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ABSTRACT 

ABSTRACT 

 

The aim of this study is to develop a flood prediction model 

by analyzing the real-time flood parameters for Pengkalan 

Rama, Melaka river hereafter known as Sungai Melaka using 

the Box-Jenkins method. Hourly water levels are predicted to 

alleviate flood related problems caused by the overflow of 

Sungai Melaka.. The time series from 7 January 2020 12.00 

am until 15 January 2020 8.00 am was used to check the 

stationarity by using the Augmented Dickey-Fuller (ADF) 

and differencing method to make a non-stationary time series 

stationary. The main methods used for model identification 

with autocorrelation (ACF) function and partial 

autocorrelation function (PACF) are visual observation of the 

series. The best ARIMA model was identified by the 

parameter Akaike Information Information Criterion (AIC) 

and the Bayesian Information Criterion (BIC). The best 

ARIMA model for the Pengkalan Rama was ARIMA (2, 1, 2) 

with the AIC value 1297.5 and BIC value 1304.6. The time 

series had lead forecast up to 8 hours generated by using the 

ARIMA (2, 1, 2) model. The accuracy of the model was 

checked by comparing the original series and forecast series. 

The result of this research indicated that the ARIMA model is 

adequate for Sungai Melaka. In conclusion, ARIMA model is 

an adequate short term forecast of water level with the lead 

forecast of up to 8 hours. Hence, it is indubitable that the 

ARIMA model is suitable for river flood. 
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1. INTRODUCTION 

 

Flood is known to be world natural disaster that happen 

without prior warning, hence cause severe damage. They 

damage houses, crops, vehicles, schools, and everything that 

blocks their path. These include people as well as animal that  

 

are trapped in rushing waters, thus disabling them from escape 

before rescue efforts are made. While floods are unusual 

occurrence, they are now considered a life threat for 

humanity. 

Floods are a common and temporary condition for partial or 

full dryland inland. Tidal water floods flow from any water 

source due to unusual and rapid water accumulation[1]. Three 

forms of flood disasters that occur in Malaysia, include 

monsoon, mud, and flash flood. Eventually, monsoon floods 

can be represented as flooding due to wind, which produces a 

lot of rain. Many areas in Malaysia are generally affected by 

the monsoon flood, such in Johor, Melaka, Pahang, Kelantan, 

Terengganu, Sabah, and Sarawak[2]. Second, mud flood 

occurs when the mud flows as rainwater, hence causing the 

mud to be filled by water .In a situation like this there is 

shortage of trees to strengthen the soil, such an incident 

happen in Cameron Highlands in 2014[3]. In short, flash 

floods are sudden floods that are caused by heavy rains that 

occurr quickly in a short period of time. Flash floods happen 

as the drainage network deteriorates in urban environments. 

When there is heavy rain, the drainage fails to discharge the 

water quickly and causes the water to overflow.  Flash floods 

usually occur in urban areas such as in Selangor[4]. Flood 

able to devastate everything along its path. There were many 

ways used to prevent and monitor the flood like in the study 

[5] used floodgate to avoid the flood, while review [6] used a 

camera to monitor the flood. Unfortunately, it was difficult to 

avoid the flood. Thus it was essential to predict the incoming 

flood to prevent and get ready for it. 

 

Flood prediction is one of the ways to mitigate flood risks and 

damage. Early flood predictions will warn people in 

flood-prone areas to evacuate themselves and their properties 

before the flood arrives. It will significantly minimize flood 

damage, and loss of human life, in particular, the approval for 

the implementation of the flood prediction program was 

obtained from the Malaysia Cabinet in 2001[7]. 

Flood forecasting has become the subject of researchers 
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around the world. The worst flood impacts have resulted in 

the implement of flood forecasting techniques. Various flood 

forecasts have been studied by researchers such as machine 

learning[8], SARIMA[9], NARX [10], and ARIMA[11].  

With due consideration on the implementation of real-time 

series into the mathematical model structure, this paper 

discusses on ARIMA as the method used in flood forecasting. 

Many pat studies have used ARIMA for the prediction of 

floods. In case [12], the ARIMA model was used for the 

development of a flood forecasting system at the Segamat 

River. This scenario is similar to [7], that has use the ARIMA 

model for flood prediction at the Karkheh river basin. 

Furthermore, in [13], [14], the ARIMA method was used for 

traffic flow prediction. Besides, ARIMA has laso been found 

to be suitable for short-term forecasting and flash floods, as 

shown in study [15] that forecasted flash flood a day ahead. 

