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ABSTRACT 
 

Multipaths from COST 2100 channel model (C2CM) 

semi-urban scenario obtained from IEEE DataPort are 

clustered using simultaneous clustering and model selection 

(SCAMS). SCAMS jointly solves the problem on model 

selection and clustering by determining simultaneously the 

number of clusters and their membership unlike well-known 

clustering approaches that give only the number of clusters. 

The number and membership of clusters depend on 𝜆 and 𝛾, 

the parameters that weigh the penalty terms so that the trivial 

solution of the affinity matrix is avoided. The clustered 

multipaths from SCAMS are compared with the reference 

multipath clustering datasets available at IEEE DataPort 

using Jaccard index which examines the accuracy of the 

clustering approach. 

 

Key words: channel models, clustering methods, data 

handling, data models, data preprocessing, multipath 
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1. INTRODUCTION 

 

The European Cooperation in Science and Technology 

(COST) 2100 channel model can replicate the stochastic 

properties of multiple-input multiple-output (MIMO) 

propagation channels. C2CM is characterized by multipath 

clusters, groups of multipath components with similar delay 

and angles. A multipath component (MPC) is defined in delay 

and angular domains by its delay, angle of departure 

(Azimuth of Departure (AoD), Elevation of Departure 

(EoD)), and angle of arrival (Azimuth of Arrival (AoA), 

Elevation of Arrival (EoA)). Channel modeling is used to 

study the characteristics of wireless communications systems. 

The resulting model is very crucial for determining the 

performance of communications system. Many channel 

measurements and models indicate the clustering of 

multipaths. So the accuracy of channel models hinges on the 

accuracy of the clustering of multipaths. Most clustering 

approaches [1]–[5] give only the number of clusters as the 

accuracy measure. The problem with this is that eventhough 

the number of clusters is correct, there is no assurance that the 

membership of multipath clusters is accurate which would 

result in an inaccurate channel model. To solve the problem 

of determining the membership of the clusters, the study uses 

SCAMS to simultaneously solve the number of clusters and 

the membership of the clusters. 

 

This study presents for the first time the results of SCAMS in 

clustering C2CM datasets in semi-urban scenarios taken from 

IEEE DataPort. It details the clustering of multipaths by 

simultaneously solving the number of clusters and their 

membership. The main contributions of this paper are (1) 

SCAMS is introduced to cluster multipaths in C2CM 

semi-urban scenarios; and (2) the results show that the 

clustering approach can be used as an alternative in the field 

of channel modeling. 

 

The paper is organized in the following way. Section 2 

describes the multipath datasets. Section 3 discusses the 

SCAMS clustering approach. Section 4 presents the results of 

SCAMS. Section 5 concludes the work. 

 
2. MULTIPATH CLUSTERING DATASETS 

 

A time-varying (denoted by 𝑡) channel impulse response is 

obtained by the superposition of MPCs from all the active 

multipath clusters based on the position of the MS. It is given 

in delay and direction domain as 

 

ℎ(𝑡, 𝜏, 𝚿BS, 𝚿MS) =

∑ ∑𝑝 𝑎𝑛,𝑝𝛿(𝜏 − 𝜏𝑛,𝑝)𝛿(𝚿BS − Ψ𝑛,𝑝
BS )𝛿(𝚿MS − 𝚿𝑛,𝑝

MS)𝐾
𝑘=1

 (1) 

 

where K is the set of visible cluster indexes, 𝑎𝑛,𝑝  is the 

complex amplitude of the pth MPC in the nth cluster, 𝚿𝑛,𝑝
𝐵𝑆  is 

the direction of departure (AoD, EoD), and 𝚿𝑛,𝑝
𝑀𝑆  is the 

direction of arrival (AoA, EoA) of the MPC. The overview of 

C2CM is presented in [6] while the specifics are discussed 

extensively in [7]. 

