
A.A. Ryndin et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5266 – 5271

5266


ABSTRACT

One of the components of Industrial Revolution 4.0 is the
focus on generating full cycle innovations, of which software
systems are integral parts. The article deals with the approach
to quality assessment of decisions made within the framework
of the development of program systems in innovation
activities. The research objective is to develop approaches to
the assessment of quality and importance of various
parameters of software systems development in the context of
software development to support innovative solutions. The
article uses methods of linear and nonlinear optimization,
system analysis, and the theory of information processes and
systems. The research finding is a development model of
program systems as components of full-circle innovations, a
set of ranked quality indicators and approaches to forming a
paradigm of program systems under development depending
on their purposes.

Key words: Industry 4.0, full-cycle innovation, multiple
integration, software development.

1. INTRODUCTION

One of the most exciting trends in modern technological
development is the so-called Fourth Industrial Revolution. Its
meaning is the emergence of Industry 4.0 which represents a
productive economy associated with the massive introduction
of cyber-physical systems of various profiles. One of the
integral components of Industry 4.0 is continuous innovation,
the results of which are "full-cycle innovations". These are
developments that have gone from basic ideas and prototypes
to a reproducible and scalable business model. The popularity
of such innovations can be seen in the number and
development dynamics of technological startup projects, in
the unprecedented measures of their support by various states
and corporations, as well as in the scope of service
organizations engaged in growing and promoting startup
projects, including various business incubators, accelerators,
etc.

Modern full-cycle innovations, around which technological
startup projects are built, can both include fundamental,
applied and engineering solutions of various levels of
maturity and simply manage without these depending on the
specifics of the project. However, within the framework of the
Industry 4.0 concept, almost no innovative solution that
claims to scale in the cyber-physical landscape of the near
future can manage without the software being developed.
Moreover, in half of the cases, it is the software being created
that is the essence of the innovative solution, and in many
other cases, software development is the core of innovation
coordinating the process of project development from the
initial idea to a scalable business model, as demonstrated in
works [4, 5].

Thus, competent organization of software development
within the framework of creation and development of
full-cycle innovation is the cornerstone of the whole project
success. As the Standish Group Chaos Reports demonstrate,
the success rate of software development projects in the
industry as a whole does not exceed 30%, and this indicator,
by our estimates, is much lower in the field of startup projects.
According to Startup Genome Report statistics, 92% of
startup projects close in the first five years, moreover, at a
rough estimate, more than two-thirds of them fail due to
software development problems and the resulting failures in
business targets. These failures range from the inability to
focus on the target market segment to problems in scaling the
solution leading to excess expenditure and serious
organizational challenges.

It is curious that the use of any methodology from today's
popular set of Agile methodologies is not a guarantee of
achieving results. The study shows that success is achieved by
teams using completely different development methodologies.
In this case, the following arguments are stated to justify the
rejection of the classic methodologies of Agile, such as Scrum,
Kanban, etc.:

1. Labor costs of implementation are unjustifiably high;
2. Benefits of implementation are unobvious;

Approaches to the Quality Assessment of Software System
Design in the Development of Innovative Solutions

A.A. Ryndin1, N.A. Ryndin2, S.V. Sapegin3
1Voronezh State Technical University, Voronezh, Russian Federation; alexander.ryndin2017@yandex.ru

2Voronezh State Technical University, Voronezh, Russian Federation
3Voronezh State University, Voronezh, Russian Federation

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse157942020.pdf

https://doi.org/10.30534/ijatcse/2020/157942020

A.A. Ryndin et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5266 – 5271

5267

3. The dynamics of the development process is not quite
adequately reflected.

Thus, a search for a methodology of the rational organization
of software development within the conditions of creating
full-cycle innovations represents an urgent problem for the
moment.

2. SOURCE REVIEW

Let us consider the main specific features of software
development methodologies. Among the total number of
applied methodologies of the software development
organization, it is possible to distinguish some generations
connected with the orientation to various aspects of the
industry, playing a key role throughout some period of time.
The first generation of approaches of software system
development can be conventionally considered a set of
methods and tools that provide programming in
machine-independent languages and provide the possibility
of transferring developed software between different models
of computers and even different operating systems. In these
circumstances, for the first time, the creation of software
systems is considered not as one of the workflows of electronic
devices development process, but as a separate task that
possesses its own specific character and requires adaptation of
common engineering approaches [14, 15]. Quite quickly,
within the framework of this set of approaches, the developers
faced the following problems:

1. Avalanche-like increase in the complexity of programs as
their size increases;

2. The unpredictability of terms and volumes of software
system development;

3. Difficulties in transferring knowledge about ready-made
software systems from developer to developer, according to
monograph [1].