This is supported by study [16] that has used the ARIMA 

model for short-term forecasting at the  Yangtze River. 

The aim of this study is to develop a flood prediction model 

by analyzing the real-time flood parameters for Pengkalan 

Rama, Melaka river hereafter known as Sungai Melaka using 

the Box-Jenkins method. Hourly water levels are predicted to 

alleviate flood related problems caused by the overflow of 

Sungai Melaka. This study was carried out using Matlab as 

the software tool for ARIMA modelling. The remaining 

section presents an approach to the development of the water 

level series. The ARIMA theories are discussed briefly in 

section 2. The method for designing the ARIMA model is 

discussed in Section 3, followed by section 4 that discusses 

the forecasted results. Finally, section 5 provides a summary 

of the conclusion. 

 

2. LITERATURE REVIEW 

2.1 Study Area 

The Sungai Melaka River or the Melaka River is located in 

Melaka, a historical landmark in western Malaysia. The total 

area of Melaka is 1720 KM2 with 0.93 million people in 

2019[17]. Figure 1 shows the flow diagram of Sungai Melaka. 

Melaka’s geographical topography is usually flat to undulate 

with vast coastal plains. Hills of the Titiwangsa, the largest 

mountain range from South Thailand to Northen Johor, to the 

south of Gunung Ledang, surround the tapered edge. 

Figure 1: Map of Sungai Melaka and IFOS Location 

 

In terms of the surroundings, the relatively urbanised nature of 

the country with population concentrations in Melaka City, 

the immediate hinterland has long since lost a large number of 

natural forests. It is currently one of the countries in which 

natural forest density is slightly higher than 3 per cent. Water 

shortages is one of the main problems in the state due to low 

forest density. Sungai Melaka now is clean enough to support 

boating and other water sports and is a key tourist 

attraction[18]. 

 

2.2 ARIMA Model 

The ARIMA model is well known as the Box- Jenkins method 

developed by Box and Jenkins. ARIMA model can be applied 

to a class of time-domain models commonly used for time 

series fitting and forecasting with a temporal correlation. 

ARIMA model incorporates d difference into the ARMA 

model and is designed for stationary time series [19].  

The ARIMA was implemented in the various fields for the 

forecast[20], e.g., monthly rainfall [21][11], streamflow[22], 

and water level[16]. The study [13] used an ARIMA model in 

the forecasting of real-time road traffic data prediction. 

Three components encompassing of the general term for 

ARIMA (p, d, q) are used in ARIMA modelling. These three 

components are autoregressive (AR), integrated 

(Differencing), and moving average (MA) that are used in the 

respective order of p, d and q. Differencing is a function that 

converts the non-stationary series into a stationary series 

while the AR and MA terms are determined through the 

temporal correlation of time series[23], [24]. 

The four phases of ARIMA modelling include model 

identification, parameter estimation, diagnostic checking and 

prediction [25]. ARIMA is distinct from others. It has the 

potential to recognise complex trends in temporary datasets 

and is thus widely used for short-term predictions [16]. Study 

in [26] shows that the efficiency of ARIMA in predicting 

either a linear or a non-linear series of intervals is satisfying. It 

is also a good option for predicting inter-valued time series 

 

2.3 Augmented Dickey-Fuller Test 

Augmented Dicky-Fuller test (ADF) is used to check the null 

hypothesis that a unit root is present in the time series[27]. 

The function of this test is to check for the seasonal variation, 

variance and trend[28]. The alternate hypothesis (H0) in ADF 

indicate that time series is trend-stationarity. Therefore, the 

null hypothesis (H1) in ADF indicates that the series is 

non-stationary. The significance level used for the P-value is 

5% or 0.05.  Therefore, if the series is non-stationary, 

differencing is needed to convert the non-stationary into 

stationary series. Hence, no differencing is needed if the series 

is stationary and the series can be modelled using the ARMA 

model[11]. 

The ADF statistics are a negative number used in the analysis. 

The more negative the results, the greater will be the refusal of 

the null hypothesis that at some degree of confidence there is a 

unit root [29]. 
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2.4 Ljung-Box Test  

The Ljung-Box test is used to check the residual that is 

whether it is in a random sequence of numbers. The Ljung 

-Box test is a test based on the null hypothesis, H0: The model 

does not exhibit a lack of fit, against the alternate hypothesis 

H1: The model exhibits a lack of fit[30].  

