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 
ABSTRACT 
In this paper, determining the recovery coefficients outcome 
of digital processing of radiographic images by using 
two-dimensional piece-polynomial basis, image compression 
and algorithms have been developed that is quality imaging 
compared to the first image processing. We know that one of 
the main problem on image compression is to find and apply 
an effective method that allows each type of pixel to be 
displayed in a compact form. In order to solve this problem, 
two-dimensional piece-polynomial basis are used, and as a 
result, the compression and recovery coefficients of the image 
were determined.  
 
Key words : two-dimensional Haar basis, one-dimensional 
Haar basis, digital image processing, recovery coefficients, 
Haar's fast transform algorithm.  
 
1. INTRODUCTION 
Traditional harmonic functions are widely used to build 
models of signals received from real objects. This is due to the 
fact that many signals received from real objects can be easily 
represented by a set of sinusoidal and cosine oscillations, for 
which the Fourier analysis tools are used. This results in 
transition from temporal to frequency functions. However, the 
representation of a time function by sinusoidal and cosine 
functions is only one of many representations. Any complete 
system of orthogonal functions can be applied to expand into 
series that correspond to the Fourier series[1]. Elementary 
functions, which are solutions to simple differential 
equations, are very widely used in practical engineering 
problems. Usually in the engineering literature, the term 
elementary is understood as generally simple functions of one 
or two variables, having a limited number of extrema, without 
breakpoints, with a limited slope within a given range of 
variation of the argument. They are used to build 
mathematical models of signals received from real objects.  
 
2. ONE-DIMENSIONAL PIECE-POLYNOMIAL BASIS 

Orthogonal systems of basis functions defined on the real 

 
 

axis, for which there are also fast transformation algorithms, 
are widespread in technical applications. They can be divided 
into two classes: 

1) Global basis functions - those whose values are not 
equal to zero on any subinterval [9]. This class 
includes Walsh functions [10], numeric, sawtooth; 

2) Localized basis functions, nonzero values of which are 
specified on nested segments. Here are the examples 
for Haar [3] and Harmut functions[6]. 

 Partitioning the real axis - usually binary - rational. In the 
future, we will mainly consider about the interval [0, 1] or [0, 
1) and use the concept of a binary segment, which is obtained 
by dividing given interval into 2p equal parts (р = 1, 2,...): 
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where   12     ,12,...,1,0  pjkpj  

Examples of binary line segments are intervals 

         [ 0;1);   [ 1/2; 3/4 ],  [ 3/8;  4/8 ]    and etc. 
The length of the binary segment hpj is 
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The system of unnormalized Haar functions in continuous 
form is defined [7]: 
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It should be noted that   10 xhar  
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The number P is called the order of the Haar functions. 

 It is known that the Haar series [30]: 
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can provide both uniform (including uniform best) and 
root-mean-square approximation. It all depends on how the 
odds are calculated. 
Specialists mostly pay attention for Haar and Harmut basis for 
two reasons: 

1. Reducing the number of coefficients required for the 
approximation (with a given accuracy) in relation to 
the total number of binary segments. 

2. Absence of “long” operations in expression (4). Only 
addition, subtraction and shift operations are used. 

 The disadvantage of Haar and Harmut rectangular 
orthogonal basis is the weak convergence of series in 
piecewise constant functions, i.e. the need to memorize 
several 100 coefficients for many functions in order to ensure 
errors of the order of 0.1%. 
 The search for methods to reduce the size of tables of 
coefficients, improve the "smoothness" indicators in an 
obvious way lead to systems of piecewise polynomial basis 
functions of a higher degree. Piecewise-linear basis functions 
(Schauder functions) are obtained most simply as a result of 
integration with a variable upper limit of orthogonal 
piecewise-constant Haar functions: 
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It should be considered that:  
    xxShdxShd  0
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a)                       b)                       c) 

Figure 1:     a) Piecewise-constants,  b) Piecewise-linear c) 
Piecewise-quadratic Haar basis functions. 

 
Often, in practical applications of series of piecewise linear 
functions in order to obtain the amplitudes of all basis 

functions equal to one, it is convenient to operate with 
“normalized” systems: 
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In Figure 1 a) the piecewise constant Haar functions are 
shown 
b)Sschauder functions c) piecewise parabolic Haar functions. 