 

To have a common set of data that can be used in channel 

modeling, analyzing clustering approaches, and for purposes 

of comparing clustering accuracies, multipaths in indoor and 

semi-urban scenarios are taken from the multipath datasets in 

IEEE DataPort [8]. The details of the generation of the 

datasets can be found in [9]. The datasets used in this study as 

reference data in multipath clustering are the following: 

  

1.  Semi-Urban, B1, line-of-sight, single link  

2.  Semi-Urban, B2, line-of-sight, single link  

 

There are thirty trials for each channel scenario with different 

number of multipaths and clusters. The power component in 

 

    ISSN 2278-3091 

Volume 8, No.5, September - October 2019 

International Journal of Advanced Trends in Computer Science and Engineering 
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse15852019.pdf 

https://doi.org/10.30534/ijatcse/2019/15852019 
 

 

 

 

  

 

 

http://www.warse.org/IJATCSE/static/pdf/file/ijatcse15852019.pdf
https://doi.org/10.30534/ijatcse/2019/15852019


Jojo F. Blanza et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 1914 – 1919 

1915 

 

column 8 was not included in the clustering process. The 

cluster identifications or IDs in column 9 are not also 

included in the clustering process as they only serve as the 

reference IDs in comparing with the calculated IDs. The 

whitened data of columns 1 to 7 are normalized [0, 1] using 

 

𝑿normalized = (𝑿whitened − 𝑿min) ∘ (𝑿max − 𝑿min)−1    (2) 

 

where 𝑿normalized  is the normalized value of the whitened 

data, 𝑿whitened is the whitened data in columns 1 to 7, 𝑿max is 

the maximum data of each column, 𝑿min  is the minimum 

data of each column, and  is the Hadamard product. 

Clustering results are greatly affected by the values of the 

affinities and (2) makes sure that the affinities are [0,1] for 

improved accuracy. The similarity between the computed 

data and the reference data is given by the Jaccard index 𝜂. 

The similarity measure is defined as 

 

      𝜂 =
|𝑪ref ∩ 𝑪calc|

|𝑪ref ∪ 𝑪calc|
=

𝑀11

𝑀11+𝑀10+𝑀01
  ∈ [0,1]       (3) 

 

where | ⋅ |  refers to cardinality, 𝑪𝑘 ∈ 𝑪 , 𝐾 = |𝑪|  is the 

number of multipath clusters, 𝑪ref is the reference clusters, 

𝑪calc  is the calculated clusters, 𝑀11 is the total number of 

multipath clusters for the accuracy on the number of clusters 

or total number of multipaths for the accuracy on the 

membership of the clusters in 𝑪ref  that are the same as 

in 𝑪calc, 𝑀10 is the total number of multipath clusters for the 

accuracy on the number of clusters or total number of 

multipaths for the accuracy on the membership of the clusters 

in 𝑪ref that are not in 𝑪calc, and 𝑀01 is the total number of 

multipath clusters for the accuracy on the number of clusters 

or total number of multipaths for the accuracy on the 

membership of the clusters in 𝑪calc that are not in 𝑪ref. 

 
3. SIMULTANEOUS CLUSTERING AND MODEL 

SELECTION (SCAMS) 

 

The problem on clustering and estimating the number of 

clusters at the same time can be solved by SCAMS [10]–[11]. 

A given dataset 𝑿 can be represented as 𝑿𝑪calc where 𝑪calc 

is generalized as an affinity matrix that can be formulated 

using the self-expression method [12]. The solution to  

 

min ∥ 𝑪calc ∥1  s.t. 𝑿 = 𝑿𝑪calc, diag(𝑪calc) = 𝟎 (4) 

 

corresponds to 𝑪calc . By denoting 𝑾 = −𝑪calc  and 

introducing an ideal affinity matrix 𝑪ideal , the clustering 

problem can be expressed as 

 

 min  〈𝑾, 𝑪ideal〉, 
 

 s.t.  𝒛𝑘{0,1}𝑅, ∑ 𝒛𝑘 = 𝒆𝑀
𝐾
𝑘=1 , 

 

 𝑪ideal = ∑ 𝒛𝑘 ∘ 𝒛𝑘,    (𝑪ideal)
𝐾

𝑘=1
= 𝐾     (5) (5) 

 

where 〈⋅,⋅〉 is the Frobenius inner product, 𝒆𝑀is an all one 

vector of size 𝑅 . (5) can be expressed as an augmented 

Lagrange function 

𝓛 = tr(𝑾T𝑪ideal) + 𝜆rank(𝑪ideal) + 𝛾‖𝑯‖0 + 𝑔(𝑯)

+ tr(𝒀T(𝑪ideal − 𝑯 + diag(𝑯) − 𝑰))

+
1

2𝜇
‖𝑪ideal − 𝑯 + diag(𝑯) − 𝑰‖F

2, s.t. 𝑪ideal ∈ 𝑺+

   (6)  

