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ABSTRACT 
 
The recognition of objects in digital images is a key problem 
in the computer vision. It has received the attention of many 
researchers in order to evaluate and improve the 
performance of descriptors, especially that of the shape 
descriptor. 
 In this paper, we will consider the persistent homology as 
an algebraic tool measuring the topological features of 
shapes. To digital images, one can associate cubical 
complexes instead of triangulation because it reduces 
significantly the size of complexes. We implement this 
algebraic characterization by an algorithm that represents 
any digital image as bar codes in the form of finite union of 
intervals. The benefits of this algorithm is not only to be the 
shape descriptor, but also a shape comparator. Indeed, by 
using the the Bottleneck distance of barcodes, the algorithm 
allows us to answer how much close or far two shapes are. 
 
Key words : Image analysis, topological data analysis, 
persistent homology, cubical homology, digital images, 
shape descriptor. 
 
I. INTRODUCTION 
 
 Actually, a huge amount of images is produced and 
analyzed in different domains such as biology, industry, 
astronomy, medicine, security, etc. This images contains 
some interesting objects that have to be recognized, 
classified and then identified. To represent an image or a 
part of it and describe the pertinent information, we use the 
features extracted there-from [1, 9]. 
 These extracted features are represented in different ways 
(vector, signature, barcode, ...). This representation is called 
a shape descriptor. The shape descriptors are a powerful tool 
used in wide spectrum of computer vision and image 
processing tasks such as object matching, classification, 
recognition and identification. 
 It is worth to point out that there exists a huge variety of 
object recognition approaches, but the general concept 
remains the same : An object recognition system uses 
training data sets containing images with known and labeled  
objects and extracts different types of information (color, 
edges, shapes and so on) based on the chosen algorithm. 

 
The first step of recognition system is to detect interest 
locations (objects) in the images and describe them. Once 
the descriptors are computed, they are compared to the 
objects presented in an image to recognize and identify 
them. 
  
The shape descriptor rely on two types : The global features 
and the local ones. In the global one, the image is 
represented by one multidimensional feature vector, 
describing the information in the whole image. In the other 
hand, local features permit to detect interest regions in an 
image and represent them as n vectors where each one 
describes a certain feature, like color, texture, shape, 
orientation, .... It is well know that local features are very 
successful, powerful and faster than global ones. This is due 
to the lack of accuracy for global features which generally 
cannot distinguish foreground from background of an 
image. 
 However, recent mathematical developments are shedding 
new light on such traditional ideas and techniques from the 
relatively new discipline of Topological Data Analysis 
(TDA). By using homology, a tool in algebraic topology, 
one can measure several features of the shape including the 
numbers of component, holes, and voids (higher-
dimensional versions of holes). By using persistent 
homology, one can then represent the lifetime of such 
features using a finite collection of intervals known as a 
barcodes. The barcode, considered here as a shape 
descriptor, will help us detecting an object in a certain 
image and identify it. 
 We develop here a shape descriptor, based in persistent 
homology ideas. It is an algorithm, of input is a digital 
image, and that issues as signature some barecodes. The 
strength of our algorithm is that it combines the two classic 
approaches mentioned above : the global one by involving 
all the pixels, and the local one by associating to each pixel 
8 new neighbors thanks to the Low Star Process (LSP) given 
in Algorithm 2. 
 LSP is based on two priority queues, the first one 
associates to each pixel 8 neighbors and assign each new 
neighbors some values following a well stated order that will 
be discussed in Algorithm 2. The second queue builds from 
this new values a filtration that enable us to compute the 
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persistent homology of our data. Here, the specialist will 
well recognize the catching similarity between LSP, and the 
folkloric Local Binary Patterns (LBP, see [HPS]) which 
encodes the ordering relationship by comparing neighboring 
pixels with the center pixel, that is, it creates an order based 
feature for each pixel by comparing each pixel’s intensity 
value with that of its pixels. The added value of our 
algorithm based on LSP is that it still encoding the ordering 
relationship but by adding new neighboring ”pixels” and 
form a new matrix. All the data information are stored in 
the new coordinates, and one can easily come back to the 
initial matrix if necessary. The algorithm is smooth and 
does not lose any information. 
 Moreover, we will define a metric between the inputs 
(i.e., between the digital images) and another one between 
the outputs (i.e., between their associated barcodes). Thanks 
to Theorem 1, we can claim that our algorithm is stable (i.e., 
two similar digital images will generate two similar 
barcodes). Thus, we can conclude that our algorithm is not 
only a performing and smooth shape descriptor, but also a 
stable shape comparator. 
 The rest of the paper is organized as follows. Section 2 
covers the relevant algebraic topology background material, 
like homotopy, simplicial homology or persistent homology. 
Section 3 presents our algorithm for building barcodes from 
a digital image. In section 4 we valid our algorithm is some 
well known images databases. It also contains a discussion 
of the computational complexity of our approach. 
 