To classify the presence of any structure in the observed 

sequence, the model with a significant value of less than 5 per 

cent or 0.05 for P was considered. Hence, the model was not 

accounted for. Therefore, if the model has a significant P 

value, it shows that the model exhibit lack of fit. The residual 

of a model with P value more than 0.05 is indicative of white 

noise and is considered to be an adequate model[19].  

 

2.5 AIC AND BIC 

The Akaike Information Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC) [30] are standards for 

evaluating the accuracy and goodness of statistical model 

fitting and efficient methods for assessing the p and q orders 

[32]. 

The accuracy of the model can be determined by using the 

term Mean Absolute Percentage Error (MAPE). 

 

 

 

                                (1) 

 

(1) shows the equation for the AIC, BIC equation and MAPE. 

In the equation AIC and BIC,  the L is the log-likelihood in the 

maximum value of the model, n is the sample size of series 

and k is the number of parameters that are calculated in the 

model [33]. Whereas, for the equation MAPE, x_i is the actual 

values of the i-th ,and  ¯x_i is the forecast value of the i-th 

[24]. 

 

3. METHODOLOGY 

3.1 Data 

The strength of this study includes having a collection of data 

from the Internet of Things (IoT) Flood Observation System 

(IFOS), which is designed by Universiti Teknikal Malaysia 

Melaka (UTeM). IFOS function as the flood warning system 

and also the water level monitoring system. Figure 2 

illustrates the location of data obtained at the Pengkalan Rama 

Jetty, Sungai Melaka with the coordinate of  2° 12’30.3 “N 

102° 15’02.8 “E. For this study, data is taken from 7 January 

2020 12.00 am until 15 January 2020 8.00 am with a 1-hour 

interval.  

The daily water data in centimetre (cm) was collected and 

pre-processed to prepare for the ARIMA model development. 

The pre-processing started with transforming the conversion 

epoch UNIX time to convert the original data time and dates 

into the time-and-date format in excel.  

 

Figure 2: IFOS Location in Satellite View 

 

The modelling part of the analysis is divided into training and 

validation. A total of 168 data samples that were used for the 

forecast starting from 12.00 am on the 07 January 2020 till on 

14 January 2020 with a one hour interval. Meanwhile, the data 

samples were used in the validation part, starting from 1.00am 

on 14 January 2020 till 8.00am on 15 January 2020. 

 

3.2 Plotting The Time Series: ACF and PACF 

The main methods used for model identification with 

autocorrelation (ACF) function and partial autocorrelation 

function (PACF) are visual observation of the series.[7]. The 

ACF and PACF were then accessed the series behaviour and 

stationarity. It was evident that, ACF and PACF were not 

significant and fell within the confidence band. The 

observations indicated that they were independent. The time 

series is a white noise process. In such a situation, no 

modelling could be carried out. A time series is stationary if 

it has a rapidly declining ACF. ACF slowly decay means that 

the series need to be undergo differencing since it is 

non-stationary. Further tests to confirm the non-stationary 

existence should be carried out [11].  

The identification of autoregressive (p) and moving-average 

(q) orders were also based on the physical observation of the 

ACF and PACF plots. If the series has autoregressive terms, 

the ACF plot dies down slowly and the PACF is abruptly cut 

off after p lags. In that case, the autoregressive term p was 

considered. The ACF cut off abruptly after q lags and the 

PACF plot slowed down when the sequence had 

moving-average terms. Then, in this case, the moving average 

term q was considered. The mixed model was considered to 

be used if both the autoregressive and the moving average 

terms slowly fell after a few lags.[22].  

 

3.3 Stationarity Test 

The ARIMA modelling required the time series to be 

stationary. In case of the non-stationary time series, to 

transform the time series into stationary, differencing is 

needed before the ARIMA modelling [11]. 

The Augmented Dickey-Fuller (ADF) Test could identify the 

stationary of the time series. If the water level series was 

tested to be non-stationary then a differencing was required to 
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make the data stationary. 

After the differencing, the data became stationary, and it was 

confirmed by using ADF to prove that the test rejected the null 

hypothesis with the P-value less than 5% or 0.05, which 

indicates that the data is stationary. Therefore, in the scenario 

time series that contains both trend and seasonality, both 

non-seasonal and seasonal differencing need to be applied as 

two successive operations in either order. Differencing to go 

beyond two differencing is not advisable since 

over-difference can lead to unnecessary levels of dependence 

on time series data [14]. 