 

where 𝑯 is an intermediate variable introduced to make the 

problem tractable, 𝑔 is the indicator function of the convex 

set [0,1]𝑅×𝑅, 𝒀 is the Lagrange parameter, 𝑰 is an identity 

matrix, 𝜇 > 0 is a penalty parameter, ∥⋅∥0  is the ℓ0 norm 

which counts the number of nonzero elements, 𝜆 and 𝛾 are 

the parameters to weigh the respective penalty terms, ∥⋅∥F is 

the Frobenius norm, and 𝐒+  is the positive semi-definite 

cone. The Lagrange function can be minimized with respect 

to 𝑪ideal  and 𝑯 alternatingly, by fixing the other variable, 

and then updating 𝒀 . The overall framework of the 

Alternating Direction Method of Multipliers (ADMM) [13] 

which solves 𝑪ideal  is shown in Algorithm 1. 𝑪ideal can be 

factorized as 𝒁𝒁T  where 𝒁  is an indicator matrix whose 

rows indicate to which cluster a point belongs. 𝒁 can be 

solved by the Asso Constrained Boolean Matrix Factorization 

(AssoCBMF) [10] that is presented in Algorithm 2 where 

superscript 𝑩 is a “Boolean” matrix containing only 0’s and 

1’s, | ⋅ | is the cardinality of the Boolean matrix and defined 

as the number of 1’s in it, ⊕ is the exclusive-or operation 

applied element-wise, 𝑫(𝑖, 𝑗) is the association accuracy as 

for rule 𝑪ideal
𝑩(𝑗, : ) ⇒ 𝑪ideal

𝑩(𝑖, : ) , 𝜐 is a threshold for 

constructing 𝑫𝑩, and 𝑟thresh is a threshold for deleting the 𝑗 

-th columns. The number of clusters and their membership 

are the output of the AssoCBMF algorithm. 

 

Algorithm 1: Alternating Direction Method of Multipliers 

 
𝐈𝐧𝐩𝐮𝐭: Negative affinity matrix 𝑾, parameters λ and  
 γ

 𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞: 𝑪ideal = 𝑯 = 𝒀 = 𝟎𝑁×𝑁, μ = 106, ρ = 1.1,

  μmin = 10−10 and ε = 10−8.
  𝐰𝐡𝐢𝐥𝐞 not converged 𝐝𝐨
  𝐒𝐭𝐞𝐩 𝟏 Fix the others and update 𝑪ideal as

   𝑪ideal = argmin𝑪ideal
‖𝑪ideal − 𝑯 + μ(𝑾 + 𝒀)‖F

2 +

   2μλrank(𝑪ideal), s. t.  𝑪ideal ∈ 𝐒+.
  𝐒𝐭𝐞𝐩 𝟐 Fix the others and update 𝑯 as

   𝑯′ = argmin𝑯‖𝑯 − 𝑪ideal − μ𝒀‖F
2 + 2μγ‖𝑯‖0 + 𝑔(𝑯),

   𝑯 = 𝑯′ − diag(𝑯′) + 𝑰.
  𝐒𝐭𝐞𝐩 𝟑 Update the multipliers

   𝐘 = 𝐘 +
1

μ
(𝑪ideal − 𝑯).

  𝐒𝐭𝐞𝐩𝟒 Update the parameter 𝜇 by

   𝜇 = max (
μ

ρ
, μmin) .

  𝐒𝐭𝐞𝐩 𝟓 Check the convergence conditions:

   ‖𝑪ideal − 𝑯‖∞ ≤ ε.
  𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞

 

 
4. RESULTS 

 

By choosing the correct value of 𝛾 and using the calculated 

value of 𝜆 from [12], SCAMS gives the correct number of 
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clusters. A value of 𝛾 that is less than or higher than the 

correct value leads to a lesser number or higher number of 

clusters than the correct number of clusters, respectively. 

Figure 1 shows the Jaccard index of the number of clusters in 

semi-urban B1 LOS single link versus the corresponding 

values of 𝜆 and 𝛾. The minimum index is 0, the maximum 

index is 0.0455, and the mean index is 0.0186. Figure 2 

presents the Jaccard index of the members per cluster in 

semi-urban B1. The minimum index is 0.1364 while the 

maximum index is 0.2452 with mean index of 0.1875. Figure 

3 gives the Jaccard index of the number of clusters in 

semi-urban B2 LOS single link versus the corresponding 

values of 𝜆 and 𝛾. The minimum index is 0, the maximum 

index is 0.0303, and the mean index is 0.0159. Figure 4 

illustrates the Jaccard index of the members per cluster of 

semi-urban B2. The minimum index is 0.1420 while the 

maximum index is 0.2293 with mean index of 0.1818. 