As part of the solution of the abovementioned tasks, the world
community has come to a generation of development tools
and methodologies related to the concept of CASE
(Computer-Aided Software Engineering). The specific
feature of this generation has become the implementation of
the structural approach in software development. As design
tools for program packages, modeling methodologies have
been developed, the part of which has remained fixed in IDEF
set of standardized methods. Among them, it is possible to
underline the methodology of ER-modelling, which is still
applicable to the issues of development of data structures for
relational databases. As a development methodology, the
most popular and practical approach has become the use of
the waterfall model. The generation of CASE tools allowed
for a significant expansion of the field of IT application, as
well as for designing and programming large software
systems capable of covering entire segments of corporate

activities. However, over time, the following disadvantages
and specific features of this generation of tools have become
apparent:

1. The stages of requirement analysis and system design are of
great importance and have relatively high costs, as is proven
in monograph [1].

2. For the overwhelming number of branches and automation
objects, changing user, technical and organizational
requirements is a rule, instead of an exception.

3. Successful building of systems in a structural paradigm
requires developers to have a serious enough level of
professionalism.

The complex of techniques, methods and means, initially
developed to deal with the listed disadvantages, made it
possible to form the next generation of approaches premised
on methods of object-oriented design and programming, as
well as on the principles of the iterative and customizable
development process. The idea of the iterative approach that
means work performed in parallel with continuous analysis of
the results obtained and adjustment of the previous stages of
work allowed for the significant improvement in the
characteristics of software systems under development. From
the perspective of this approach, the project in each phase of
development should go through a repeated PDCA
(Plan-Do-Check-Act) cycle. The specific features of this
approach can be seen on the example of one of the most
popular methodologies of this generation, Rational Unified
Process (RUP). According to RUP, the composition of the
development process stages can be revised, and within each of
these stages there appears the division of the process into
separate iterations, and as the result of each iteration, the
existence of the finished product is implied, as demonstrated
in works [2, 7].

The next generation of approaches to software design and
development as well as to process management announced
itself in February 2001 in the form of the so-called Agile
Manifesto which defines the basic principles and approaches
of flexible software development. The appearance of a family
of Agile methodologies was caused by the following factors:

1. The rapid development of the Internet network has led to
tightening of global competition in software development;

2. The middleware-technologies have entered into maturity.
This made it possible to integrate different software not only
at the level of data and files but also through function calls
and even collaborative abstractions of Object Oriented
Programming (OOP) such as components and interfaces;

3. The wide range of tasks solved by software development,
the abundance of technologies being used and the rate of
appearance of new technologies have increased the

A.A. Ryndin et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5266 – 5271

5268

importance of communication in projects between developers
of different profiles. The practice of teamwork organization
has gained great importance.

The need for Agile principles to be put into practice has
stimulated the development of technologies that simplify the
deployment, operation and support of software systems. The
popularity of scripting languages, focused primarily on the
work in the global network has significantly increased.
Methodologies and technologies for the focused elimination
of bottlenecks of software under development (Continuous
Integration, TDD) have appeared. It was demonstrated in
several works [3,11, and 13] that the need for thorough,
complete software design, due to the spread of the service
approach and the reduction in the software size as a
consequence, has lost its importance giving way to the
ideology of several most commonly used templates (MVC,
etc.).

At the same time, almost all methodologies of Agile
generation have the following disadvantages:

1. Implementation lead-time and results of development are
unpredictable. Methodologies of Agile generation focus
primarily on achieving maximum quality in terms of both the
implementation of user requirements and the construction of
system architecture. However, in practice, this often leads to
misdirected priorities of the project and, as a consequence, the
failure of the initial deadlines or poor quality solutions caused
by lack of time at the end of the project.

2. The development process is strongly influenced by the
human factor, namely the motivation of employees, their
professional qualities and experience. Improper selection of
project implementers may lead to the project failure due to
insufficient qualification of its participants, or, in case of
excessive qualification of employees may lead to
overspending of funds and a decrease in motivation in the
team.

3. In many cases, teams accustomed to organizing their
activities according to Agile patterns ignore strategic
planning within the framework of the project, which
increases the risk of failure due to excessive attention to
details.