3. TWO-DIMENSIONAL POLYNOMIAL BASIS 

The technique for constructing two-dimensional integral 
Haar bilinear basis functions can be based on the idea of 
integrating piecewise-planar orthogonal basis functions [1]. 
For example, two-dimensional Schauder functions can be 
plotted )()(),( yjShdxiShdyxijShd   as a result of the 

operation of double integration: 
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')'()(),(                                 (7)    

The result is the so-called functions - "pagodas", the shape of 
one of which is shown in Figure 2a. The coefficients of 
discrete spectral transformations in bilinear basis are 
calculated using the so-called “diagonal” two-dimensional 
finite differences: 

),()1,1( jyixfjyixfijf                                       (8) 

These differences are the hypotenuses of vertical triangles, 
one of the cathetus of which is the heights of the pagodas 
(Figure 2a), and the other cathetus is the diagonal of an 
elementary area of size hh   on the plane (x, y) (Figure 2b). 
Its length is indicated as ij  
For two-dimensional bilinear basis, discrete transformation 
coefficients are determined by the formulas: 
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We form a system of basis functions depending on one of the 
arguments: 
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Then we can write:  
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Due to the real nature of the basis functions, the inverse 
two-dimensional discrete transformation is performed 
similarly [2]: 


k l

ylharxkharklCp
ijf )()(4                                   (12) 


l

ylharxkharklCyif )()()(  



H.N.Zaynidinov  et al.,   International Journal of Advanced Trends in Computer Science and  Engineering, 9(4),  July – August  2020, 5259 –  5265 

5261 
 

 


k

ki
p

ij xharyff )()(4   

1,1 (x,y)

0
1/2 1

M

x

y

 

a) Two-dimensional M functions 

1/2

0 1/2 x

1

1

y

i+1

 i,j
j+1

h
h

i,i

 

b) Projection of diagonal differences 

Figure 2: Two-dimensional M-functions and projection of diagonal 
differences 

A system of piecewise-planar orthogonal Haar-like functions 
can be constructed on the basis of the theory of self-similar 
trees in a dynamic discrete space. The beginning of the 
process is the division of the unit square (Figure 3) into 
dyadic-rational regions, which are also squares, and groups of 
basis functions are built on these squares, taking the values 
+1, -1 or 0. 
Arbitrary point ),( yx  areas   )1,0(  yx  belongs to the 
binary square  

psrQ , if the coordinates of this point belong to 

the corresponding binary segments  prhypshx  ,  Each 

square psrQ  contains four equal parts, which in turn are 

binary squares. Point ),( yx belongs to a dynamically 
decreasing square under the conditions [3]: 






















pкhyandpshxifpsrQyx

pкhyandpshxifpsrQyx

pкhyandpshxifpsrQyx

pкhyandpshxifpsrQyx

,4),(

,3),(

,2),(

,1),(

 

 

 
Figure 3: System of two-dimensional piecewise-plane 

functions 

Thus, a recursive ordering is performed with the 
corresponding hierarchical numbering. On a square psrQ  

three orthogonal functions are formed psrQ  +1 or -1 with 

index l = 1, 2 and 3: 
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In a group of the same order p  contains 14*3 p  
function[9]. 
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4. TRANSFORMATION  TWO-DIMENSIONAL PIECE 
WISE-  POLYNOMIAL BASIS OF HAAR 
 
For example,  22   given massive of two-dimensional 
monochrome images[3], 
 
  njnijix 2,...,1;2,...,1,,                                         (13) 

It can be expressed as a function of two variables ]1,0[]1,0[  , 
the part of which is defined in the unit field[8]. For a given 
two-variable function ),( tsf  
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Let the equality be fulfilled, here  
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The parameter s entered here is placed vertically and by 
substituting (3) into (2) we obtain the index i of the massive 
xi,j [8]. 
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here     
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For each one step (5) is similar to equation (3) and the first 
step of a one-dimensional QHT is performed [7]. We, we have 
a different form of equation for n2 ..., 1,2, = i),(tiz (see formula 
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 Now we replace (6) with (4) and form the following 
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for  j j and j  the expressions are constant and are similar 

to (3). One-dimensional QHT can be applied to it. By doing 
this, we get the following[13], 
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Considering the given equations, we get the following, 
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As a result, the functions are divided into the following 

functions [4], ),(,1)(,1),(,1)(,1 sintjnsintjn    and 
)(,1)(,1),(,1)(,1 sintjnsintjn    