Semi-urban B1 has twenty indices (in cyan) out of thirty 

above the mean for the number of clusters while fourteen 

indices (in cyan) out of thirty above the mean for the 

membership of the clusters. Semi-urban B2 has twenty 

indices (in cyan) out of thirty above the mean for the number 

of clusters while seventeen indices (in cyan) out of thirty 

above the mean for the membership of the clusters. SCAMS 

can be used as an alternative to cluster multipaths in 

semi-urban scenario but it gives lower accuracy compared to 

the results obtained in [14] for indoor scenario. 

 

Algorithm 2: AssoConstrained Boolean Matrix Factorization 

 
𝐈𝐧𝐩𝐮𝐭: 𝑪ideal, 𝐾0

 𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞: Construct the Boolean matrix 𝑪ideal
𝑩 from

 𝑪ideal with rounding threshold 𝑡𝑩 = 0.5, 𝒁𝑩 ← [ ],
 𝑒 = ∞, 𝑟thresh = 0.1.
 𝐟𝐨𝐫 𝜈 = 0.1,0.2, … ,1 𝐝𝐨

  Construct 𝑫𝑩 with

   𝑫𝑩(𝑖, 𝑗) =
⟨𝑪ideal

𝑩(𝑖, : ), 𝑪ideal
𝑩(𝑗, : )⟩

⟨𝑪ideal
𝑩(𝑗, : ), 𝑪ideal

𝑩(𝑗, : )⟩
> 𝜈.

  𝐟𝐨𝐫 𝑘 = 1,2, … , 𝐾0 𝐝𝐨

   𝑖 = argmin𝑖|𝑪ideal
𝑩 ⊕ ([𝒁𝑩𝑫𝑩(: , 𝑖)] ∘ [𝒁𝑩𝑫𝑩(: , 𝑖)]T)|.

   𝒁𝑩 ← [𝒁𝑩𝑫𝑩(: , 𝑖)].
   Delete all 𝑗 − th columns with 

   
⟨𝑫𝑩(: , 𝑖), 𝑫𝑩(: , 𝑗)⟩

‖𝑫𝑩(: , 𝑖)‖‖𝑫𝑩(: , 𝑗)‖
> 𝑟thresh from 𝑫𝑩

   𝐢𝐟 𝑫𝑩 is empty 𝐨𝐫 min. |𝑪ideal
𝑩 ⊕ (𝒁𝑩 ∘ 𝒁𝑩T

)|,

    s. t. 𝒁𝑩T
∘ 𝒁𝑩 = 𝑰𝐾×𝐾 is not reduced in this loop

    𝐛𝐫𝐞𝐚𝐤
   𝐞𝐧𝐝 𝐢𝐟

   𝐢𝐟‖𝑪ideal − 𝒁𝑩𝒁𝑩T
‖

F

2
< 𝑒

    𝒁𝑩∗
= 𝒁𝑩.

    𝑒 = ‖𝑪ideal − 𝒁𝑩𝒁𝑩T
‖

F

2
.

   𝐞𝐧𝐝 𝐢𝐟
  𝐞𝐧𝐝 𝐟𝐨𝐫
 𝐞𝐧𝐝 𝐟𝐨𝐫
𝐫𝐞𝐭𝐮𝐫𝐧 𝒁𝑩∗

 

 
Figure 1: Jaccard index of clusters as a function of 𝜆 and 𝛾 

in semi-urban B1 LOS single link where cyan colors are 

indices higher than the mean of 0.0186 

 

 
Figure 2: Jaccard index of members as a function of 𝜆 and 𝛾 

in semi-urban B1 LOS single link where cyan colors are 

indices higher than the mean of 0.1875 

 

 
Figure 3: Jaccard index of clusters as a function of 𝜆 and 𝛾 

in semi-urban B2 LOS single link where cyan colors are 

indices higher than the mean of 0.0159 
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Figure 4: Jaccard index of members as a function of 𝜆 and 𝛾 

in semi-urban B1 LOS single link where cyan colors are 

indices higher than the mean of 0.1818 

 

