
Mohammad Al-Fawa'reh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4262 – 4277

4262

ABSTRACT

Detecting and classifying new malicious network traffic is a
high priority concern for cybersecurity practitioners. New
stealth or zero-day attack can make companies go out of
businesses in the digital transformation era. Despite the
plethora of studies that have explored different
machine-learning (ML) techniques to address this issue, the
most popular used approach remains traditional ML with
legacy datasets and small campus network. The difficulty in
data collection considers the biggest impediment of using
ML. This paper examines the possibility of exposing zero-day
malicious network traffic in large campus networks based on
cloud environments by presenting a lightweight framework.
An experiment was devised for the analysis. However, before
that, the characteristics of the network were examined based
on the flow level. The framework showed an outperformed
accuracy rate of 100% for a specific type of attack and 97.97%
as a comprehensive detection mechanism.

Key words: AWS,Big Data, BoT, DoS, DDoS,Cloud
computing, Cloud dataset,CSE-CI-UNB 2018, ML, PCA,
WEB Attack, Zero-day attacks

1. INTRODUCTION

Innovative technology like IoT, cloud computing, big data,
and data mining has generated much interest due to playing a
vital role in creating a new business and converting the world
to an infinite number of information and communication
systems. However, using these innovative technologies
exposes users to critical vulnerabilities, and can potentially be
used inappropriately in cyberwar [1]. Since many companies
store sensitive information in cloud servers, attackers can take
advantage of some vulnerabilities and craft attacks to steal
stored information. Moreover, IoT poses a broad range of
cyber-risks that not only jeopardize businesses but also
include banking, education, government, and health care
systems. Statistics show the rise of cybercrime worldwide.
According to [2], “The annual cost of cybercrime damage is
estimated to cost the world $6 trillion by 2021. That is a major
jump from $3 trillion in 2015, with cyber-attacks now one of
the biggest threats to any business“. Cyber-attacks are

becoming increasingly sophisticated, with cyber hackers
developing new and determined threat methods that are
becoming increasingly difficult to detect, making attacks
more dangerous than ever. Traditionally, assets (systems,
networks, process, etc.), have been protected by prevision
systems. For example, the Web Application Firewall (WAF)
has been used to filter malicious requests by checking URLs.

Based on a listing system (i.e. with blacklisting and
whitelisting of individual URLs). Prevision systems include
authentication authorization and accounting servers (AAA).
However, these prevision systems are susceptible to be
defeated using different techniques like fragmentation,
imitation of legitimate users, and flooding. New stealth
vulnerabilities are continuously discovered, and intruders
keep developing attacker methods and mentality changes over
time. IDS has arisen as a potential defensive mechanism, but
existing systems suffer from many high false positive and
negative reports, in addition to the fact that we cannot handle
zero-day attacks. These manifest challenges underpin the
motivation of this research and the approach developed to
build a robust back-end engine that is faster in detection and
construction compared with existing approaches, with
minimal false reports (positive and negative).

In recent years, existing IDS has suffered from many issues,
like the high rate of false-positive alerts. Too much time is
taken to capture an attack, as well as the difficulty of detecting
novel attacks. With the high false-positive rate, an attacker
can build a simple tool using any programming language, like
Python, to generate a bundle of false-positive alerts.
Hypothetically speaking, IDS generates multiple alarms for
the IT team. By default, the team will start digging to figure
out if their company is under attack and if they should take
action. The team may alternatively shut down the servers or
isolate them from the Internet. In this time, the attacker would
compromise a vital angle of CIA (availability). The attacker
can also flood the system with false-positive requests, and
when the IT team check those requests, this will create the
perfect opportunity for an attacker to launch an attack
attempt. Persistent research and development endeavours are
being made to diminish the high false-positive rate of existing
systems. It is well known that IDS is a process of data analysis
and can be considered problematic in terms of correctly

Detecting Stealth-based Attacks in Large Campus Networks

Mohammad Al-Fawa'reh1, Mustafa Al-Fayoumi2
1King Hussein School of Computing Sciences, Princess Sumaya University for Technology, Amman, Jordan,

fawareh@outlook.com
2King Hussein School of Computing Sciences, Princess Sumaya University for Technology, Amman, Jordan,

m.AlFayoumi@psut.edu.jo

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse15942020.pdf

https://doi.org/10.30534/ijatcse/2020/15942020

Mohammad Al-Fawa'reh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4262 – 4277

4263

classifying data. From this point of view, it may also be
observed that any classification process depends primarily on
how the dataset is suited to the tools deployed. Using more
real and clean data increases the potential for more precise
outcomes. This implies that if the model can extract proper
features that mark normal data from abnormal data, we can
significantly reduce the false positive rate to an acceptable
level.
We must also note that most IDS variants based on data
mining and ML learning use well-known analytical
techniques. These general techniques may not be
instrumental in classifying data as usual or undesirable with a
high degree of accuracy. Therefore, we need to alter and
enhance existing systems to overcome the limitation of the
detection mechanism. An attacker’s techniques change over
time. In addition to the problems mentioned above, an
attacker can use advanced techniques like AI and ML to build
a model to test the ability of the defense lines, like
reinforcement learning. Briefly, the present paper attempts to
answer the following research question:
How can we make IDS fast enough to process data on the
cloud and detect stealth attacks using anomaly-based IDS,
and how can we reduce the false-positives alerts to an
acceptable level with a high detection rate?

This paper compares various algorithms with and without
dimensionality reduction approaches to evaluate which ML
algorithms have the best overall results when performing
behavior analysis, based on the following criteria:

 Classification efficiency.
 Time consumption in the training phase only.

1.1 Machine Learning-Based Anomaly Detection

Anomaly detection technology works by learning machine,
and by extracting normal activity by learning patterns from
network traffic [3]. Many of these algorithms can support
online learning and predict network flow. Thus, IDS
identifiers that use these types of algorithms can adjust their
learning parameters and possibly perform better than other
anomaly detection techniques. However, this can be
considered a drawback due to the large resource consumption.
Another important drawback is the increase the overfitting
[4] because some of these technologies are computationally
complex and can learn the details or noise of network traffic
received [5]. As a result, poor performance can appear in the
classification of new incidents in the network traffic received.
Depending on the characteristics of network traffic, many
unsupervised and controlled ML methods have been
introduced. For example, Markov chain diagrams that call for
a sequence of activity from previous observations [6],
Bayesian analysis of the relationship between features and
forecasting of future events [7], and aggregation are also an
effective way to perform external detection by separating the
observed data based on the proximity scale [8]. Genetic
algorithms and neural networks are inspired by biology [9].

For example, a neural network that simulates the operation of
human brains usually uses ML methods to detect anomalies.

1.2 Network Behavior Analysis

Network Behavior Analysis (NBA) is a set of activities that
improve system integrity by examining traffic and reviewing
network information from existing infrastructure devices
[10]. Network analyzer systems such as TCP dump (Daniel.
2019), network miner[11], and Wireshark [12] are used in a
wide range of applications, from network activity logging to
spyware detection and reverse engineering protocols.
Nowadays, the NBA’s premium technologies and tools are
used as elements in many types of anomaly detection systems.
NBA aggregate stats for entire traffic on a packet or flow level.

1.3 Packet & Flow Level Analysis

Packet level analysis focuses on examining individual packets
obtained from network traffic in real-time. The “NBA”
element checks for a very useful header and data payload after
capturing packets. In conjunction with header data, some
indirect characteristics can also be obtained by assessing the
level of packets, including rate, arrival times, and hash rates.
To assess the packet level, the packet sniffer is used while
recording traffic, tracking network performance [13],
identifying bottlenecks, collecting lost information, and
discovering intrusions [12].

A network flow is a unidirectional sequence of IP packets that
pass through nodes (router, switch, or even host) in a given
time period [14]. Packages belonging to the same stream must
contain the same header fields, such as port information,
protocol type, destination address, and source addresses. The
total number of flows summarizing the full communication
builds the flow record. Reports indicate that users
communicate with another party when this connection occurs,
which is the transmission technology and other characteristics
of a particular connection [15].