 

3.4 ARIMA Model Identification 

This step is to define the possible ARIMA model that 

represents the behaviour of the time series. The series 

behaviour was analysed by the ACF (autocorrelation 

function) and partial autocorrelation function (PACF). The 

ACF and PACF were used for the evaluation of the model 

order. ACF and PACF knowledge was useful in deciding the 

type of models to be constructed. The final model was then 

selected using the Akaike information criterion (AIC) and 

Bayesian Information Criterion (BIC). Such parameters help 

sort models since the models with the lowest criterion value 

are the best. 

After identifying the appropriate model as an initial step, the 

determination of model parameters was achieved. The 

predicted values were calculated using maximum likelihood 

for the AR and MA parts of the model. The AR and MA 

criteria were examined to ensure that they are statistically 

significant or not. The related parameters, such as standard 

error of estimates and associated t-values, are also calculated. 

The AR (p), integration (d), and MA (q) are three parameters 

used in summarising an ARIMA model. The order or AR and 

MA indicate from the parameter p and q, while the parameter 

d means the order of differencing to make the time series 

stationary [24]. To calculate the number of AR and MA lags 

from the ARIMA(p,1,q) model, the number of p and q varies 

with the number of p=1, 2, 3 and q = 1,2,3 were calculated. 

The lowest AIC and BIC value specifies the model that has 

the best fit{Formatting Citation}.  

 

3.5 Diagnostic Checks 

Next phase of building the ARIMA model is diagnostic 

checking. This process requires testing the appropriateness of 

the chosen model. Diagnostic statistical tools such as residual 

plots were analysed to identify whether the residuals 

are associated with white noise.  The Ljung-Box method is 

used by analysing the residuals to determine the accuracy of 

the chosen model.  

The best model that passes the diagnostic test would have a set 

of synthetic time series to compare with the original time 

series. It determines the degree to which the synthetic series 

resembled the original data set. If the synthetic series pattern 

is identical to the original series pattern, then the model can be 

said to be in a good fit. 

3.6 Series Comparison and Forecasting 

The last step of ARIMA modelling is to develop the 

forecasting model[35]. Therefore, the calculated model 

parameters of the ARIMA model will be compiled and used to 

predict future time series intervals. The parameter ), root 

mean squared error (RMSE), Mean absolute percentage error 

(MAPE), and determination coefficient (R2) is used in this 

analysis to compare the observed values to the 

forecast values. This technique and parameter for finding the 

best ARIMA model are also used in  [22]. 

 

4. RESULTS 

 

The results for each analysis are going to be presented here. 

The water level time series are presented in Figure 3. In the 

figure, it can be observed that the plot for the Pengkalan Rama 

Jetty exhibits a relatively consistent trend for each day. 

 

 

 

 

 

 

 

 

 

 

Figure 3: IFOS Water Level Time Series Data 

 

ARIMA modelling only works with the stationary time 

series. Hence, it is important to prove that the time series is 

stationary from the ACF and PACF plot. 

 

4.1 Stationary Test 

Figure 4 and Figure 5 show the ACF and PACF plot of the 

water level series. The ACF plot indicates the slow decay, and 

this means the possibility of non-stationarity of the data. 

 

 
Figure.4: ACF of Water Level Series 

 



 

Wei Ming Wong et al.,   International Journal of Advanced Trends in Computer Science and  Engineering, 9(4),  July – August  2020, 5287 –  5295 

5291 

 

 
Figure.5: PACF of Water Level Series 

 

From the illustration of the ACF and PACF plot, it is 

unconfirmed that the water level series is stationary. Thus, the 

Augmented Dickey-Fuller (ADF) test was carried out to 

confirm the initial presumption that the time series was 

stationary. 

 

 
Table 1: ADF Result 

P-Value Test 

Statistic 

Critical Value Remark 

0.12074 -3.055 -3.4342 Non-Stationary 

 

 Results presented in Table 1 show that the data is not 

stationary. The ADF result, it indicate that the P-value is more 

than 0.05, hence implying the acceptance of the null 

hypothesis. The test also confirmed that the unit root 

contained in the data and is non-stationary. 

 

4.2 Differencing The Series 

 The differencing method was applied to the water level 

series data twice to obtain the optimum value of d. Figure 6 

illustrates the output of the first-order differenced (d =1) and 

Figure 7 illustrates the second-order differenced (d = 2) 

methods. Therefore, the standard deviations of the original 

series and differenced series are shown in Table 2. From the 

table, it was discovered that the minimum standard deviations 

obtained was first-order differenced (d = 1) model with the 

value of 15.82 compared to second-order differenced (d = 2) 

model with the value of 16.77 and original (d = 0) with value 

37.06. 