Thus, the first phase of  two-dimensional XM is continued by 
applying the first phase of one-dimensional QHT to each line 
of the image and then applying the first phase of  
one-dimensional QHT to each line of the masive . 
The above (8) is  two-dimensional piecewise- polynomial 
basis of Haar equation, which requires finding a large number 
of coefficients. The use of a long chain of coefficients and 
signal values allows to improve the quality of signal 
recovery[14]. Filtering of signals is performed using two 
types of filters, high frequency (HF) and low frequency (LF), 
as shown in Figure 1. As a result, the image is divided into 
four parts[4]: LFLF, LFHF, HFHF and HF. As you know, 
because the image is two-dimensional, filtering pixel values is 
done first by columns, then by rows. During the filtering 
process, the pixel color values are multiplied by the 
piecewise- polynomial basis of Haar coefficients and are the 
sum of the result. Thus, this conversion process continues 
until the last pixel of the image is etched[6]. 
 

 
Figure 4: 1st and 2nd degree fragmentation scheme of images in 

two-dimensional piecewise- polynomial basis of Haar 
 
Suppose we were given an X-ray of the head. C ++ Builder 
and Matlab programs based on the model shown in (8) were 
used to improve the quality of the stain in that image [11]. The 
following results were obtained after Level 1 fragmentation 
and Level 2 fragmentation (Figure 4, Figure 5)[10]. 

 
Figure 5: 1st degree fragmentation in  two- dimensional piecewise- 

polynomial basis of Haar. 

 
Figure 6: Level 2 fragmentation in  two-dimensional piecewise- 

polynomial basis of Haar 
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Coefficients of recovery after 1st degree fragmentation as a 
result of digital processing of X-ray image of the head (Table 
1)[12]. 

Table 1: Coefficients of Recovery after 1st Degree 
fragmention 

№-odd 
numbers 

)(sj - 

Image 
recovery 

coefficients 
(OQ) 

№- 
couple 
numbers 

)(sj - 

Image 
recovery 

coefficients 
(FQ) 

1. 0 2. 0 
3. 0 4. 0 
5. 0 6. 0 
7. 509 8. 507,5 
9. 507,5 10. 492,5 
11. 307 12. 187 
13. 0 14. 0 
15. 437,25 16. 479,75 
17. 493,75 18. 536,25 
19. 669,5 20. 824,75 
21. 976 22. 212,5 
23. 700 24. 720,75 
25. 1016 26. 1006,25 

 
Coefficients of recovery after 2nd degree fragmentation as a 
result of digital processing of the radiographic image of the 
head (Table 2) 

Table 2: Coefficients of recovery after 2nd degree 
fragmentations 

№-odd 
numbers 

)(sj - 

Image 
recovery 

coefficients 
(OQ) 

№- couple 
numbers 
 

)(sj - 

Image 
recovery 

coefficients 
(FQ) 

1. 0 2. 0 
3. 0 4. 0 
5. 0 6. 0 
7. 277,5 8. 225,5 
9. 229 10. 102 
11. 109 12. 507 
13. 0 14. 0 
15. 524,25 16. 533 
17. 489,75 18. 457,75 
19. 614,75 20. 639,5 
21. 690 22. 971,5 
23. 1016 24. 1020 
25. 4,75 26. 24,25 
 

5. CONCLUSION 
With the help of two-dimensional fragment-polynomial 

basis as a result of digital image processing, an algorithm has 
been developed that 1-level and 2-level compression of 
images, based on improving the quality of the compressed 

image and determining its recovery coefficients. 
As a result, the compressed image is made brighter than the 
existing image. The amount of these coefficients is 159 048 
after the 1st degree decomposition, after 2nd level  
fragmentation, it was 159 330. The large amount of these 
coefficients gives more positive results in image recovery. 
This developed algorithm can also be widely used in 
determining the number of spots in a subsequent image.  
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