Flow analysis can also provide many indirect statistics about
network information, similar to packet analysis. Flow logs
can create different bulk inputs from all raw data. Using only
statistical data (and not full IP packets) makes it possible to
achieve relatively small flow records as opposed to raw
production [15]. As a result, flow assessment is mostly
performed on routers and the old firewall used with NIDS,
where different hosts can be monitored by the detection tools.
Argus [16], SiLK [17] and FlowScan [18] are well-known
flow analysis programs.

The rest of the paper is divided as below. Section 2 includes
the background and previous work. Sections 3 and 4 clarify
the methodology for the research with the implementation.
Section 5 addresses the outcomes. Finally, the paper
concludes with Section 6.

Mohammad Al-Fawa'reh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4262 – 4277

4264

2 RELATED WORK

Network behavior analysis have attracted considerable
attention to the research community and the number of
publications is increasing from year to year. In this section, we
concentrate on work related to anomaly detection due to the
limited space. Researchers classified IDS based on the
working mechanism to Signature-based and Anomaly-based.
The Anomaly classified into Adaptive Learning (or
Self-Learning) and Manual Learning (Programmed
Learning). The programmed model is when the system needs
a participant or external person to teach the system how to
identify behavioral changes. The participant decides the
extent of the abnormal behavior of the system and knows the
possibility of penetration [19]. There are three types of
programmed models: basic rule-based, threshold, and
numerical models. In this paper, we will focus only on
adaptive methods, the self-learning system works by example
in a basic sequence. While self-learning is done by creating a
model for observed machine traffic that has accumulated over
a period of time for basic operations [20]. Self-learning
models are divided into the following main categories:
machine, deep learning, and time series model.

2.1 Time Series

The time series model takes the observation sequence into
account for succession occurring at standardization periods. If
the possibility of a new event at some point is trivial, then a
shift in normal behavior can be considered. The time series
has the advantage of monitoring behavior trends and
distinguishing them over a period of time if you notice a
change in normal behavior. An example of a time series
model used as identifiers is ARMA acronym for Automatic
Reflection Moving Average. If attacks continue over a period
of time [19], it is an active template. However, this model has
the disadvantage of being more computationally expensive
[5]. GARMA and ARMA series models that are configured to
identify 4 types of attacks (probe, DoS, L2R, and U2R) [5].
Parameter calculation was performed using the
Hannan-Rissanen equation, Whittle estimate, and probability
maximum approximation, and the expected point resulting
from Whittle estimate and maximum probability was close to
the actual value. Time series models were able to predict the
attack, but GARMA’s performance in detecting the attack
was better.

2.2 Machine Learning Approaches

ML approaches are systems for detecting distortions
independent of humans. They determine anomalies over a
period of time by revealing the irregular features in a system
[21]. The effectiveness of this technique is its ability to
distinguish within the network between normal and
anomalous situations. Without comprehensive human
training or intervention, ML can provide IDS methods for

detecting existing, new, and light attacks. It is described as a
set of methods that can detect patterns automatically to
predict future trends in data [22][23]. This section discusses
ML and DL known in the field of anomaly detection.

A. Supervised learning
Barapatre et al. [24] experimented with an input layer, a

hidden layer, and an output layer in the neural network. The
input node contained 41 features of the KDD Cup’99 dataset.
The output node in the dataset was identified as normal or
attack. 0 means normal data, and 1 means attacks. First, the
learning rate (LR) was set to “0.1” and the program was
retrained to lower levels of learning. The sigmoid activation
method was also used. The program is trained to assess the
quality of the algorithm on individual attacks for each class of
attack. The researchers concluded that MLP-BP NN was
more effective in detecting DoS and Probe attacks than U2R
attacks. They also reported an increase in the identification
rate as the LR decreased, resulting in a gradual affinity. They
also noticed a decrease in the LR and the RMS value (SSE)
and the retrained network showed an increase in detection
rate, but a small and shallow model was used, while the
current study uses 16 million records. The work presented in
[25] used a special type of anterior feeding neural network
called the Radial Basis (RBF) function and compared the
performance of RBF and MLP-BP in identifying four
different types of attacks on the KDD Cup’99 dataset.
Training and test samples included 1,000 records from the
selected dataset. All samples were different in that
experiment with 34 numerical properties and 7 symbolic
properties. Before being used as training or test information,
symbolic features were encoded in ASCII numbers. The
results showed that RBF performed better than MLP-BP with
a 99.2% detection rate and a 1.2% false-positive rate. An
early test method using the ISCXIDS 2012 dataset was
proposed by [26], which included classifiers for the K and
Naïve Bayes means. By selecting the incoming packets of a
different host in a single day, the proposed algorithm
detection was studied, but using K-mean and Naïve Bayes is
slow to categorize datasets with many advantages. [27]
Implemented a multi-target genetic algorithm for both the
1999 KDD Group and the 2012 ISCX-IDS subgroup.
Decision Trees (DT) were developed by [28] based on Snort
IDS alerts. In this analysis, only five features were extracted
from the dataset (protocol, source and destination IP, source
and destination port), and decision groups were created using
these attributes. [29] developed the ISCX-IDS 2012 dataset
flow level and tested it for other group learning. In converting
the package to flow, the Flowcalc tool was chosen, and
relatively basic statistics were extracted from the dataset [30].
Tan et al. [31] analyzed traffic data by converting traffic to
images. This paper focused on reducing DoS attacks and
applying a special distance meter called Earth Mover’s
Distance (EMD) to the principle of object discovery. In

Mohammad Al-Fawa'reh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4262 – 4277

4265

addition, PCA has been applied to the intended network
traffic, containing only basic features. Likewise, by applying
different ML algorithms to the ISCX-IDS 2012 dataset, [32]
studied the effect of PCA on intrusion detection.

B. Unsupervised learning
NN is provided only with input data in unattended learning

without visualizing the outcome. It independently finds
trends in the data. Undiscovered data are referred to as
unnamed data [33]. Adaptive resonance theory (ART) and
self-organizing maps (SOMs) are common.

 Adaptive Resonance Theory

Murphy et.al proposed a hybrid method for categorizing
different attacks on the 99 KDD Cup dataset using the PCA
and Fuzzy counter-resonance theory [34]. The results showed
a high detection rate of 96.13 and a false alarm rate of 3.86 for
the detection of anomaly violations. While Chauhan et al.
[35] implemented a new technique by loading the network
weights based on the score of the evaluation function [36].
Using different case possibilities, an effective evaluation
function was chosen. It follows that if the weights in the ART
network fluctuate, they are broken down, and thus ART can
detect any intrusions.

 Self-Organization Maps (OM)

SOMs are usually used as a mechanism to detect anomalies,
which can be used as a host-based detection system for
snooping. [37] Studied and demonstrated two basic feature
sets with the SOM hierarchical design. One of the primary
features with all 41 features is limited to 6. Results showed a
90.4 detection rate and a false positive rate of 1.38. While [38]
presented a single SOM architecture method that discovered
attacks using various parameters on MANET. Its
experimental results in terms of detection rate and false alarm
rate were found to be higher than other neural network
approaches.

The limited number of researchers used CSE-CICIDS2018
Dataset, and most of them used the unsystematic approach
during the preprocessing, their works summarized in Table 1.

3 CSE-CI-UNB 2018 DATASET

Many of reference datasets can be accessed to assess intrusion
detection techniques and systems. Various attack scenarios
were produced in these datasets using simulation
environments. The KDDCup99 [39] dataset is one of the
oldest and most well-known IDS datasets. It is collected
within a seven-week period of tagged information that
includes 41 properties. The training dataset consists of
approximately 4,900,000 unconnected vectors with 24
differentiated attacks, while the test dataset includes 300,000
samples with 14 additional attacks [40].