 
Figure.6: First Order Differenced Residual  

 
Figure.7: Second Order Differenced Residual 

 

Table 2: Standard Deviations of Original and Differenced Series 

Order, 

d 

Standard Deviation 

0 37.06 

1 15.82 

2 16.77 

 

Figure.8: First Order Differencing ACF and PACF 

 

Figure.9: Second Order Differencing ACF and PACF 

 

 In the ACF and PACF plot as in Figures 8 and Figure 9 the 

first-order differenced (d = 1) and second-order differenced (d 

= 2) models. Both were compared at the lag 1. The physical 

visual observation of the figure indicates that the second-order 

differenced model was negative value and lower than  -0.4, 

hence indicating that the second-order differenced model was 

over-differenced [11]. Hence, by comparing these three levels 

of differencing methods, the optimum level of differencing 

was the first order differenced model, and the value for d was 

one. 

 A further test was required for the confirmation of the 

stationarity of the water level series.  Hence, the stationary 

ADF test was conducted again for confirmation. The results as 

shown in Table 3 confirms that the P-value is lower than 

0.005. This result indicates that the water level series is 

stationary after first-order differencing (d = 1). 
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Table 3: Standard Deviations of Original and Differenced 

Series 

P-Value Test 

Statistic 

Critical 

Value 

Remark 

0.001 -8.7252 -3.4343 Stationary 

 

The order of autoregressive term (p) and moving average term 

(q) parameters must be determined after having selected the 

best differences (d). The ACF and PACF of the differenced 

series help identify the order of p and q. Several p and q values 

were also recommended to get the best model. 

 

4.3 ARIMA Modelling and Diagnostic Checking 

 The ARIMA model recognises complex trends in the 

temporal dataset and is thus commonly used for short-term 

predictions. To determine the parameter of AR (p) and MA 

(q) term for ARIMA (p, 1, q) parameter, the numbers were 

varying for p = 1, 2 and q = 1,2 for the AIC and BIC 

calculation. The best-fitting model is thus determined by the 

lowest AIC and BIC. The AIC and BIC value are presented in 

Table 4. The table shows that the best fitting model is ARIMA 

(2,1,2) with the lowest AIC 1297.511 and BIC 1304.553. 

 

 

 
Table 4: AIC and BIC of ARIMA Model 

ARIMA 

(p,d,q) AIC BIC 

(1,1,0) 1606.056 1613.099 

(0,1,0) 1398.579 1405.622 

(0,1,1) 1343.956 1350.999 

(0,1,2) 1323.768 1330.811 

(1,1,0) 1326.674 1333.717 

(1,1,1) 1325.499 1332.542 

(1,1,2) 1321.337 1328.38 

(2,1,0) 1324.626 1331.669 

(2,1,1) 1297.871 1304.914 

(2,1,2) 1297.511 1304.553 

 

4.4 Goodness of Fit 

 The ARIMA (2,1,2) model was implemented into the water 

level series data. The good fit of the original and forecast data 

is illustrated in Figure 10. 

 However, the ARIMA model can also be modelled by 

constant or without constant. Table 5 shows the ARIMA 

parameter without constant, and table 6 shows the parameter 

with constant. Findings from table 6 demonstrates that the 

P-value is more than 0.005. The result indicates that the 

ARIMA with constant is not significant. Thus, the most 

suitable model for the ARIMA model is without the constant. 

 

 
Figure.10: Model Fit of the observed Water Level and predicted 

ARIMA (2,1,2) 

 

Table 5: ARIMA (2, 1, 2) Without Constant 

Parameter Value Standard 

Error 

t 

Statistic 

P- Value 

Constant 0 0   

AR{1} 1.6128 0.093392 17.2688 8.0875e-67 

AR{2} -0.7429 0.088158 -8.4269 3.5496e-17 

MA{1} -1.3093 0.11139 -11.7539 6.7414e-32 

MA{2} 0.33543 0.11156 3.0067 0.002641 

Variance 169.495 10.0085 16.9351 2.4775e-64 

 
 

 

 