2. ALGEBRAIC TOPOLOGY PRELIMINARIES 
 
 In this section, we will provide the necessary algebraic 
topology background that will be used in the rest of the 
paper. It is an accessible introduction to the relevant 
notions, but it will be somewhat brief. The interested reader 
is referred to [7] for further details in general algebraic 
topology, to [5] for simplicial homology and to [3] for 
persistent homology.  
 

2.1 Homotopy 
 Homotopy is an equivalence relation, that deforms 
continuously a shape X, viewed as a topological space, to 
another more simple shape Y . The two shape are said to be 
the same homotopy type. Indeed : Two continuous maps 
f0,f1:X →Y are said to be homotopic if there exists a 
homotopy deforming continuously f0 to f1. That is a continuous 
family (ft)0≤t.1 of continuous maps ft:X→Y, starting from f0 

and arriving to f1. Then, we write f0~f1. 
 Homotopy Equivalence. X and Y are said to be 
homotopic or of the same homotopy type, if there exists 
some continuous maps f0 : X → Y and g : Y → X such that  
g ◦ f ~idX and f ◦ g ~ idY . Then we write X~Y. 
 

2.2 Simplicial homology 
 Holes of dimension n, are all shapes that bound a variety 
of dimension n + 1. For example, a circle, an empty triangle 
or an empty square are holes of dimension 1. One of the 
strengths of the homology theory is to count, thanks to the 
Betti numbers, how many holes a given shape contains. 
Homology can therefore be viewed as a descriptor of the 
topological structure of this given shape. 
 Simplex. Let (a0,..,ap) be some geometrically independent 
points in IRn . The convex hull of these points, denoted here 
[a0,...,ap] is called a p-simplex. In other words,   
[a0,...,ap]  := {σ =Σ λi a i , with 0 ≤ λi ≤ 1, Σ λi = 1}. Faces of 
[a0,...,ap] are all the (p-1)-simplicies  [a0,..âi ..,ap]  where âi 
means omitted.  

Figure 1: Simplicies with 0,1,2 dimensions 
 
Thus one can define a simplicial complex, to be any 
collection K of simplicies in IRn such that: 
- Any face of a simplex from K is in K, 
- Any non empty intersection of any two simplicies from K 
is a common face of the both two simplicies. 

Figure 2: Example of simplicial and not simplicial complexes 
 
Let K a given simplicial complex, a p-chain of K is any 
formal and finite sum σ =Σ (-1)i ni σi , where ni ∈ Z and σi a 
p-simplex. On the Z-module of such chains, denoted Cp (K), 
we define the boundary operator ∂p : Cp (K) → Cp-1 (K) 
to be formal sum ∂p σ =Σ (-1)i ni σi . It is easy to prove that 
∂ p−1 ◦ ∂ p = 0. Thus, we obtain a chain complex 

0 → C p (K) → C p−1 (K) → ... → C 0 (K) → 0,  
with Im∂ p ⊂ ker ∂ p−1 at each connection. Elements of Im∂p 
are called boundaries, those of ker ∂ p−1 are called cycles.  
 Homology groups. The quotient group  

Hp (K) = ker∂ p−1 / Im∂ p  
is the p-th simplicial homology group of K, and its rank, 
denoted βp (K), is the k-th Betti number of K. Since 
homology is invariant up to homotopy, then in the case of 
simplicial homology, one can replace any shape by a 
simplicial complex, that is a triangulation of the same type. 
This is feasible for applications in real life situations such as 
in image analysis process. It is an algebraic tool for 
measuring topological features of shapes and functions. It 
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has widespread applications in computer vision and image 
analysis. 

Figure 3: From a topological space to a simplicial complex 
 
2.3 Persistent homology 
 This section remains the theory of persistent homology 
and its concepts. Persistent homology, as a topological data 
analysis tool, is a young and quickly-developing research 
area at the intersection of mathematics, statistics, and 
computer science. It seeks to use topology to discern 
structure in a complex data by studying its shape. Topology 
takes on two main tasks : the measurement of shape and the 
representation of shape. Both tasks are meaningful in the 
context of large, complex, and high dimensional data-sets. 
They permit to measure shape related properties within the 
data, such as the presence of holes. Given a point cloud, we 
want to use homology to describe data, but our data is a 
point cloud and homology operates on simplicial complexes.  
 For any real number ε > 0, the first step is to associate to 
any points cloud X = (xi), the Čech complex C(ε) whose  
p-simplicies are the [x 0 , . . . , x p ], whenever the balls  

B(x i,ε/2) have a common point. 
Figure 4: An example of a points cloud (left) and the cor- 

responding Česh complex 
 
While ε is growing, other Čech complexes will appear, and 
this yields to a filtration of complexes 

 = K 0 ⊆ K 1 ⊆ ⊆ · · ·  K m = K. 
 

