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 
 
ABSTRACT 
 
In this article, we ameliorate the 2-D enhanced matrix pencil 
(2-D EMP) by employing unitary matrix transformation to 
reach the 2-D poles corresponding to the direction of arrival 
(DOA), elevation and azimuth angles using Uniform 
Rectangular Arrays (URA) and Uniform Circular Array 
(UCA). The 2-D unitary enhanced matrix pencil (2-D UEMP) 
allows transformation to real matrices, which can 
significantly, decrease the complexity of computation. 
Simulations results show that the accuracy of the 2-D UEMP 
can achieve the same results compare to 2-D EMP, then since 
we find azimuth and elevation angles using 2-D UEMP, The 
results demonstrate clearly that the Matrix Pencil investigate 
in this work is more accurate and stable compared to the 
published measure. 
 

Key words: UEMP, EMP, DOA, UCA, URA, Matrix 
Pencil, Smart Antenna 
.  
1. INTRODUCTION 
Nowadays, wireless telecommunications constantly 
researches new technologies to improve bandwidth, capacity 
and quality. One of the technologies that can help improve 
wireless systems is the smart antenna [1-2]. 
 
A smart antenna is an essential element in 
telecommunications systems, whose antenna pattern 
performance can be improved. This is done by several 
antennas, which are processed simultaneously. The dynamic 
change of the antenna pattern allows the system to beam at a 
target, and with this improvement in its signal to noise ratio. 
The beam can also be shaped to eliminate interference and 
multipath [3] from certain directions. Spatial separation of 
multiple users by multiple beams allows more users per cell 
because users can reuse the frequency. Here are some 
examples of using a smart antenna system to improve a 
wireless system. 
 

 
 

The smart cities need infrastructural development and housing 
plan by using smart technologies for the comfortable life of 
the people [4]. While developing smart cities, there are many 
issues that need to be considered, such as population, culture, 
technology and growth. The main issue, however, is  the high 
population of a city. It needs to analyze the impact of  traffic 
and health monitoring systems. GPS has limitations such as 
selective availability and anti-spoofing. Instead of  using GPS, 
an IRNSS constellation can be used to improve the quality of 
service wider availability across the regions.This paper is 
organized as follow: In Section 2, we present  the previous 
work according to  the high resolution methods in section 3, 
we define the  properties of the centro-Hermitian matrix are 
presented. Then a signal model for the 2-D case is presented in 
section 3. 2-D UEMP is developed in section 4. Simulation 
results are shown in section 5, followed by the conclusion. 
 
2. PREVIOUS WORK 
 
The conventional signal processing algorithms using the 
covariance matrix works on the assumption that the signals 
impinging on the array are not coherent. Under uncorrelated 
conditions, the source covariance matrix satisfies the full rank 
condition, which is the basis of the eigen-decomposition. 
Many techniques involve modification of the covariance 
matrix through a preprocessing scheme called spatial 
smoothing .Recently, Hua and Sarkar [5] utilized the matrix 
pencil to get the DOA of the signals in a coherent multiple 
environments, for 2-D DOA, proposed 2-D enhanced matrix 
pencil (2-D EMP) method which achieves better results than 
the 2-D MP [6] and then the EMP [7].  
 
In order to reduce the computational complexity of 
calculations, Huang and Yeh [8] have developed a unitary 
transform; this algorithm has a reduced computational 
complexity, because it is based on the real-valued 
computations at all stages. Many works [9] applied Unitary 
Transformation to ESPRIT; moreover, unitary ESPRIT 
achieves automatic pairing, sono pair-matching procedure is 
needed. Also, in [10] it’s shown that TLS-ESPRIT estimate 
accurately 2-D DOA in the uncorrelated sources, For all 
raisons listed above, the main aim of this paper is to apply 
2-D. UEMP to determinate azimuth and elevation angles 
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impinging on Uniform Rectangular and Circular Array, then 
smart Antenna directs the principal beam towards the desired 
signal by using Zero forcing method [11]. 
 