The abovementioned specific features of Agile methodologies
are quite a significant stumbling block in the environment of
startup projects which often leads to the failure of general
development or significant difficulties and significant budget
overspending. At the same time, there are successful cases of
software development for full-cycle innovations using
methodologies of other generations premised, in particular,
on a cascade model as well. In these cases, the advantages of
the used methodologies exceed the effect of the application of
Agile family methodologies which makes it possible to
achieve positive results. In this paper, we will try to consider

the essential features of each generation of methodologies and
determine their applicability for use in startup projects.

3. METHODOLOGY

Let us consider specific features of software development in
the conditions of the creation of full-cycle innovative
decisions. It is possible to formulate the following specific
features of the teams working in projects of such kind:

1. A short history of operational activities forces developers to
use solution templates that have not been tested in the current
team composition. This applies both to software development
methodologies and to the selection of software
implementation tools, software composition, approaches to
database and architecture design, etc.

2. Bringing participants together on the basis of cultural
values, on the one hand, may ensure the breadth of expertise
in planning the functional and architectural features of the
software being developed and, on the other hand, may
significantly distort the balance of decision-making. It is not
uncommon, when the team does not have the necessary
competencies when working on a significant architectural
issue and participants tend to choose in general non-optimal
but known in other projects decisions. For example, in the
selection of database, the developers who do not have
competences in the fields of relational databases, replace it
with any of the non-relational databases known from previous
projects, even if this is extremely unjustified from the overall
solution rationality point of view.

3. The specific feature is an extremely high degree of
uncertainty and its specifity. The uncertainty in innovative
projects arises to a lesser extent due to the specifics of
communication (shared cultural values play a role), but to a
large extent, the uncertainty is an integral characteristic of the
innovativeness of the solution itself. The process of finding a
rational solution in the framework of an innovation project is
generally nonprogrammed, unpredictable and can only be
planned to a first approximation.

Among the specific features of startup projects that affect
software development, we can also highlight the following:

1. A rigid time schedule is associated both with the need to
obtain and test on the market various solution options and the
process of attracting investments which includes the need for
periodic product demonstrations at certain, unknown
beforehand moments of time.

2. The attraction of external expertise is necessary, and in
many cases, we speak about non-core expertise, because the
project area, as well as technologies of building software, can
vary within a wide enough range.

A.A. Ryndin et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5266 – 5271

5269

3. The necessity of consistency check of decisions at various
stages of the innovation development cycle and also the
necessity of using the partially ready software for checking a
business idea determine orientation towards the full-cycle
decisions.

Proceeding from the abovementioned features, it is possible to
draw a conclusion that in different projects, depending on the
influence of one or another specific feature on the result of the
project, it is possible to use methodologies of different
generations if their features correlate with the features of the
specific project as closely as possible. However, in the general
case, a synthesis method of a hybrid methodology premised
on different principles and most suitable and adequate for a
specific project is required. To solve this problem, we will
consider a mathematical description of the software
development process.

Taking into account such a specific feature of startup projects
as the necessity to have a full-cycle solution at key points of
the project, we will consider the software being developed as a
developing software system, as assumed in monographs [8, 9,
and 10]. The process of the mathematical description of
developing information systems (IS) is characterized by a
number of specific features, which affects the formalized
setting objectives for the selection of rational options, as well
as methods for their solving. In particular, we have
combinatorial uncertainty in the selection of the optimal
option, uncertainty in the optimization objective selection due
to the multiplicity of technical and economic requirements,
probability of criteria for the performance evaluation of
options and uncertainty of the mathematical dependence
definition of the system indicators on the parameters of
variable components of the structure.

The necessity to take into account system communications, as
well as the joint influence of several types of uncertainties,
leads to the classes of models for which it is inefficient to
obtain an accurate solution. The reason is that in the course of
searching for an optimal option, the possibility of analyzing a
group of dominating options of IS structure is lost. At the
same time, it is possible to expand the possibilities of the
system approach in designing corporate ISs, if to use as a
quantitative characteristic of the rational choice of IS
organization options the information characteristic – the
entropy of multiple integration. The entropy defines the
degree of diversity of many possible integration options. In
the conditions of dynamic development and changes in the
structure of corporate IS, it is often the entropy that is the only
indicator based on which it is possible to choose the solution
which ensures the optimal development of the corporate
system in conditions of uncertainty.

Proceeding from the concept of the service approach for
building the IS architecture, it is possible to consider the
trajectory of corporate IS development as a sequence of
procedures for continuous quality improvement of existing IT

services and introduction of new ones into operation. At the
same time, in reality, there are complex, multistage links
between the existing and new IT services of ISs. These links
implement the mutual influence of services. Design,
implementation and operation of each IT service, in its turn,
can take place according to different methodologies, which
implement different structures and approaches depending on
the nature of the IT service, technologies used, approaches, IT
service size, the scope of user coverage, etc., as described in
monograph [6].