Figure 5: Example of filtered Česh complex 

The associated homology of that kind of chain of complexes, 
is what we call the persistent homology of the initial cloud 
of points X = (ai)i . The key idea of persistent homology is to 
look for features that persist for some range 
of parameter values. Typically a feature, such as a hole, will 
initially not be observed, then will appear, and after a range 
of values of the parameter it will disappear again. The 
resulting persistent Betti numbers are usually given as 
barcodes, and represent how the homology changes through 
the filtration. 

 
 
 

Figure 6: From points cloud to barcodes 

The beginning of a barcode can be thought of as a birth time 
of a persistent homology class and its end as the death time. 
The significance of a homological feature is given by the 
length of the corresponding barcode. It is a way to encode 
the persistent homology of a data set in the form of a 
parametric version of a Betti number and represents each 
persistent generator with a horizontal line beginning at the 
first filtration level where it appears, and ending at the 
filtration level where it disappears. Persistence diagram is 
another equivalent way to visualize the evolution of the 
topological features in the filtration, by summarizing the 
filtration as two dimensional point sets with multiplicities. 
A point (x, y) with multiplicity m represents m features that 
all appear for the first time at scale x and disappear at scale 
y. Features appear before they disappear, So the points lie 
above the diagonal x = y. The difference y − x is called the 
persistent of a feature. A class of homology that appears at 
times i and disappears in another value j will be represented 
by the point of coordinates (i, j). The persistent of a class 
will be the real value of j − i, this diagram is called 
persistent diagram because it will encode the persistent of 
the homology groups of the simplex. An interesting case of 
persistent diagrams is that associated to R-valued functions f 
: X → R, where the filtration is given by the sub level sets X 
ε := f −1 (−∞, ε]. 



Ismail MAMOUNI et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1952  – 1958 

1955 
 

 

Figure 7: Example of persistent diagram 

One way to compare how two persistent diagrams are closed 
or not, is the Bottleneck distance used to calculate the 
distance between two persistence diagrams D1 and D2 by 
setting dB (D1 , D2 ) := inf μ supx∈D1 || x − μ(x) || ∞ , where  μ 
: D1 → D2 range all the bijections from D1 to D2 . 
 
 

Figure 8: Example of  Bottleneck distance 
 
Stability theorem. Let f, g : X → IR two tame functions, 
then  dB (Dgm(f ), Dgm(g)) ≤ || f − g|| ∞ . 
The scientific recognition that persistent homology enjoys 
now is due to this fundamental result which states that a 
small perturbation in the input filtration leads to a small 
perturbation of its persistence diagram. 
 
3. THE ALGORITHM 
 
 Our algorithm aims to represent the objects of an image 
(classes) as barcodes to get a shape signature (descriptor). 
This descriptor will be an efficient tool to recognize an 
object and identify it, this will be satisfied when we will 
build a knowledge database that contains the objects of our 
interest with their barcodes and their label (identification). 
The output of the algorithm will be compared to all the 
objects present in the database until we find the most similar 
barcode. 
 To the best of our knowledge, the only algorithm that 
encodes digital images into barcodes is that implemented in 
[5]. The lack in this paper is not only that the its algorithm 
compute just the spatiotemporal 0-barcode encoding lifetime 
of connected components, but unfortunately the output 0-
barcode may not coincide with the one provided by the 0-
barcode encoding the 0-persistent homology. In [8], the 

authors use Morse theory to implement an algorithm for 
determining the Morse complex of a 2- or 3-dimensional 
gray scale digital image, but they do not go further to the 
crucial stage: that of drawing barcodes. In [10], the authors 
present an efficient framework for computation of persistent 
homology of cubical data in arbitrary dimensions. Based on 
their ideas, we go further by issuing for each image a 
barcodes. This enables us to compare how two images are by 
calculating the Bottleneck distance of their respective 
barcodes. Many figures used is this paper are copied from 
this manuscript. 
 For our purpose, we opt for cubical persistent homology 
as an efficient application of persistent homology in 
domains where the data is naturally given in a cubical form, 
like the case of digital images. By avoiding triangulation of 
the data, we significantly reduce the size of the complex. 
The approach is to use n-cubes [0, 1] n instead of n-
simplicies, the remainder (like boundary operator or 
boundary matrix) still roughly speaking the same. 
Simplicial complex is now called cubical homology, its 
persistent homology is called cubical persistent homology. 
In this new context, the non-null pixels play the point cloud. 