3. CENTRO-HERMITIAN MATRIX 

 
A square NxN matrix, B, is called unitary, if it satisfies 
B-1=BH. The superscript H denotes the complex conjugate 
transpose of a matrix. Where A, is the centro-hermitian, if it 
satisfies: 
 

*

P S
A A  

                                 (1) 

P


is called the exchange matrix and defined as  
0 . . . 0 0 1
0 . . . 0 1 0
0 . . . 1 0 0

1 . . . 0 0 0

P

P P

 
 
 
 
 
 
  


    

              (2) 

Here P


is P X P square matrix, and A*is conjugate of A. 
Theorem 1: If the matrix A is centro-hermitian, then 

H
P SQ AQ is a real matrix. Here the matrix Q is unitary, whose 

columns are conjugated symmetric and has a sparse structure 
[13]. For P even, we have: 

1
2P

I iI
Q

i
 

                              (3) 
Here, Iand Π are matrices that have the dimension of P /2 and

( 1)i  
.  

When P is odd, we have: 
0

1 0 2 0
2

0
P

I iI

Q
i

 
 

  
                  (4) 

Proof 1: Using p p I  
, the conjugate of 

H
P SQ AQ is 

* * * * *( )H T T
P S P S P P P S S SQ A Q Q A Q Q A Q      Since

*Q Q   and 
*

P SA A    
 

*( )H H
P S P SQ AQ Q AQ                              (5) 

Therefore, 
H
P SQ AQ

 is a real matrix. 
 

4.  SIGNAL MODEL 
 

In order to define the signal model, we have used two 
networks. The first one is the Uniform Rectangular Array 
(URA) and the second one is Uniform Circular Array 
(UCA).We assume that there are N antenna with M is the 

narrow band far field signals from different incident direction. 
The radius of the circular array is denoted as r and wavelength 
of narrow band is λ. The incident angle of the signals is shown 
in figure.1. 

 

Figure.1: Uniform circular array[12] 

Consider a uniform rectangular array of MN unidirectional 
sensor elements shown in figure. 2. With Δx and Δy are the 
sensor spacing in x and y direction, and for simplicity we 
assume that Δ=Δx=Δy. 

 
 
 
 
 
 
 

 
 
 
 
 

 

 

Figure. 2:MNuniform rectangular array 
 

The narrow-band plane waves arrive at this uniform 
rectangular array, with an elevation angle (θ) and the azimuth 
angle (). Then the signal received at the sensor (m,n) is as 
follows: 

( , ) ( , ) ( , )( ) ( ) ( )m n m n m nX t Z t n t                    (6) 
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The signal model has P, 2-D exponential signals, where	ܽ௣and 
 are the magnitudes and the phases respectively, d is number	ߛ
of signals, and n(m,n) indicates additive White Gaussian 
Noise. 
 

M 

N 

x Δx 

S(t) 

Δy 

z 

 

θ 

y 



Mohammed Amine Ihedrane et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.5), 2020, 96 – 102 
 

98 
 

 

5. 2-D UNITARY ENHANCED MATRIX PENCIL (2-D 
UEMP) 

The Hankel matrix Z(i,j) is defined as: 
 

 

1

2 2 1

( , ) (1, )
( , )

( , ) ( , )

i j N m j
i j

M m i j M m i N m j

Z Z

Z
Z Z

 

     

 
 

  
  



 



 (8) 

 
Where m1 is the first pencil parameter (d m1 M-d) and 
m2 is the second pencil parameter (d m2 N-d). 
 
By using theorem 1, we can write: 

H
r chZ Q Z Q                        (9) 

Where Zr is real valued matrix. 

2 1
H H

r x rQ J Q Z Q J Q Z                (10) 
Hence, 

*
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r x rQ J Q Z Q J Q Z              (11) 
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Since, x = xije 
: 
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     (13) 

Therefore: 

1 1tan Re( ) Im( )
2
xi H H

r rQ J Q Z Q J Q Z
 

  
 

    (14) 

In the real case, the signal is contaminate with noise, so Zr 
matrices are constructed from the noisy data X(m,n)  in equation 
(6). 
Now the singular value decomposition (SVD) of real Zr, can 
be written as: 

H H H
r s s s n n nZ U V U V U V          (15) 

Where Us , s and HVs are in the signal subspace 
corresponding the d principal components whereasU n , n  

and HVn are in the noise subspace.  is the singular values of 
Zr, which are located on the main diagonals in the descending 
order 1 2 d     . d is number of the signals. If the 
data is noiseless, the first d singular values are nonzero, the 
rest is zero, where:  

i >0  for i =0, 1, …d, 

i =0  for i =d+1, …min(m1 (M-m2+1), m2 (N-m1+1) ) 
(16) 

 