Let us consider the process of a software package
development in the form of a design flow consisting of a task
sequence of a multi-criteria selection, along with this, the
result of each choice influences the trajectory of the
subsequent system development. Elements of choice in the
process of designing of corporate IS are elements of the vector

, each of which, in its turn, contains a set of components

making up the system. Elements of choice as a
whole specify the variant

 (1.2)

and are characterized by the vector of parameters

In the transition from one implementation to

another, vector components change in an incremental
fashion. An attempt of synthesis optimal from with the view
of duration and cost of the design flow and the means
implementing it by establishing the dependence of technical

and economic indicators of the system on the

parameters of the elements and determining

the values that implement the requirements

, in most cases leads to parametric solutions.
However, it is not possible to put a certain design route and

the structure implementing it in accordance with
these parametric solutions in these circumstances. Therefore,

the choice has to be made from many options
that represent possible combinations of competing

technologies and integration options

. Consequently, one of the features of the
problems of building large software packages is the presence
of combinatorial uncertainty and uncertainty of mathematical
description.

A.A. Ryndin et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5266 – 5271

5270

Selection of the design flow and the technical means of its
implementing which are optimal from the point of view of the
complexity of variant implementation and taking into account
the multivariance of devising the IS architecture and
integration principles is carried out according to a set of

technical and economic indicators . The chosen
design flow should ensure the design of corporate IS with the
specified operating characteristics such as reliability,
efficiency, functionality, etc. The IS operating characteristics
form a subset that determines the choice of variable elements
of the design flow. Thus, the use of multiple integration
principles makes it possible to solve the problem of the
mathematical description of developing software systems
during their whole life cycle. Besides, the use of the same
approach makes it possible to determine the ways, methods
and means of rationalization of the software system
development process proceeding from the realities of different
approaches. It also makes it possible to carry out a
combination of representations of these approaches to achieve
the most qualitative result.

A combination of different approaches is proposed in order to
investigate the engineering process of developing software
systems. Such a practice will make it possible to achieve the
following results:

1. Correct formulations of the tasks of rationalization from
the technical and economic point of view of the software
development process for each family of approaches including
restrictions that have been formulated based on the
development process analysis from the point of view of other
representations.

2. General problem definition of the rationalization process
problem of program components development, based on the
principles of the system approach, taking into account
different representations of the system and making it possible
to find the most rational solutions by finding compromise
variants or through the integral analysis. In this case, the
rationality of solutions is determined based on their empirical
adequacy and technical-and-economic feasibility.

4. RESULTS

In general, the multiple integration approach consists of four
problems of structural synthesis of ISs and their
corresponding local multiple optimization models
which can be used in the framework of a customizable process
of optimal design of developing systems. According to works
[2, 6], the problems are formulated as follows:

B1. Variety constraint of component sets at different levels of
integration.

B2. Selection of the effective alternative component
integration option, taking into account existing integration
levels.

B3. Selection of the order of precedence of project operations.

B4. Grouping elements of sets of different integration levels
into local design flows.

In cases when the design object represents the difficult, poorly
formalized system, or design process initially assumes the use
of the iterative approach, stage-by-stage use of multiple
optimization models can essentially reduce expenses of
design stages. It can be done even taking into account the use
of structural synthesis procedures at separate design stages
within the limits of PDCA (Plan-Do-Check-Act) model
(figure 1).

Figure 1: Step-by-step use of multiple-path synthesis

procedures.

5. DISCUSSION

The need to take into account system relations, as well as the
joint influence of several types of uncertainties in the process
of finding rational solutions, leads to the development of
models in which obtaining an accurate solution is inefficient.
It happens because while searching for the optimal option, the
possibility of analyzing a group of dominant solutions is lost.
At the same time, it is possible to expand possibilities of the
system approach for the solution of design and development
problem of program components if to use as a quantitative
characteristic of a rational choice of options the information
characteristic – the entropy of multiple integration. The
entropy defines the degree of diversity of many possible
integration options. In the conditions of dynamic
development and changes in the structure of rational solutions,
it is often the entropy that is the only indicator based on which
it is possible to choose the solution which ensures the optimal
development of complex software packages in conditions of
uncertainty.