Table 1: Related Studies of CSE-CI-UNB 2018 Dataset
Literature Attack

types
Classification
Algorithms

Accuracy
Rate

Kanimozhi &
Prem Jacob,
2019

Bot ANN 99.97%

Kanimozhi,
2019 BoT

1- K-Nearest
Neighbors

99.73%

2- SVM 99.98%
3- Decision tree 99.9%
4- Random
Forest

99.83%

5- Naïve
BAYES

99.92%

6- Neural
Network

99.97%

Qianru
Zhou,2019

All
Attacks

1-Random
forest
2-Gaussian
naive Bayes
3-Decision tree
4-Multi-layer
Perceptron
5-K-nearest
neighbors
6-Quadratic
discriminant
analysis

96%

There are four types of attacks in the dataset: user to root
(privilege escalation), remote to local (buffer overflow),
denial of service, and scanning. Because this dataset has
many issues that lead to poor evaluation of anomaly detection,
an NSL-KDD [41] dataset has been introduced to address
these problems. The NSL-KDD dataset contains only specific
records from the complete KDDCup99 training dataset.
Additionally, the NSL-KDD dataset does not contain
duplicate or redundant records. As a result, the ML
algorithms used during intrusion detection are unbiased
toward the most common records [42]. The training and test
suite includes multiple attack samples at a significant
percentage. This leads to a more accurate and similar
performance evaluation, as there is no need to choose a
portion of the dataset to assess the efficiency of premium
penetration detection systems. [43] Introduced the new
DARPA intrusion detection dataset. This dataset was
developed by MIT Labs to detect complex attacks that have
different stages. Attack cases were simulated through test
sessions, infiltration into the system by exploitable
vulnerabilities, as well as the installation and launch of DDoS
attacks on other hosts [31].

Mohammad Al-Fawa'reh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4262 – 4277

4266

Another unrealistic dataset intruded by DEFCON [44], which
was collected in the hacking contest, which only contained a
spam action. This dataset is out of network traffic in the real
world and therefore, has restricted usage. Finally, the [45]
dataset is a collection of various types of network information
that can be accessed for study purposes. However, this dataset
is limited to specific incidents and interventions, such as
DDoS. Although reference datasets are useful in assessing
intrusion detection systems, many of them have problems
such as unrealistic network setup, unmarked or incomplete
information, restricted intrusion scenarios, and the excessive
ratio between regular traffic and attacks. Realistic datasets
have been produced in recent years to create realistic network
scenarios. For example, a UNIBS data collection [46] was
collected from the University of Brescia. The dataset was
developed for three consecutive days by the TCP Dump
program running on the college router and storing it with 20
devices. [42] Used the TUIDS dataset, prepared by a scientist
from Tizpur University. This fully featured dataset is recorded
at the flow and packet level. An ISCX-UNB dataset [28] was
created by creating worker profiles, and multi-stage attack
cases were produced to produce intrusions. Six years later, the
same research center, in integration with Amazon (AWS),
created a more realistic and updated suite with more attacks,
such as web attacks included. The method proposed in this
paper was evaluated using the CSE-CIC-IDS 2018 dataset.
This dataset consists of two realistic profiles - one to mimic
normal activity and the other for abnormal activity. Table 2
shows the statistic for every attack and the number of normal
and malicious flows, whereas Tables 3 and 4 compare this
dataset with the available public datasets.

Most of the research in anomaly detection or prediction
uses public datasets like PREDICT, CAIDA DEFCON,
ADFA, NSL-KDD KYOTO, and ICS Attack. Every one of
these datasets has pros and cons, but we will not discuss them
in detail because they are not part of our research. However,
that dataset is rare and extremely legacy for many reasons,
which are summarized below:

• Behaviors of the adversary change over time.
• Most of the datasets did not consider the web attacks on

threat modeling since the majority of businesses rely on
the web.

• A few studies investigate malicious network activity in
the cloud by using large campus networks and large
datasets.

All these reasons encourage us to use a more realistic dataset,
so we proposed using a public and realistic dataset (to reduce
the gap between our study and other research studies) from
Communications Security Establishment (CSE) and the
Canadian Institute for Cybersecurity (CIC), hereafter referred
to as CSE-CIC-IDS-2018. The dataset includes seven attacks
that use different techniques through several scenarios: web
attacks, distributed denial-of-service (DDoS), brute-force,
and infiltration of the network from inside, botnet,

Heartbleed, and finally, denial-of-service (DoS) attacks. The
design of the network and intrastation also simulates the
original design found in the industry since the number of
machines is 500, which is considered a relatively large
number so that the machine is distributed as below in Figure
1.

Table 2: Comparing Different Datasets
Data Realist

ic
testbed
Setup

New
Attack
s

Labelin
g

Features
Extracti
on

Mir
rori
ng

DARP T F T F T
KDD99 T F T T T
DEFCON F F F F T
LBNL T F F F F
CDX F F F F T
KYOTO T F T T T
TWENTE T F T F T
UMASS T F T F T
ISCX2012 T F T F T
ADFA2013 T F T F T
CICD2018 T T T T T

Table 3: Comparing Different Datasets
Data HTTP HTTPS SSH FTP SMTP
DARPA T F T T T
KDD99 T F T T T
DEFCON T F T F F
LBNL T F T F F
CDX T F T T T
KYOTO T T T T T
TWENTE T F T T F
UMASS T F F F F
ISCX2012 T F T T T
ADFA2013 T F T T T
CICD2018 T T T T T
CICD2018 T T T T T

4 METHODOLOGY

This section presents the research methodology in detail and
the main pipeline is summarized below.
 Data Collection
 Feature extraction and removing unrealistic features
 Data pre-processing
 Splitting data in training and testing
 Model building and evaluation
 Using PCA with ML Models
 Combining all data together and validating it with and

without PCA

Mohammad Al-Fawa'reh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4262 – 4277

4267

Table 4: Summary of CSE-CIC-IDS-2018 Dataset.
Day

(2018)

Normal
flow Attack Attack

description
Day

(2018)

Normal
flow Attack Attack

description

14-02

667626 193360 FTP-Brute Force 22-02 360833 249 Brute
Force-Web

187589 SSH-Brute force 79 Brute
Force-XSS

34 SQL
Injection

15-02 996077
41508 DoS using

GoldenEye
23-02 1048213 362

151

Brute
Force-Web

Brute Force
–XSS

10990

139890

DoS using
Slowloris

Slow HTTP Test 53 SQL
Injection

362 Brute
Force-Web

16-02 446772 461912 DDoS using
Hulk

28-02 544200 68871 Infiltration

576191 DDoS using
-LOIC-HTTP

20-2 7372557 1730 DDoS using
-LOIC-UDP

01-03 238037 93063 Infiltration

686012

193360

DDoS using
-HOIC

FTP-Brute Force
21-02 7372557 187589 SSH-Brute force 02-03 762384 286191 Bot

41508 DoS using
GoldenEye

Figure 1: Network Architecture of the Dataset.

4.1 Data Collection and feature extraction

The dataset was collected from CSE-CIC-IDS-2018 as we
mentioned in section four. In order to extract the features
from the raw PCAP files based on flow level, we used
statistical approaches through CICFlowMeter-V3 tools and
we obtained 84 features organized in Table 5.

4.2 Data Preprocessing

This is the most important step in data mining and the
accuracy of the model depends on the data preprocessing, the
more we introduce clean data, the higher the precise outcome
we will get. Data preprocessing include three main steps:
removing duplicate values, remove missing values, and
implementing data standardization. Removing duplicate
values Record redundancy is the main problem on various
datasets, due to the fact that the duplication will consume the
resources and will increase the time of the training especially
when we are dealing with the large dataset so to overcome this
issue we will use ’remove duplicate method’ using Kutools for
Excel and Panda library. Remove Missing and unknown
values missing and unknown values like null. Values will
affect the performance and accuracy, so dealing with those
values is a mandatory step, In fact, there are three well-known
methods to dealing with missing and unknown values.
Complete Case analysis (CCA) by removing the whole line if
one or more than one feature is missing or invalid values such
as Nan and Infinity; replacing the missing value by the

Mohammad Al-Fawa'reh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4262 – 4277

4268

median for those columns; and replacing the missing or
unknown values by zero. In this paper, we used the CCA
method due to the many bad requests and replies to the PCAP
files from one hand. Moreover, this method is faster than
other methods.