Figure 8: Cubical complex triangulation vs. 
complex triangulations 

The cubical complex is kindly built as follows: To any pixel 
B(i, j) (considered as 0-cube and colored in yellow in Figure 
9), we associate 8 neighbors (four 1-cubes colored in blue 
and four 2-cubes colored in red). 

 

 

 

 

 

 
Figure 9: From pixels to cubical complex  

This representation of cubical complexes from images 
permit us to have an idea about the relationship between 
cells by reading their coordinates. For each pixel, we can 
store the necessary information in 3x3 array. The 
coordinates of any cell gives immediately its dimension : 
 - it is an 0-cube when its coordinates are (even,even); 
 - it is a 1-cube when its coordinates are (even,odd) or 
(odd,even); 
  - it is a 2-cube when its coordinates are (odd, odd). 
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The benefit is that we can track down the past coordinates of 
any pixel by dividing by two the new ones. For purpose of  
simplification, we implement our approach on gray scale 
images (2D image array). The image is converted to a 
matrix where each element (pixel) represent the intensity or 
any other feature that we will precise after.  

Figure 10: Cubical complex built over a gray-scale 2D im- 
age with 4x4 pixels 

 
Before building the cubical complex. The first idea is to 
apply the function 

f : B[i, j] → B[i, j] +(i + I . j)/(α . I . J) 
where α equals the minimum non null difference between 
all the values of the matrix, and I, J its length-width sizes. 
Sometimes, when applying this function, the new values 
may grow hugely. To avoid this ”bad” situation, we 
normalize all the values by dividing it by their maximum 

B[i, j] ←B[i, j] / max B[i, j] 
The goal of changing the values of the matrix is to get 
distinct values, and so get the ”best” filtration, by avoiding 
any confusion that can be induced by two similar values. As 
f is linear, the the effect of this perturbation can be removed 
later by applying the inverse-map. In all the rest of this 
paper, B := (B[i, j], i = 1..I, j = 1..J) denotes the initial 
matrix that contains the pixels-values, while  
C := (C[i, j], i = 1..2 . (I − 1), j = 1..2 . (J − 1) ) denotes its 
associated complex. 
 

Figure 11: Persistent homology workflow in a Nutshell 

3.1 Step 1 : Build the cubical complex. 
Firstly, it is worth to point out, that if (i, j) are the 
coordinates of a pixel in the original binary matrix, those in 
the cubical complex should be (2i, 2j). This is another 
strong point to count in favor of our algorithm; that to 
switch smoothly between the initial and the final coordinates 
by dividing or multiplying by 2. Thus we define a function 
”neighbors”, whose aim is to associate to each pixel B[i, j] 
its 8 neighbors C[2i + ε, 2j + ε’ ], where           

∈ε,ε’ {−1,0,1}, with some excluded values, especially when 
the pixel is on the border. For example, ε ‘= −1, whenever 
the pixel locates in west border. Our function (see 

Algorithm 1) take in account this technical but useful detail. 
 

Input: A matrix and the position of an element 
Output: Position of the neighbors of the element 
for X − 1 < x1 < X + 2 do 

for Y − 1 < y1 < Y + 2 do 
if −1 < x < X  

and −1 < y < Y  
and (X! = x2||Y ! = y2)  
and 0 < x1 < X  
and 0 < y1 < X  
then return(x1,y1) 

end if 
end for 

end for 
Algorithm 1: Function neighbors((x,y),X):(x1,y1) 

 
Once the empty cubical complex is defined, which should be 
a (2I−1)×(2J−1)-matrix, the values of a pixel in this cubical 
complex should be the same than those in the original 
matrix. The next algorithm respects this rule. To fill the 
other values, we use the low-star rule, which say that any n-
cube and all its faces should have the same values. We 
firstly start by the pixel of high value, and assign this value 
to all its neighbors (see Algorithm 2). 
We move on to the next one and assign the not yet assigned 
neighbors and so on. 

