1007/978-3-319-26145-4_5

5. A. Hatcher. Algebraic topology. Cambridge University
Press, 1993.

6. M. Heikkilä, M. Pietikäinen, C. Schmid, Description of
interest regions with local binary patterns, Pattern
Recognition, Vol. 42, pp. 425-436, 2009.
https://doi.org/10.1016/j.patcog.2008.08.014

7. J. R. Munkres. Elements of algebraic topology.
Persues Books Publishing, 1984.

8. V. Robins, A. P. Sheppard, P. J. Wood. Theory and
Algorithms for Constructing Discrete Morse
Complexes from Grayscale Digital Images. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, Vol. 33, pp. 1-14, 2011.
https://doi.org/10.1109/TPAMI.2011.95

9. Sumit Dhariwal and Sellappan Palaniappan. An
Efficient Approach for Semantic Image
Classification using Normalization Method.
International Journal of Advanced Trends in Computer
Science and Engineering (IJATCSE), Vol. 8, No.4, pp.
1268 –1274, July –August 2019.
https://doi.org/10.30534/ijatcse/2019/37842019

10. H. Wagner, C. Chen, E. Vucini. Efficient computation
of persistent homology for cubical data. Topological
Methods in Data Analysis and Visualization, pp. 91-
106, 2012.