4.3 Normalization

It helps us to normalize the data within a particular range. In
addition, it also helps in speeding up the calculations in an
algorithm, since we are dealing with continuous features, the
following algorithms will affect the accuracy:
 K-Means uses the Euclidean distance measure; feature

scaling matters here.
 K-Nearest-Neighbors also require feature scaling.
 Principal Component analysis (PCA): Tries to get the

feature with the maximum variance; feature scaling is
also required here.

 Gradient Descent: Calculation speed increase as Theta
calculation becomes faster after feature scaling.

In this phase, we used the standardization scaler as shown in
the equation: z=(x-u)/s

In order to populate our IDS-engine, we removed some
features: Flow ID; Protocol; Source IP; Destination IP;
Timestamps; and finally Source Port Number, due to high
data cardinality. These features differ from one network
campus to another. In the second part of the experiment using
PCA, we only used the Dst Port number and Flow duration.
To the best of our knowledge, there is no relevant research
that used this dataset containing 76 features.

4.4 Proposed Approach

This section briefly summarizes ML techniques we used
during this research.

Table 5: Features Description.
Features Description
Flow ID Unique identifier for flow record
Src/ Dst IP/ Src /Dst Pt Source/Destination IP address, Source / Destination Port #
Pt/ fl dur /TP Protocol/ Flow Duration / Timestamps
Tot fw pk/tot bw pk Total # of packets In forward/backward
Tot l fw/Bw pkt/max/min/avg/std Total Max/Min/Avg/Standard deviation Packet size in Forward/ backward

Direction
Fl iat avg/std/max/min Average/Standard deviation /Maximum/Minimum Time between two flows
Fw/Bw iat tot/ avg/std/max Total/Mean /Maximum /Minimum /Standard deviation of time between that

sent in Forward/Backward direction
Fw/bw psh/urg flag # of times that URG/Push are setting to 1 in forward/backward direction
Pst/ack/urg/cwe/ece / syn/rst/fin
cnt # of packets with PUSH/FIN/SYN/RST/ACK/CWE/ECE/Urg Flags

Pkt len min /max/avg/std Mean/Minimum /Maximum/Standard deviation of that length flow
Fw/bw pkt s # of packets in forward/backward per sec
Fw/bw byt/pkt blk avg The Average # of packets/bytes bulk rate in forward/backward direction
Subfl fw/bw pk/byt The average # of packets/bytes for sub flow in forward/backward direction
Atv min/max/std/avg Minimum /Maximum/Standard deviation/ average time a flow was in active

mode before switching to idle state

Idl min/max/std/avg Minimum /Maximum/Standard deviation/ average time a flow was in idle
mode before switching to active

Up/Download ratio upload and Download ratio
Pkt size avg the average of packet size
Fw/bw seg avg/min the average/Minimum of packet size in Forward/Backward direction
Fl byt/pkt s # of packets /bytes are transferring per sec
Fw/bw hdr len Total bytes in the header in forward/backward direction
Fw/bw win byt # of bytes sent in forward/backward direction for initial window
Fw act pkt # of packets with at least 1 byte of TCP data payload in the forward direction
Pkt len va Minimum inter-arrival time of packet

Mohammad Al-Fawa'reh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4262 – 4277

4269

A. K-Nearest Neighbor (KNN)
KNN is used in supervised learning classification systems

requiring prior sampled data distribution [47]. Sample xi is
identified by testing the closest neighbors. A set of sampled
data x1, x2... xn, is transformed into a metric space when
constructing the closest neighbor rule. The space metric is
designed with a measure of similarities, such as distance
functions of Manhattan or Euclidean. This method is used to
obtain a new query point xi nearest neighbors. Finally, the
closest neighbors are selected to determine the class by
majority votes [47]. While KNN performs very well, as it
searches for the base separation in all the preparation set for
one test, it has high time complexity. In this preliminary
work, the label of a request point was predicted by five equally
weighted closest neighbors, and the similarities measure was
chosen as the Manhattan and Euclidean distance. The
Euclidean method takes the difference between the
coordinate, and after that takes the square root of the sum of
the difference, for example, if m = (f,g) and w = (t,r), the
Euclidean distance between these two points is given in
Equation 1 [48].

 (1)

While Manhattan Method takes the difference between the
coordinate and then take the sum of the absolute value as
shown in Equation 2 [49].

 (2)

B. Decision Trees
Decision trees (DT) are nonparametric-based ML methods

that can be used for classification and regression tasks. The
decision tree building process is done in the binary division,
as shown in Figure 2. The final nodes in the decision tree lead
to different class ratios in a particular region. Therefore, a
suitable testing area has been established and it is expected
that all test data will be the most frequent category in the
region [28]. The Purity of a node assesses the value of the
divisions in the DT. The Purity of trees can be determined
using several methods, known Entropy, and Gini. In Equation
3, cross-entropy is introduced [50]. In the equation, Pmk
shows the percentage of training samples in area m of group
k. If Pmk is all near-zero or close to one, a lower value is
provided by Entropy [51]. Therefore, for this node, the more
negative Entropy node produces more samples that are
dominated by one group and have the lowest classification
error).

 (3)

DTs are easy to interpret, and require minimal data
preparation and computational complexity to reduce logging
time. However, as they are affected by slight differences in
training samples, they appear to be unstable [52].

 (4)

Gini impurity approach addresses the probability of
misclassifying a randomly selected item in the dataset
randomly labelled according to the classification distribution
in the dataset. It has given in Equation 4 [50].

Where K represents the number of classes and p(i) represents
the probability that an element of class I is randomly selected.
Through maximizing the Gini Profit, which is determined
through extracting the measured impurities of the branches
from the original impurity, the best split is selected when
training a decision tree.

Figure 2: CSE-CI-UNB 2018 Dataset

C. Random Forest

Random forest (RF) [54], considered a well-known
ensemble learn algorithms, is an algorithm used by Microsoft
for games. It is inspired by the bagging of the decision tree.
Bagging is a general technique aimed at reducing learning
process variance [52]. As mentioned in the previous section,
DTs have a great variance; therefore, bagging can improve
overall quality. A portion of the data is selected and the DT is
prepared for the sample in the RF classification training
phase. This procedure is repeated B times. New samples are
classified by a majority vote in the classification phase [52].
RFs are a robust, highly accurate form of ML. In fact, even for
larger datasets, they can achieve good performance [9]. The
effects of overfitting are uncommon in RFs because they are
less susceptible to changes in inputs [55].

D. Perceptron

Perceptron classifier measures the linear mixture of input
characteristics and detects a separate hyperplane [9], [51]. It
gives the position of the sample question regarding the
separator plane. Although Perceptron is a simple and simple
classifier used for minor classification problems, it is included
and evaluated in the dataset because it is a modern linear
classification method on the latest model and can be
contrasted with other linear models in this part. It is also
known to be the smallest element in the neural network [51]

Mohammad Al-Fawa'reh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4262 – 4277

4270

and ELM systems. Figure 3 depicts a simple perceptron
model. As shown in the figure, a calculated amount of input is
taken from sensory perception. This usually applies to this
weighted non-linear activation function, expecting the input
sample category with a predetermined threshold value [52].
The perceptron learning algorithm uses weights w0, w1, and
w2, and w3 ..., wn to fit a different hyperplane into a decision
boundary. The main objective of the method is to use different
gradient algorithm like (SGD) to minimize the gap of
misclassified samples [56]. The perceptron algorithm can be
paired with one system for everything in multiple classes.
While the perception is very fast even with big data, when the
data is not linearly separate and distinct, the algorithm will
not converge well. In addition, the solution depends heavily
on the initial weight values [56].

Figure 3: DT process [53].