 
Input: Matrix filled with the pixels form  
Output: Matrix representing the cubical complex 
lp[],flag=-1 
List L: elements of the matrix sorted in descending way 
for i ← 0 to len(L) do 

posM ax ← P ositionOf L[i]inB 
Lneighbors ← neighbors(posM ax[0], posM ax[1], B) 
Lp ← add(Lneighbors) 
f lag ← f lag + 1 
for k ← 0 to len(lp) do 

for p ← 0 to len(lp[k]) do 
if b[Lp[k][p][0], Lp[k][p][1]] == 0  

then [Lp[k][p][0],Lp[k][p][1]]=neighbors[f lag] 
end if 

end for 
end for 

end for 
Algorithm 2: Function BuildComplex(B) 

 
Maybe some values in the cubical complex will be equals or 
else extremely huge, in this case on can re-apply the 
transformations 

 
B[i, j] ← B[i, j] + (i+I.j) / (α.I.J) 

B[i, j] ← B[i, j] / max B[i, j] 
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Figure 12: An example of a cubical complex computed from a 
digital image 

3.2 Step 2: Build the boundary matrix. 
This is the crucial and important stage. The first step is to 
build a filtration. We will follow this natural ordering : 
 - K 0 := ; 
 - K 1 := the 2-cube of high value and all its faces; 
 - K 2 := the next 2-cube and all its faces; 
 - Once all the 2-cubes are swept, we pass to the 1-cubes. 
The boundary matrix should be a (N × N)-array, where N is 
the number of all different values that appear in the cubical 
complex. It should encode the evolution of the filtration here 
above. Thus in the 0-th stage all values will be null. In the 
first stage, we put boundary matrix(i,j)=1, once the j-th 
cube is a neighbor of the i-th cube, where the filtration 
indices are assigned from higher to lower 

 
Input: Cubical matrix C (each cube has faces named Bj 
Output: Boundary matrix 
for each cube C i of K do 

Column ←filtration index of C i 
for each cube B j in boundary of C i do 

row ← filtration index of B j 
boundaryMatrix(row,column) ← 1 

end for 
end for 

Algorithm 3: Function boundaryMatrix(Cubical complex C: 
matrix) 

 

Figure 13: An example of a boundary matrix computed from a 
cubical complex. 

3.3 Step 3: Reduce the boundary matrix 
To get the reduced boundary matrix, we follow the [EH] 
approach, where the Smith normal form of the boundary 

matrix is used to record the face relationship between 
simplicies of dimension p and p − 1. Let low(j) be the row 
number of the lowest non-zero entry in column j, where we 
set low(j) = 0 if the entire column is zero. A matrix is called 
reduced when each row has at most one entry that is the 
lowest 1 for a column. To reduce our boundary matrix, we 
proceed from left to right by using only column additions 
(see Algorithm 4). 
 
Input: Boundary matrix 
Output: Reduced boundary matrix 
for j ← 1 to n do 

while ∃j 0 < j with low(j 0 ) 6 = low(j) do 
add column j 0 to column j 

end while 
end for 

Algorithm 4:  Smith  reduction algorithm 
 
4.  CONCLUSION 
 
Fast and robust feature extraction is crucial for many 
computer vision applications. The performance of shape 
descriptor or the efficiency of shape features is related to 
some essential properties, for example the location, the 
rotation and the scaling changing of the shape. Since our 
algorithm is based on the the pixel coordinates, which it 
never loses thanks to its ability to track it at any time in the 
process, then such essential properties are not affect the 
extracted features which still as robust as possible against 
noise.  
 The classical hurdle is that when we are in a real situation 
with huge amount of data, not only, algorithms can not be 
run on devices with limited computational capabilities but 
also we lose a lot of information hidden in 
details and they are not invariant to significant 
transformations and sensitive to clutter and occlusion. That 
is what create a growing need for local descriptors that even 
if they are not faster in computing but more efficient, and 
yet exhibiting good accuracy. Based on these features we get 
the shape descriptor whose it is performance is judged from 
the accuracy of the result and the computation time. Most of 
the time either we have a great accuracy but very slow 
computing time or the contrary. This because of the 
complexity of the data which includes situations in which it 
is noisy, high-dimensional, and/or incomplete. The use of 
clustering techniques and other ideas from areas such as 
computer science, machine learning, and uncertainty 
quantification along with mathematical and statistical 
models are often very useful for data analysis. One way to 
perform our algorithm may be the distributed computation 
of persistent homology (as stated in [BKR]). Once this done, 
a direct application may be : 
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 -  Consider an universal database of images; 
 - Consider two almost similar images, produce their 
codebare, compute their Bottleneck distance, which should 
be roughly small; 
 - Consider two images clearly very different, produce 
their codebare 
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