Table 1: Jaccard Indices for the Number of Clusters of 

Semi-Urban LOS Single Link 

  

  Jaccard Index Relative Frequency 

Semi-Urban B1    0.1 100 % 

Semi-Urban B2    0.1 100 % 

    

Table 2: Jaccard Indices for the Membership of Clusters of 

Semi-Urban LOS Single Link 

  

  Jaccard Index Relative Frequency 
 

Semi-Urban B1 
  0.2 70 % 

0.2 - 0.4 30 % 
 

Semi-Urban B2 
  0.2 80 % 

0.2 - 0.4 20 % 

 

The relative frequency of the Jaccard indices for the number 

of clusters for both semi-urban B1 and B2 LOS single link is 

shown in Table 1 while that of the membership of the clusters 

for also both semi-urban B1 and B2 LOS single link is 

presented in Table 2. All of the indices have values less than 

0.4 due to the wide angular spread of the multipaths and 

higher number of multipaths per cluster. Figure 5 displays a 

surface fit of the Jaccard index of the number of clusters in 

semi-urban B1 LOS single link as a function of 𝜆 and 𝛾. 

The mathematical model generated is 

 

𝜂 = −0.09334 + 0.2951𝜆 − 1.232𝛾 − 0.03053𝜆2

−8.077𝜆𝛾 + 115.9𝛾2 + 0.2169𝜆2𝛾

+65.98𝜆𝛾2 − 1215𝛾3

. (7) 

 

Figure 6 displays a surface fit of the Jaccard index of the 

membership of clusters in semi-urban B1 LOS single link as a 

function of 𝜆 and 𝛾. The mathematical model generated is 

 

𝜂 = 0.03656 + 0.2184𝜆 + 2.112𝛾 − 0.2489𝜆2

+9.439𝜆𝛾 − 196.1𝛾2 + 4.045𝜆2𝛾

−214.6𝜆𝛾2 + 3346𝛾3

. (8) 

 
Figure 5: Curve fitting of Jaccard indices of the number of 

clusters for Semi-Urban B1 LOS Single link 

 

 

 
Figure 6: Curve fitting of Jaccard indices of the membership 

of clusters for Semi-Urban B1 LOS Single link 

 

 

 
Figure 7: Curve fitting of Jaccard indices of the number of 

clusters for Semi-Urban B2 LOS Single link 
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Figure 8: Curve fitting of Jaccard indices of the membership 

of clusters for Semi-Urban B2 LOS Single link 

 

Figure 7 displays a surface fit of the Jaccard index of the 

number of clusters in semi-urban B2 LOS single link as a 

function of 𝜆 and 𝛾. The mathematical model generated is  

 

𝜂 = 0.06484 − 0.3335𝜆 + 6.217𝛾 + 0.1788𝜆2

+2.312𝜆𝛾 − 134.6𝛾2 − 3.204𝜆2𝛾

+66.57𝜆𝛾2 + 127.2𝛾3

. (9) 

 

Figure 8 displays a surface fit of the Jaccard index of the 

membership of clusters in semi-urban B2 LOS single link as a 

function of 𝜆 and 𝛾. The mathematical model generated is 

 

𝜂 = −0.4781 + 0.08024𝜆 + 30.55𝛾 + 0.1233𝜆2

−11.59𝜆𝛾 − 311.2𝛾2 − 1.295𝜆2𝛾

+128.7𝜆𝛾2 + 359.7𝛾3

. (10) 

 

All of the coefficients of the mathematical models have 95% 

confidence bounds. The value of the Jaccard index can be 

calculated by specifying the values of 𝜆 and 𝛾. 

 

5. CONCLUSION 

 

This paper presents the results of SCAMS in clustering 

multipaths. SCAMS determines simultaneously the number 

of clusters and their membership which are dependent on 𝜆 

and  𝛾 . The reference data were taken from C2CM 

semi-urban B1 and B2 LOS single link obtained from the 

IEEE DataPort. The whitened data were first normalized to 

give positive values of the affinities which can enhance the 

outcome of the clustering process. Results show that SCAMS 

can be used as an alternative to cluster multipaths and that the 

clustering approach can still be improved for its accuracy 

performance to get better. In particular, the selection and 

values of 𝜆 and 𝛾 parameters of SCAMS need to be done 

well or modified in their formulations. The results point to 

better alternatives, but also the necessity of performing 

concurrent determination of the membership of multipath and 

the number of multipath clusters. 
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