E. Naïve Bayes
The first presentation of Bayes Theorem in 17011761,

followed by a researcher named Pierre Laplace. Bayes
Theorem explains the probability linked to the event based on
previous knowledge of conditions [57]. Therefore, it is great
for ML, because that is exactly what ML does (predicting
future events on the basis of previous experience). Work is
possible as a conditional model P(y1....Ni) for the data sample
I with N outputs [57]. This model is described in Equation 5
by Bayes’ theory [53].

 (5)

Where ψκ is the label of class κ. If it is possible to estimate
priors P(ϰκ) and probabilities P(ϰ|ψκ) for the training data,
the latter likelihood is extracted from the theorem of Bayes.
Naïve Bayes model also capable of classifying the test data
based on posterior probability, as shown in Equation

 Choose if

In Gaussian Naïve Bayes, the data vector components are
expected to be distributed in Gaussian, and statistically
independent of each other for the provided category tag.
Based on this assumption, the underlying distribution of the
data is based on the Gaussian multivariate distribution N (),

where are the location vector and covariance matrix. Hence
the standard multivariate density of the previous distribution
class k = 1, 2 ..., N of the observable samples can be extracted
as:

 (6)

The classifier Gaussian Naïve Bayes is highly scalable, easy
to implement, and can be applied to N-dimensional data
vectors with low computational costs. Although it implies a
provided category tag, a data sample is conditionally
independent, and this approach can generate reasonably good
results even if the data vector components are not distributed
in Gaussian or the data is not statistically based [57].

F. Quadratic Discriminant Analysis
The last model we will use is the Quadratic Discriminant

Analysis (QDA), a supervised ML classifier, and quadratic
decision-making is similar to the Gaussian Naïve Bayes
method. QDA estimates the posterior likelihood of P (1.......N
). QDA also considers that samples observed have a standard
multivariate distribution characteristic. If the data are slightly
nonlinear [57], QDA can produce better results, as it assumes
a quadratic boundary of a decision [58]. In addition, with
larger training sets, it performs better as the effect of variance
becomes less and less important for this process. Unlike
Gaussian Naïve Bayes, QDA does not accept the concept of
conditional independence for a class and notes that the
separation mark does not allow data vectors to be independent
of other observations. Therefore, if the contrast matrix is
diagonal, then QDA becomes the same as Gaussian Naïve
Bayes. In the case of multiple groups, QDA determines the
test sample mark by calculating the sum of subsequent
allocations corresponding to Equation 6.

5 EXPERIMENTS AND MODEL EVALUATION

In this research, we are proposing to build a Hybrid model
using Statistical approaches, PCA, and set of Algorithms like
(DT, KNN, RF, ANN) and implementing this with different
scenarios. This section briefly summarizes ML techniques
with PCA and dimension reduction techniques applied to the
CSE-CIC-IDS 2018 dataset. To verify the reliability of the
dataset, these approaches are applied and evaluated. In a
64-bit Windows 10 computer with 16 GB RAM and 2.60 GHz
CPU, the ML was implemented using Python 3.7.3, Numpy
1.16.2, Scipy 1.2.1, and SPYDER 3.3.3. Every approach was
applied to 78 features, followed by two principal components
of normalized data capturing 95% of the original data
variance. Two techniques were used to assess overall
performance: training testing (80%, 20%) respectively, and
the cross-validation method. Metrics can be defined as
follows in the context of network intrusion detection [9], [59].

Mohammad Al-Fawa'reh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4262 – 4277

4271

Recall/True Positive Rate (TPR) = TP/(TP + TN) (7)

Accuracy is the ratio of the total number of valid predictions
made by TP + TN to all predictions made by TP + FP + FN +
TN.

Accuracy = (TP + TN)/(TP + TN + FP + FP) (8)

F1 score represents the harmonic mean of the recall and the
precision. F1= (2*Recall* Precision))/((Recall + Precision)))
(8) Training Time Evaluation The tests are performed using
system time on the computer used to train these models. This
can be done easily by setting the start and end time with the
Python process time command, then taking the end time
minus the start time (Table 6). This gives the time the process
to go through. Therefore, you can see a command or
parameter set to the start and end times of each training
command at the beginning and at the end. Table 6: Time
taken during training.

Table 6: Time taken during training

Start__time = time.time ()

classifier.fit (X__train, y__train)

end__time=time.time ()

time.taken = end__time – start__time

Experiments in this paper were conducted in two phases: the
first phase to apply the proposed framework separately to 10
different days, and the second by combining the flows
generated from 9 days (not 10, due to hardware limitations) as
a single large file.

ML techniques were applied to the dataset every day, and
evaluation metrics were extracted for discussion. Figure 4 and
Figure 5 provide a comparison of these techniques. All data
samples were used in training on February 14. Hence, that
attack was carried out during differentiated ports, and the
accuracy of normal detection and attack data for many
machine-learning algorithms achieved 100% from an
accuracy point of view. In addition, from a time complexity
view, Perceptron algorithms were the fastest in training. On
February 15 all datasets were used in the training phase, as all
of the algorithms achieved 100% accuracy, except the GNB,
which achieved only 85% achieved, but the GNB was the best
algorithm in terms of processing time, with 9.5 seconds,
followed by Perceptron, needing 20 seconds to complete the
training.

Figure 4: Accuracy comparison of various traditional ML without

PCA.

Figure 5: Time comparison of various traditional ML without PCA.

On February 16, all algorithms achieved 100% accuracy, and
the learning algorithms achieved 100% from an accuracy
point of view. Moreover, from the time complexity view,
Perceptron algorithms were the fastest algorithm in the
training need only 10 seconds. KNN was the worst algorithm
in time processing (Figure 6, 7).

Figure 6: Accuracy comparison of various traditional ML with PCA

(n = 2).

Figure 7: Time comparison of various traditional ML with PCA (n =

2).

Mohammad Al-Fawa'reh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4262 – 4277

4272

On February 20, all algorithms achieved 100% accuracy, and
Perceptron was the fastest algorithm with 14.75 seconds. On
February 21, we got the same behaviors on February 15. All of
them achieved 100% except GNB, with 92%, but the latter
was the fastest algorithm in processing (15.91 seconds) On
February 21, GNB was the worst algorithms in the detection
phase with 62%, followed by QDA with 95%, but other
algorithms achieved 100%. On February 28 and March 1, the
worst performance ever seen in the training average of the
detection was 69 and 65%, respectively. This discrepancy is
expected due to infiltration attacks on February 28 and March
1. This type of hidden infiltration is difficult to detect because
it appears to be legitimate flows, following protocol rules and
handshake procedures (Garg Pollett, 2017). On the last day of
the training, the performance increased and reached 100% on
all algorithms except GNB (94%) and Perceptron (99%). Of
these nine methods of ML, KNN and RF show better
performance than other technologies. However, KNN and
RFare complex and take a lot of time. KNN suffers from a
dimensional curse [12], which leads to a massive increase in
the size of training data. Therefore, KNN requires more
calculations if a dimension reduction technique is not applied
to data for simpler representation. However, Perceptron’s
algorithms are better than other algorithms in terms of
accuracy and time complexity. Consequently, the
performance of the proposed method will mainly be compared
with DTs, RF, and KNN. ML techniques using PCA were
applied to the dataset every day, and evaluation metrics were
extracted for discussion. Figures 6, 7, 8 and 9 provide a
comparison of these techniques using PCA.

Figure 8: Accuracy comparison of various traditional ML with PCA

(n = 2), using CV.

Figure 9: Time comparison of various traditional ML with PCA (n =

2) using CV.