If the data is noisy, d needs to be estimated, The ratio of each 
of the singular value to the largest one determines the value of 
d. the signal subspace has dimension d that corresponds to the 
main eigen-values of  and the noise subspace that is related 
to the rest of eigen-values.  In order to reduce the effect of the 
noise, the equation (14) can be written as: 

 

1 1tan Re( ) Im( )
2
xi H H

s sQ J Q U Q J Q U
 

  
 

  (17) 

 
Then: 

12 tan ( )
xi x                          (18) 

As before: 
 

3 3tan R e( ) Im ( )
2

yi H H
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  
 
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We use left singular eigenvector sV  

3 3ta n R e( ) Im ( )
2

yi H H
s sQ J Q V Q J Q V
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  
 
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Then: 
12 tan ( )

yi y
                           (21) 

Once xi
 and

yi
 are estimated, the elevation and azimuth 

angles are obtained from the following equations, without 
correct pairing: 

 

 
2 20sin ( ) ( )       

2  
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i

i

xi yi
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Ln
Arctg
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i d
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



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       
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

(22) 

 
The proposed estimation method is summarized as follows: 
 
Step1: From the data signal, find a particular Enhanced 

MatrixZ(i,j). 
Step2: Compute the real data matrix Zr. 
 
Step3: Compute the SVD ofZr, and calculate left and right 

singular vectorsUs andVs  (respectively), which the 
d largest singular vectors of Zr are. 

 
Step4: Calculate the generalized eigenvalues of the matrix

1Im( )H
sQ J Q U and 1Re( )H

sQ J Q U  to 

findαxand the generalized eigenvalues of the matrix

3Im( )H
sQ J Q V and 3Re( )H

sQ J Q V  to find αy. 
Step5: Calculate azimuth and elevation angles using (22). 
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6. RESULTS AND SIMULATIONS  

For all simulations, the signals have a phase of γi=0 degrees, 
and are contaminate with a zero mean Gaussian white noise 
with variance σ2. The distance between the antenna elements 
is Δ=Δx=Δy=λ/2. In this paper the Cramer-Rao Bounds 
(CRB)is employed for performance comparison. The CRB 
provides a lower limit on the variance obtainable by any 
technique as a function of the Fisher information matrix 
(FIM) and the estimator’s bias gradient. The theoretical CRB 
for the 2D-DOA cases was developed in [11]. 

In the first step , we choice of the pencil parameter , there is a 
value of L which, in the case where the signal has only one 
real component, minimize the variant of the estimator. Its 
optimal value is: 

                                    (23)  
One can find an analytical expression of the variance of the 
estimator in the case of a single frequency: 

 

                              (24) 
 

In this case, the equation 24 leads to the following result: 

           (25) 

Then we demonstrate that there exist, for a given value of 
number of antenna N, two optimal values for the parameter L 
which are: 

                     (26) 

In order to prove this solution,  we have used Two coherent 
signals are impinging on URA with θ =[45°,55°] and 
=[30°,40°].The numbers of antenna elements are M =N =20. 
This simulation results are based on 800 Monte Carlo runs and 
one snapshot. The SNR=20 dB. Different values of m1 and 
m2 are plotted along the x-axis and the inverse of the sample 
variance of the estimates of theta (elevation angle) and phi 
(azimuth angle) in logarithmic domain for 2-D UEMP and 
2-D EMP method is shown along the y-axis in figure 3. 

 

 

 

 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.3: Sample variance of the estimated angles as function 
of pencil parameter  

From figure 3, it is easy to observe that the pencil method for 
the two methods 2-D UEMP and 2-D EMP is the most 
sensitive to noise when the free parameter pencil is equal to d 
(number of impinging signal) and N – d or M-d. Figure 3 (a) 
and (b) show that 9 and 12 are the best choices for m1 figure 3 
(c) show that 9 and 11 are the best choices for m2. In fact, all 
values satisfying (N/3  m1  2N/3) appear to be good 
choices in general. This phenomenon can be seen in all other 
cases of θ,  and SNR. In the following examples the 
parameters pencil are chosen to bem1=m2=9 because they are 
the optimum choice for the two methods when M=N=20 or 
M=N=19, andm1=m2=8 when M=N=18.  