Table 6: ARIMA (2, 1, 2) With Constant 

Parameter Value Standard 

Error 

t 

Statistic 

P-Value 

Constant 0.0061896 0.032769 0.18889 0.85018 

AR{1} 1.6131 0.094401 17.0877 1.8325e-65 

AR{2} -0.74284 0.087899 -8.4511 2.8864e-17 

MA{1} -1.31 0.111 -11.8014 3.8392e-32 

MA{2} 0.33533 0.11119 3.0158 0.0025629 

Variance 169.4488 11.3607 14.9154 2.6174e-50 

 

 The residuals were homoscedastic, which means that the 

variances were constants. Homoscedasticity was significant 

for the residuals, as it determined if the model was consistent 

in predicting variable values. A model with heteroscedastic 

residuals cannot produce reliable results, and transformation 

of data is necessary. The residual histograms were plotted to 

reflect their distributions visually. 

 Figures 11 depiction the residual histogram whereby the 

residual appears to be normally distributed. The trend of the 

residual as shown in Figures 12 is the residual Q-Q plot. The 

physical visual observation is indicate of the fact that the plot 

is usually distributed. To achieve a satisfactory confidence 

interval, the normality of the residual distribution is essential. 
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Figure.11: Residual Histogram 

 

 
Figure.12: Residual Q-Q Plot 

 
Table 7: L-Jung Box Test 

P-Value Test Statistic Critical Value 

0.51179 19.1547 31.4104 

 

 Lastly, the good fit of the model between actual and 

forecast was tested with the L-Jung Box test to confirm the 

good fit of the original and forecast water level series. These 

results are demonstrated in table 7. The table shows that the 

P-value for the test is more than 0.005, thus indicate that the 

test is significant. This brings to evidence that the ARIMA 

model is a good fit between the original and forecast of the 

water level series data. 

 

 

4.5 Forecast result 

 The time series generated from the ARIMA model which is 

the forecast result was used to contrast with the original series 

to check for the accuracy. Both Figures 13 and Figures 14 

show the water level series and forecast series generated by 

using ARIMA (2,1,2). Figures 4-12 illustrate the comparison 

between the forecast series with the original series starting 

from 15 January 2020. The statistical accuracy of the 

prediction is indicated by the R-squared, MAPE and RMSE. 

  

 

 
Figure.13: Forecast Series 

 

 
Figure.14: Original Series and Forecast Series 

 

 Results in tables 8 indicate the mean absolute percentage 

error (MAPE). The MAPE result from this model is 

significantly low. Table 9 shows the R square of the series, 

thus indicating multiple lead time from 2 hours until 8 hours. 

 In this study, the forecast required longer lead time with 

reasonable accuracy. Hence, in the result, the lead time of 6 

hours with an accuracy of 94% was indicated. The RMSE of 

the model depicted the value as 13.0172. 

 
Table 8: MAPE 

Time MAPE 

2 hour 4.833354 

4 hour 3.961335 

6 hour 4.093351 

8 hour 3.785191 

 
Table 9: R-Squared 

Time R2 Percentage 

2 hour 0.998338 99.8% 

4 hour 0.935298 93.5% 

6 hour 0.940688 94.1% 

8 hour 0.879217 87.9% 

 

 

5. CONCLUSION 

 

 The autoregressive integrated moving average (ARIMA) 

method was used to carry out an effective statistical modelling 

on the study of Sungai Melaka. The model also developed a 

forecast series to offer sequences of future stage and water 

level values. The purpose of this forecast is to predict the 

incoming flood as well as to enable the response team to have 

time for preparation. The ARIMA model is ideal for 

short-term forecasting as it could predict very well for short 

term. This short-term forecast can be used in the scenario of 

flash flooding. 

 The ARIMA modelling from the Box-Jenkins method was 

found to be acceptable and suitable for Sungai Melaka river in 

Pengkalan Rama Jetty. The accuracy of the model has been 

found to decrease as the forecast period increases. The value 

of the MAPE was close starting from 2 hours until 8 hours. 

The flood forecast with the lead time of eight hours shows that 

the forecast values were 87.9 per cent of best fit. The forecast 

value were identical to the observation that was last recorded. 
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 The current model will provide a foundation for future 

hydrological process studies of Sungai Melaka. The ARIMA 

model's drawbacks can be overcome by adding other 

algorithms such as Kalman Filtering, taking into 

consideration of the nonlinearity and complexity of most time 

series prediction problems. This ARIMA simulation will be 

incorporated into the framework of future work to analyse the 

real-time data series with the real-time forecast. 
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