After combining PCA with traditional ML approaches, a
tremendous enhancement occurred in the training phase from
a time complexity point of view. On February 14, the accuracy
for KNN, and RF with Gini stood still at 100% and decreased
slightly in performance by 1% for RF with Entropy, 2% for
DT with Gini, 50% for QDA, 79% for GNB, and finally 22%
for Perceptron. In addition, the time complexity for KNN
decreased by 366 times. On February 15, the performance
increased for GNB by 8%. However, it decreased only for two
algorithms: Perceptron 30%, and QDA 8%. Moreover, the
time complexity reduced by 525 times. On February 21, the
time decreased for all models, however, performance
decreased for GNB, QDA, and Perceptron. On February 22,
the Performance increased for the GNB Algorithm, and the
Accuracy reached 100%. However, QDA performance
decreased by 1%. In addition, the time complexity decreased
by 1920 times for KNN-Manhattan algorithm. On February
23, the performance peaked at 100%for all algorithms, with
minimal time complexity. The performance also increased for
all algorithms on February 28. On March 1, the performance
increased in QDA, GNB, and Perceptron. However, the
performance decreased on RF with Entropy, RF with Gini,
DT with Gini, and DT with Entropy. While there is no in the
accurate change attributable to KNN, the time complexity
reduced by 230 for KNN, with Euclidean distance and 218
times for KNN with Manhattan.

On March 2, the performance is still 100% for KNN, RF, and
DT. However, the performance decreased by 17%, 36%, and
40% for QDA, GNB, and Perceptron, respectively. The
algorithm that used the least amount of time was DT Gini and
PCA; as can be seen from Figure 8, it used less than one and a
half minutes. The KNN classifier used the entire dataset over
three days to process. This is the time it takes for the model to
learn. As can be seen from Figures 5, 7, and 8, there is a major
difference between the amounts of time used by the
algorithms, both of which are controlled by the script and
other processing factors, and changes in all scripts should be
the same. In the second part of the experiments, we tested our
hybrid framework on a large dataset, by combing all datasets
except day 4 using the same methodology in the first
experiments.

Table 7 shows that RF with Entropy archives the highest
accuracy on binary classification, compared with a decision
tree, RF, and others. We can see using PCA (n = 2) the
accuracy will decrees by .05 and the training time to the Half.
In addition, all algorithms achieved 97precision, recall, and
F1 respectively. The results showed the robustness and
lightweight our model in a large dataset with a minimal
number of features (destination port and flow duration).

Mohammad Al-Fawa'reh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4262 – 4277

4273

Table 7: Result of binary classification.
Algorithms Time

(Sec)
Accurac
y

P R F1

RF and
Entropy

1436.51 97.362% 97% 97% 97%

RF with
Entropy and
PCA

841.55 97.104% 97% 98% 97%

RF with Gini 1392.34 97.358% 97% 97% 97%
RF with Gini
and PCA

724.22 96.918% 97% 97% 97%

DT with
Entropy

1518.72 97.362% 97% 97% 97%

DT with
Entropy and
PCA

271.58 97.104% 97% 98% 97%

DT with Gini 1505.62 97.358% 97% 97% 97%
KNN 259200 97.47% 97% 97% 97%
DT with Gini
and PCA

162.49 96.918% 97% 97% 97%

KNN and
PCA

142.06 97.36% 97% 97% 97%

Table 8 shows that RF and Entropy model achieves the
highest accuracy overall algorithms when multiclassification
is used. The performance of the proposed model with and
without dimensionality reduction was evaluated.
Additionally, the outcomes with different ML techniques for
detecting malicious activity, which were previously
mentioned in Table1, were compared. Afterward, the
algorithms were tested based on the accuracy of all the
attacks. From the experiments conducted, our hybrid model
was found to outperform the other algorithms in Table 1 as
well as the proposed model by [60], [61] and [62].

Despite this paper’s systematic approach, the results should
be interpreted with caution due to some limitations relating to
both the experiment and the dataset we used. [63] The main
limitation of this experiment was the size of the dataset. In
particular, the poor false-positive rate of some classifiers can
cause a relatively small number of web attacks. Furthermore,
the initial dataset might not have been sufficient for the
qualitative learning process of the model. The second
limitation regards the labeling of a training dataset. Because
the data labeling of malicious traffic was done manually by
authors, the quality of the labeling is not fully reliable. The
third limitation is the hardware limitation of handling the
whole dataset. In the last experiments, when we combined all
the data into a single file, we dropped the data from
20-02-2018.

Table 8: Results of multi classification.
Algorithms Time

(Sec)
Accuracy P R F1

RF and
Entropy

1436.51 97.362% 97% 97% 97%

RF with
Entropy and
PCA

841.55 97.104% 97% 98% 97%

RF with Gini 1392.34 97.358% 97% 97% 97%
RF with Gini
and PCA

724.22 96.918% 97% 97% 97%

DT with
Entropy

1518.72 97.362% 97% 97% 97%

DT with
Entropy and
PCA

271.58 97.104% 97% 98% 97%

DT with
Gini

1505.62 97.358% 97% 97% 97%

KNN 259200 97.47% 97% 97% 97%
DT with
Gini and
PCA

162.49 96.918% 97% 97% 97%

KNN and
PCA

142.06 97.36% 97% 97% 97%

6. CONCLUSION
In this paper, we have presented a lightweight framework for
zero-day attack detection based on cloud-dataset by applying
ML techniques with a minimal number of PCAs. Our
research aimed at demonstrating the potential and
effectiveness of using a realistic large dataset based on cloud
environments for identifying network anomalies by
exemplifying the detection of as many of the most common
and modern attacks as possible that can occur via network
communication. Our approach involved nine classification
algorithms: KNN (using Manhattan and Euclidean distance),
DTs (using Gini and Entropy), RF (using Gini and Entropy),
Perceptron, Naïve Bayes, and Quadratic Discriminant
Analysis classifiers. In our approach, we used the flow level to
extract the features, which included a number of statistical
variables that were affiliated to it. The classification
algorithms were applied to 76 features and then by using PCA
(n=2) to show how the least number of features affected by
attacks and, consequently, to determine the effectiveness of
the flow level in anomaly detection. From the results of this
approach, we found that the performance of each classifier is
different using PCA, compared to a similar accuracy when we
used 76 features. The RF with entropy classifier achieved the
highest accuracy rate with minimal training time when we
combined all network traffic to a single file: 97.45 without
PCA and 97%.4 with PCA. While we achieved 100%
accuracy on all attacks except pivoting attacks from the
results, we also concluded that some types of attacks, such as
pivoting attacks, affected the accuracy. The overall

Mohammad Al-Fawa'reh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4262 – 4277

4274

conclusion is that using CSE-CIC-IDS-2018 data with ML
techniques is a very powerful approach to stealth attack
detection with a distinctive impact on cybersecurity in cloud
environments.

APPENDIXES

Table 9: Results with PCA
 REnt RF-Gini DT-Ent DT-Gini QDA
P R F P R F P R F P R F P R F
0 99% 99% 99% 100% 100% 100% 98% 98% 98% 99% 99% 99% 50% 68% 58%
1 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 92% 93% 93%
2 99% 100% 100% 100% 100% 100% 99% 99% 99% 99% 99% 99% 97% 95% 96%
3 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 93% 93% 93%
4 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 79% 8800%
5 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 99% 99% 99%
6 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
7 82% 8300% 83% 82% 8300% 83% 78% 81% 80% 78% 81% 80% 89% 86% 89%
8 70% 72% 73% 70% 72% 73% 68% 70% 69% 68% 70% 69% 72% 72% 72%
9 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 83% 83% 83%
 GNB Perceptron KNN-E KNN-M * * *
P R F P R F P R F P R F * * *
0 26% 30% 28% 78% 81% 80% 100% 100% 100% 100% 100% 100% * * *
1 92% 94% 93% 70% 95% 80% 100% 100% 100% 100% 100% 100% * * *
2 97% 69% 80% 98% 95% 87% 100% 100% 100% 100% 100% 100% * * *
3 91% 91% 91% 86% 86% 86% 100% 100% 100% 100% 100% 100% * * *
4 84% 78% 81% 99% 73% 84% 100% 100% 100% 100% 100% 100% * * *
5 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% * * *
6 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% * * *
7 89% 86% 89% 89% 86% 89% 88% 88% 88% 87% 87% 87% * * *
8 72% 72% 72% 52% 52% 52% 75% 75% 75% 75% 75% 75% * * *
9 60% 60% 60% 60% 60% 60% 100% 100% 100% 100% 100% 100% * * *