In this case, as the most effective directions for expansion of
possibilities of the system approach, we can specify the
following:

1. Construction of the flexible, customizable architectures
based on principles of object-oriented designing (OOD) and

A.A. Ryndin et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5266 – 5271

5271

the component approach, multiplatform realization, wide use
of the weakly connected decisions based on the type
parameterization, use of messages and "soft" standards of
software interaction.

2. Quality improvement of software components by
introducing popular templates and standards for their
development as well as the increase of component
manufacturing speed, ease of support, modification and
adjustments, and compliance with popular design patterns
due to used standards and practices.

3. Building and debugging a flexible software development
process that includes continuous testing and integration using
human resources as effectively as possible.

6. CONCLUSION

One of the determining factors causing problems and
uncertainties in the software development process is the
constant evolutionary development of both modern software
systems and their environment. Proceeding from it, one of the
perspective directions of searching for the unified approach,
capable of rationalizing the processes of building large
systems, is the consideration of program systems as
developing, changing their structure and characteristics
during the whole process of development, introduction and
operation. It is expedient to overcome the arising
complexities connected with the high dimensionality of
combinatorial tasks encountered in the process of research of
program systems taking into account the dynamics of their
development based on the use of multiple integration methods.
With the help of these methods, a multistage approach to the
solution of arising tasks is developed, including estimations
of the effectiveness of solution at each stage.

Thus, when using methods of complex research of the
development problem of modern program systems, the search
of a unified approach to their design process, maintenance,
analysis and modeling, as well as the organization of
interaction of programs, program systems and their
components, it is necessary to take into account the context of
the problem, formed by processes beyond the framework of
the development itself. However, the focus on the paradigm of
Industry 4.0 and the specific features of innovative projects
within this paradigm may be one of the ways to improve the
efficiency of software development processes for a wide
variety of purposes.

REFERENCES
1. F.P. Brooks, Jr. The Mythical Man-Month: Essays on

Software Engineering, Anniversary Edition (2nd
Edition), University of North Carolina at Chapel Hill
University: Addison-Wesley Professional, 1995.

2. B. Boehm. A Spiral Model of Software Development
and Enhancement, IEEE: Computer, vol. 21, no. 5, pp.
61-72, May 1988.
https://doi.org/10.1109/2.59

3. G.N. Krieg. Kanban-Controlled Manufacturing
Systems, Germany: Springer-Verlag Berlin Heidelberg,
2005.

4. K. Schwab. The Fourth Industrial Revolution, World
Economic Forum, 2016.

5. K. Schwab. The Fourth Industrial Revolution: what it
means, how to respond, World Economic Forum, 2017.

6. Ya.E. Lvovich. Multi-alternative optimization: theory
and application, Voronezh: Kvarta, 2006.

7. A.K. Shuja, J. Krebs. IBM Rational Unified Process
Reference and Certification Guide: Solution Designer
(RUP), IBM Press, 2007.

8. R. Reussner, M. Goedicke, W. Hasselbring, B.
Vogel-Heuser, J. Keim, L. Märtin. Managed Software
Evolution, Springer Open, 2019.
https://doi.org/10.1007/978-3-030-13499-0

9. D. Dell’Anna, F. Dalpiaz, V. Dastani.
Requirements-driven evolution of socio-technical
systems via probabilistic reasoning and hill climbing,
Springer US, 2019.

10. A.A. Ryndin. Multiple integration: theory and
applications in CAD: monograph. Voronezh: Voronezh
State Technical University, 2018.

11. Object Management Group, Essence. Kernel and
Language for Software Engineering Methods (Essence),
2014.

12. E. Klotins, M. Unterkalmsteiner, T. Gorschek,.
Software engineering in start-up companies: An
analysis of 88 experience reports, Empirical Software
Engineering, vol. 24, no. 1, pp. 68–10, 2019.
https://doi.org/10.1007/s10664-018-9620-y

13. I. Jacobson, Ng Pan-Wei, P.E. McMahon, I. Spence. The
Essence of Software Engineering: The SEMAT
Kernel, Communications of the ACM, vol. 55, no. 12,
pp. 42-49, December 2012.
https://doi.org/10.1145/2380656.2380670

14. D.T. Utomo, Pratikto, Santoso, P.B. Sugiono.
Preliminary Study of Web Based Decision Support
System to Select Manufacturing Industry Suppliers,
Journal of Southwest Jiaotong University, vol. 55, no. 2,
2020.

15. Z. Feng, J. Liu, L. Peng, Y. Zhou, P. Ning, B. Wang.
New Development of CAE Platform and
Computational Mechanics Software, Journal of
Southwest Jiaotong University, vol. 51, no. 3, 2016.