 

 

 

 

 

 
 
 

 
 
 
 
 
 
 
 

Figure.4: Sample variance of the estimated angles as function 
of SNR, 20*20 antennas 
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There are two coherent signals are impinging on URA with θ 
=[45°,55°] and =[30°,40°]. The numbers of antenna 
elements are M=N=20. The first pencil parameter m1 =9 and 
the second pencil parameter m2 =9. This simulation results is 
based on 800 Monte Carlo runs and one snapshot. Different 
values of SNR are plotted along the x-axis and the inverse of 
the sample variance of the estimates of theta (elevation angle) 
and phi (azimuth angle) in logarithmic domain for 2-D UEMP 
and 2-D EMP is shown along the y-axis in figure.4. 
In the second step, we chose the upgrade the performances of 
the 2-D UEMP using URA geometry . for that we chose two 
coherent signals are impinging on URA with θ=[45°,55°] and 
=[30°,40°].The numbers of antenna elements are M=N=18. 
The first pencil parameter m1=8 and the second pencil 
parameterm2=8. This simulation results is based on 800 
Monte Carlo runs and one snapshot. Different values of SNR 
are plotted along the x-axis and the inverse of the sample 
variance of the estimates of theta (elevation angle) and phi 
(azimuth angle) in logarithmic domain for 2-D UEMP and 
2-D EMP is shown along the y-axis in figure. 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure.5:  Sample variance as function of SNR an 18*18 

antennas 
 

In the figures 4 and 5, 2-D UEMP shows comparable 
performance than 2-D EMP except for small SNR region. 
 

 

 

 

7.  DISCUSSION  
 
In this section, we analyze the Matrix Pencil investigated at 
this research and compared with the experimented one 
[13-15] for circular array of eight circular sector antennas, 
with d = 0.6 λ. This network receives the desired signal at an 
angle of 50 degrees, interference at angles of 25 and 80 
degrees and the SNR = 20 dB. 
 

In the figure .6 we plots the spectrums of three functions 
including 2-D UEMP [13], and the proposed estimator. It is 
seen from the figures that the proposed method estimates Ψ 
correctly, which generates corresponding peaks at Ψ1= sin 
(θଵ) cos (φଵ) = sin (10) cos (20) ≈0.16, Ψ2= sin (θଶ) cos (φଶ) 
= sin (30) cos (35) ≈ 0.41 and Ψ3= sin (θଷ) cos (φଷ) = sin (40) 
cos (150) ≈ −0.56.as expected. This indicates that can be 
estimated efficiently by the method with2-D spectral search. 

 
Figure.6. Matrix Pencil for azimuth and elevation (10, 20) 

(30, 35) and (40,150) 
 

 
 

Figure.7:  Matrix Pencil using 4 elements with            
central antenna 

Figure.7 present that after determined angles by using 2–D 
Matrix Pencil method, the proposed geometry directs the main 
beam towards the user and at the same time forms nulls in the 
directions of interferers in the case of two and tree signals. 
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Table 1:. Comparative results for different signals 

 
From the table 1, we observe that the proposed method estimates 3 
DOA more accurately while the experimented one cannot detect 
angles when the Number of signals exceeds 2. The proposed one 
gives a less error margin to estimate DOA. 
 
We observe also that 2–D Matrix Pencil using the proposed 
geometry can be applied for correlated sources to eliminate 
multipath (when the antenna receives the desired signal and its 
various multipath components). 
 
The figure.8 confirm that the 2-D UEMP can resolve clearly the 
angles (θ,φ)  and the peaks become Sharp. Both of the two 
algorithms can get a correct estimation of the direction angle of 
independent signals. Because of re-constructing the data 
covariance matrix in the modified algorithm, which is equivalent 
to utilize the information of the data one more time, the peak of 
spectrum becomes sharper and the precision is higher [14]. 

 
 

Figure.8:  Pencil algorithm using 4 elements  

 
 
 
 
 
 
 

8. CONCLUSION 
 
A new 2-D UEMP is employed to estimate the arrival angles 
impinging on URA and UCA arrays. This algorithm converts 
the complex data matrix to a real matrix so the computational 
load is reduced. Besides, the pair-matching procedure of the 
angles is automatic, which also reduce the computational 
load. It is seen that for lower SNR of the data, 2-D EMP 
performs better than 2-D UEMP, after a certain threshold, 
both of them show comparable performance. The proposed 
method can estimate 2-D DOAs in the case of correlate and 
uncorrelated sources. The proposed method can be apply in 
many applications like smart antenna, computer simulations 
show that when the 2-D DOAs are accuracy estimate by 2-D 
UEMP smart antenna. 
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