Table 10: Results without PCA.
 RF-Ent RF-Gini DT-Ent DT-Gini QDA

P R F P R F P R F P R F P R F
0 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
1 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
2 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
3 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
4 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
5 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
6 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 95% 91% 93%
7 83% 84% 83% 83% 84% 83% 78% 71% 80% 78% 71% 80% 30% 30% 30%
8 74% 76% 75% 74% 76% 75% 69% 71% 70% 69% 71% 70% 38% 38% 38%
9 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
 GNB Perceptron KNN-E KNN-M * * *
P R F P R F P R F P R F * * *
0 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% * * *
1 85% 90% 87% 100% 100% 100% 100% 100% 100% 100% 100% 100% * * *
2 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% * *
3 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% * * *
4 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% * * *
5 92% 80% 86% 100% 100% 100% 100% 100% 100% 100% 100% 100% * * *
6 64% 52% 57% 100% 100% 100% 100% 100% 100% 100% 100% 100% * * *
7 14% 14% 14% 79% 79% 79% 87% 87% 87% 87% 87% 87% * * *
8 40% 40% 40% 66% 66% 66% 75% 75% 75% 75% 75% 75% * * *
9 94% 94% 94% 99% 99% 99% 100% 100% 100% 100% 100% 100% * * *

Mohammad Al-Fawa'reh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4262 – 4277

4275

REFERENCES
1. O. Barayas., “How Internet of Things (IoT) Is

Changing the Cyber Security Landscape,” 2014.
[Online]. Available:
https://securityintelligence.com/how-the-internet-of-thi
ngs-iot-ischanging-the-cybersecurity-landscape/.
[Accessed: 14-Dec-2019].

2. C. Ventures, “Cybercrime Infographics: Illustrations
Of The Past, Present, And Future Threats We Face,”
2016. [Online]. Available:
https://cybersecurityventures.com/cybercrime-infograph
ic/. [Accessed: 14-Dec-2019].

3. R. K. Alqurashi, M. A. AlZain, B. Soh, M. Masud, J.
Al-Amri. Cyber Attacks and Impacts: A Case Study
in Saudi Arabia, International Journal of Advanced
Trends in Computer Science and Engineering, vol. 9, no.
1, pp. 217–224, 2020
https://doi.org/10.30534/ijatcse/2020/33912020

4. M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita,
“Network Anomaly Detection: Methods, Systems and
Tools,” IEEE Commun. Surv. TUTORIALS, vol. 16, no.
1, pp. 303–336, 2014.

5. P. Garc´ıa-Teodoro, J. D´ıaz-Verdejo, G. Macia -Fern´ a
Ndez, and E.´ Va Zquez, “Anomaly-based network
intrusion detection: Techniques,´ systems and
challenges,” Comput. Secur., vol. 28, pp. 18–28, 2009.
https://doi.org/10.1016/j.cose.2008.08.003

6. D.-Y. Yeung, Y. Ding, and D.-Y. Yeung, “Host-based
intrusion detection using dynamic and static
behavioral models,” Pattern Recognit., vol. 36, pp.
229–243, 2003.

7. D. Heckerman, “A Tutorial on Learning with
Bayesian Networks BT Learning in Graphical
Models,” M. I. Jordan, Ed. Dordrecht: Springer
Netherlands, 1998, pp. 301–354.

8. K. Sequeira and M. Zaki, “ADMIT: Anomaly-based
data mining for intrusions,” in Proceedings of the ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2002, pp. 386–395.
https://doi.org/10.1145/775047.775103

9. J. Patterson and A. Gibson, Deep learning: a
practitioner’s approach, 1st ed. O’Reilly Media, Inc.,
1005 Gravenstein Highway North, Sebastopol, CA
95472., 2017.

10. R. D. E. Ecosistemas, L. R. Bo, L. N. Mouso, D. A.
Faggi, and L. A. Gainza, “U Niversidad De B Uenos a
Ires,” pp. 1–5, 2007.

11. R. Messier, Network forensics, 1st ed. Hoboken:Wiley,
2017.

12. A. Orebaugh, G. Ramirez, and J. Burke, Wireshark
Ethereal network protocol analyzer toolkit, Ist.
Rockland, MA; [Place of publication not identified]
Syngress; Distributed by O’Reilly Media in the United
States and Canada, 2007.

13. C. Perkins, “IP Mobility Support for IPv4, Revised,”
2010.
https://doi.org/10.17487/rfc5944

14. B. Claise, B. Trammell, and P. Aitken, “Specification of
the IP Flow Information Export (IPFIX) Protocol for
the Exchange of Flow Information,” 2013.

15. M. Lucas, Network flow analysis, 1st ed. San Francisco:
No Starch Press, 2010.

16. C. Bullard, “Auditing Network Activity: Argus Layer
2+ Auditing Tool,” 2018. [Online]. Available:
https://n0where.net/auditing-network-activity.
[Accessed: 14-Dec-2019].

17. L. Metcalf and W. Casey, Cybersecurity and applied
mathematics, 1st ed. Cambridge, MA: Syngress is an
imprint of Elsevier, 2016.

18. E. W. Bethel, S. Campbell, E. Dart, K. Stockinger, K.
Wu, and I. S. on V. A. S. and T. 2006, “Accelerating
Network Traffic Analytics Using Query-Driven
Visualization,” in IEEE Symposium On Visual
Analytics Science And Technology Baltimore-USA,
2006, pp. 115–122.

19. M. J. A. Qayyum, M. H. Islam, “GENERIC MODEL
FOR INTRUSION DETECTION,” in International
Conference on Emerging Technologies (ICET), 2015,
pp. 270–276.

20. S. Axelsson, “Intrusion Detection Systems: A Survey
and Taxonomy,” 2002.

21. D. E. Denning, “An Intrusion-Detection Model,” 1987.
https://doi.org/10.1109/SP.1986.10010

22. T. Dietterich, C. Bishop, D. Heckerman, M. Jordan, and
M. Kearns, Introduction to Machine Learning Second
Edition Adaptive Computation and Machine
Learning, 2nd ed. MA: MIT Press, 2010.

23. K. Patel, “Lowering the Barrier to Applying Machine
Learning,” in CHI ’10 Extended Abstracts on Human
Factors in Computing Systems, 2010, pp. 2907–2910.

24. P. Barapatre, N. Z. Tarapore, S. G. Pukale, and M. L.
Dhore, “Training MLP neural network to reduce false
alerts in IDS,” in 2008 International Conference on
Computing, Communication and Networking, 2008, pp.
1–7.

25. C. Zhang, J. Jiang, and M. Kamel, “Comparison of BPL
and RBF Network in Intrusion Detection System BT -
Rough Sets, Fuzzy Sets, Data Mining, and Granular
Computing,” 2003, pp. 466–470.

26. W. A. H. M. Ghanem and A. Jantan, “A new approach
for intrusion detection system based on training
multilayer perceptron by using enhanced Bat
algorithm,” Neural Comput. Appl., vol. 4, no. 107, pp.
1–34, 2019.

27. C. Vaid and H. K. Verma, “Anomaly-based IDS
implementation in cloud environment using BOAT
algorithm,” in Proceedings of 3rd International
Conference on Reliability, Infocom Technologies and
Optimization, 2014, pp. 1–6.

Mohammad Al-Fawa'reh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4262 – 4277

4276

28. A. Ammar, “A Decision Tree Classifier for Intrusion
Detection Priority Tagging,” J. Comput. Commun.,
vol. 3, no. KSA, pp. 52–58, 2015.
https://doi.org/10.4236/jcc.2015.34006

29. M. Nawir, A. Amir, O. B. Lynn, N. Yaakob, and R.
Badlishah Ahmad, “Performances of Machine
Learning Algorithms for Binary Classification of
Network Anomaly Detection System,” J. Phys. Conf.
Ser., vol. 1018, p. 12015, 2018.

30. P. Foremski, C. Callegari, and M. Pagano, “Waterfall:
Rapid Identification of IP Flows Using Cascade
Classification BT - Computer Networks,” in 21st
International Conference on Computer Networks, 2014,
pp. 14–23.

31. Z. Tan, A. Jamdagni, X. He, P. Nanda, R. P. Liu, and J.
Hu, “Detection of denial-of-service attacks based on
computer vision techniques,” IEEE transactions on
computers, vol. 64, no. 9, pp. 2519–2533, 2015.

32. E. A. Dmitriev and V. V Myasnikov, “Comparative
study of description algorithms for complex-valued
gradient fields of digital images using linear
dimensionality reduction methods,” Comput. Opt., vol.
42, pp. 822–828, Sep. 2018.

33. J. Oliver, “Jason brownlee - Deep learning with
python,” J. Chem. Inf. Model., vol. 53, no. 9, pp.
1689–1699, 2013.
https://doi.org/10.1021/ci400128m

34. K. P. Murphy, Machine Learning A Probabilistic
Perspective, 1sth ed. MIT press, 2012.

35. M. Chauhan, A. Pratap, Sonika, and A. Dixit,
“Designing a technique for detecting intrusion based
on modified Adaptive Resonance Theory Network,”
in 2015 International Conference on Green Computing
and Internet of Things (ICGCIoT), 2015, pp. 448–451.

36. M. Sabhnani and G. Serpen, “Application of Machine
Learning Algorithms to KDD Intrusion Detection
Dataset within Misuse Detection Context,” in
Proceedings of the International Conference on Machine
Learning; Models, Technologies and Applications, 2003,
pp. 209–215.

37. P. Lichodzijewski, A. N. Zincir-Heywood, and M. I.
Heywood, “Hostbased intrusion detection using
self-organizing maps,” in Proceedings of the 2002
International Joint Conference on Neural Networks.
IJCNN’02 (Cat. No.02CH37290), 2002, vol. 2, pp.
1714–1719 vol.2.

38. H. Gunes Kayacik, A. Nur Zincir-Heywood, and M. I.
Heywood, “A Hierarchical SOM-based Intrusion
Detection System,” Eng. Appl. Artif. Intell., vol. 20, no.
4, pp. 439–451, Jun. 2007.

39. M. Lichman, “UCI Machine Learning Repository,”
2013.

40. R. Kim, S. Pyke, “DETECTING HACKERS
(ANALYZING NETWORK TRAFFIC) BY
POISSON MODEL MEASURE,” 2004. .

41. M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani,
“A Detailed Analysis of the KDD CUP 99 Data Set,”

in CISDA’09: Proceedings of the Second IEEE
international conference on Computational intelligence
for security and defense applications, 2009, pp. 1–6.

42. I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani,
“Toward Generating a New Intrusion Detection
Dataset and Intrusion Traffic Characterization,” in
4th International Conference on Information Systems
Security and Privacy (ICISSP 2018), 2018, no. Cic, pp.
108–116.
https://doi.org/10.5220/0006639801080116

43. M. Lichman, “1999 DARPA Intrusion Detection
Evaluation Dataset — MIT Lincoln Laboratory,”
2000. [Online]. Available:
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusio
n-detectionevaluation-dataset. [Accessed: 14-Dec-2019].

44. G. Shmoo, “Public PCAP files for download,” 2011.
[Online]. Available:
https://www.netresec.com/?page=PcapFiles. [Accessed:
14-Dec-2019].

45. CAIDA, “CAIDA Data - Overview of Datasets,
Monitors, and Reports,” 2011. [Online]. Available:
http://www.caida.org/data/overview/. [Accessed:
14-Dec-2019].

46. UNIBS, “UNIBS: Data sharing,” 2009. [Online].
Available: http://netweb.ing.unibs.it/ ntw/tools/traces/.
[Accessed: 17-Dec-2019].

47. S. Bafandeh, I. And, and M. Bolandraftar, “Application
of K-Nearest Neighbor (KNN) Approach for
Predicting Economic Events: Theoretical
Background,” 2013.

48. H. Gao, F. Cao, and P. Zhang, “Annulus: A novel
image-based CAPTCHA scheme,” IEEE Reg. 10
Annu. Int. Conf. Proceedings/TENCON, pp. 464–467,
2017.

49. Z. Zhang, “Introduction to machine learning:
K-nearest neighbors,” in Annals of Translational
Medicine, vol. 4, no. 11, 2016, pp. 1–7.

50. H. Sarvari and M. M. Keikha, “Improving the accuracy
of intrusion detection systems by using the
combination of machine learning approaches,” in
Proceedings of the 2010 International Conference of Soft
Computing and Pattern Recognition, SoCPaR 2010,
2010, pp. 334–337.
https://doi.org/10.1109/SOCPAR.2010.5686163

51. A. M. Saxe, J. C. McClelland, A. Y. Ng, K. V Shenoy, S.
University., and D. of E. Engineering., “Deep linear
neural networks: a theory of learning in the brain
and mind,” Stanford, 2015.

52. A. Pena Ya˜ nez, “El anillo esof˜ agico inferior.” Rev.
Esp. Enferm. Apar.´ Dig., vol. 26, no. 4, pp. 505–516,
1967.

53. B. G. Atli, “Anomaly-Based Intrusion Detection by
Modeling Probability Distributions of Flow
Characteristics,” Aalto University, 2017.

54. M. H. Kondarasaiah and S. Ananda, Kinetic and
mechanistic study of Ru(III)-nicotinic acid complex

Mohammad Al-Fawa'reh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4262 – 4277

4277

formation by oxidation of bromamine-T in acid
solution, vol. 27, no. 1. 2004.

55. D. D. Gutierrez, Machine learning and data science:
an introduction to statistical learning methods with
R. Basking Ridge, N.J: Technics Publications, 2015.

56. J. Lampinen, J. Laaksonen, and E. Oja, “Neural
Network Systems, Techniques and Applications in
Pattern Recognition,” 1997. [Online].
Available:http://zeus.hut.fi/publications/ps/b1
nnsystems.ps. [Accessed: 14-Dec-2019].

57. P. Kaviani and S. Dhotre, “Short Survey on Naive
Bayes Algorithm,” Int. J. Adv. Res. Comput. Sci.
Manag.,vol. 04, Nov. 2017.

58. B. Ghojogh and M. Crowley, “Linear and Quadratic
Discriminant Analysis: Tutorial,” 01-Jun-2019.
[Online]. Available:
https://danielmiessler.com/study/tcpdump.

59. A. Kalliola et al., “Learning Flow Characteristics
Distributions with ELM for Distributed Denial of
Service Detection and Mitigation BT Proceedings of
ELM-2016,” in In ELM-2016 Cham-Switzerland, 2018,
pp. 129–143.

60. V. Kanimozhi and T. P. Jacob, “Artificial Intelligence
based Network Intrusion Detection with
hyper-parameter optimization tuning on the realistic
cyber dataset CSE-CIC-IDS2018 using cloud
computing,” ICT Express, vol. 5, no. 3, pp. 211–214,
2019.

61. V. Kanimozhi and T. Prem Jacob, “Artificial
intelligence based network intrusion detection with
hyper-parameter optimization tuning on the realistic
cyber dataset CSE-CIC-IDS2018 using cloud
computing,” in Proceedings of the 2019 IEEE
International Conference on Communication and Signal
Processing, ICCSP 2019, 2019, pp. 33–36.
https://doi.org/10.1109/ICCSP.2019.8698029

62. Q. Zhou and D. Pezaros, “Evaluation of Machine
Learning Classifiers for Zero-Day Intrusion
Detection – An Analysis on CIC-AWS-2018 dataset,”
2019. [Online]. Available:
http://arxiv.org/abs/1905.03685.

63. Darus, Mohamad Yusof, Mohd Afham Omar, Mohd
Farihan Mohamad, Zulhairi Seman, and Norkhusahini
Awang. Web Vulnerability Assessment Tool for
Content Management System. International Journal 9,
no. 1.3, 2020

