
Lai Van Duong et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3494 – 3499

3494

ISSN 2278-3091

Volume 9, No.3, May - June 2020
International Journal of Advanced Trends in Computer Science and Engineering

Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse154932020.pdf
https://doi.org/10.30534/ijatcse/2020/154932020

ABSTRACT

Attacks on users through mobile devices in general, and
mobile devices with Android operating system in particular,
have been causing many serious consequences. Research [1]
lists the vulnerabilities found in the Android operating
system, making it the preferred target of cyber attackers.
Report [2] statistics the number of cyberattacks via mobile
devices and mobile devices using Android operating system.
The report points out the insecurity of information from
applications downloaded by users from Android apps stores.
Therefore, to prevent the attack and distribution of malware
through Android apps, it is necessary to research the method
of detecting malicious code from the time users download
applications to their devices. Recent approaches often rely on
static analysis and dynamic analysis to look for unusual
behavior in applications. In this paper, we will propose the
use of static analysis techniques to build a behavior of
malicious code in the application and machine learning
algorithms to detect malicious behavior.

Key words: Malicious applications on Android, static
analysis, abnormal behavior, machine learning.

1. INTRODUCTION

In the development of the smart mobile market, Android,
which is an open-source platform of Google, has become one
of the most popular mobile operating systems. Along with the
development of the Android operating system, the number of
malware developed in this operating system is also
increasing. In 2012, the number of newly discovered malware
on the Android platform was 214.327 samples, by 2018 it
increased to 8.246.284 newly discovered malware samples
[2]. This leads to malicious software on Android also need to
improve methods and techniques. There has been a lot of
research focusing on malware detection on Android. One of
the common methods includes signature-based methods,

extracting signatures from malware samples methods.
Although it is effective to detect known malware, it is not
enough to detect unknown malware. There are also several
methods based on the network activity analysis of the
software. This method monitors the network traffic of a
sample application and tries to detect malware by comparing
it with a blacklist of DNS and IP addresses. This method
cannot detect unknown malware, because the blacklist is only
generated from activities of known malware. To overcome the
disadvantages of these traditional methods, recent approaches
have focused on researching and extracting the unusual
behavior of Android applications. To extract unusual
behavior in applications, studies often use static and dynamic
analysis techniques. Static analysis and dynamic analysis
process will produce a variety of data and formats. Each
format and component will provide different features and
behaviors of the application. In this paper, we choose to use
static analysis techniques to analyze applications to
synthesize and represent information about AndroidManifest
files. We will then proceed to extract the app's unusual
behavior based on AndroidManifest file analysis. To detect
abnormal behavior of the application, we choose a supervised
machine learning algorithm.

2. RELATED WORKS

Isohara [3] presents a method for detecting malware by
analyzing the properties of files in application patterns.
Although this approach can detect some unknown malware
that isn't detected by the blacklist or signature-based analysis
method, the cost of analysis depends on the number of files in
the sample analyzed. Enck et al. [4] proposed a method to
prevent the installation of applications with dangerous
permissions or intent filters (a mechanism to perform
cooperation between Android applications). However, the
method can lead to inaccurate detection, because the
information used in the method is not sufficient to distinguish
malware from benign applications. There is also a malware
analysis method based on the analysis of API calls in
smalifiles as in the study of Wu et al. [5]. However, the

Detecting malicious applications on Android is based on static

analysis using Deep Learning algorithm
Lai Van Duong1, Tisenko Victor Nikolaevich 2, Do Hoang Long3, Nguyen Quang Dam4,

 Nguyen Quoc Hoang5
1,3,4,5Information Assurance dept. FPT University, Hanoi, Vietnam, duonglvse05009@fpt.edu.vn,

longdhse05220@fpt.edu.vn, damnqse05820@fpt.edu.vn, hoangnqse06012@fpt.edu.vn
2Department Quality Systems, Peter the Great St. Petersburg Polytechnic University, Russia, St.Petersburg,

Polytechnicheskaya, 29, v_tisenko@mail.ru

Lai Van Duong et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3494 – 3499

3495

implementation of the above method will raise the problem
that huge analytical cost, it depends on the number and the
size of the file in the original application. In this paper, we
research the method for detecting malicious apps on Android,
based on the abnormal behavior of AndroidManifest files
using machine learning algorithms.

3. ANALYZE ANDROID APPLICATION BASED ON
THE STATIC ANALYSIS METHOD

3.1 Introduce static analysis technique
The proposed malware analysis method model for Android
applications consists of the following 5 main steps:

Figure 1: Static analysis model

Figure 1 shows the static analysis procedure for an application
of Android. Details of the steps in the analysis process are as
follows:
Step 1: Install the application to test on the test environment
When receiving an APK file is suspected of being malicious,
it should first be installed on the environment sample
simulator to monitor the behavior and permissions required
by the application during the installation process. Signs that
need to be monitored include: Icon; Application permissions
required upon installation; Monitor network traffic when the
application is installed, etc.
Step 2: Analyze the APK file: The APK file is essentially a
zip file containing application resources. The APK file may
contain malicious code to execute when called or run the file,
which is modified extension, to deceive the system.
Therefore, the APK files in the file will be meticulously
analyzed. The result of step 2 is to get a list of suspicious files
included in the sample APK file.
Step 3: Perform AndroidManifest file analysis: In the
AndroidManifest file, the following features should be noted:

Permission; Activities; Intent; Main. To extract these
features, you can use some tools such as SmaliViewer;
ApkTool. Particular should pay attention to the permissions
required in the AndroidManifest file and the permissions
required for installation (obtained in step 1).
Step 4: Analyze java source code: In Java source code
analysis, reverse engineering will convert the program code
into a readable form [6]. To convert from .Dex file to .jar
format, you can use the dex2jar tool. Converting to .smali can
be done using the ApkTool tool. To open the converted code,
you can use some tools, such as JDGui, NotePad++ and
ByteCodeViewer.
Step 5: Use automated analysis tools: In addition to the above
four methods, it is recommended to combine automated
analysis tools and dynamic analysis to get more information
about malicious software and make comparisons leading to
more accurate evaluation results. The tools that can be used
here areas [6]: Mob SF; CuckuDroid.

Figure 2: Components of the application file

Collect
analytics
data

Install the application
and monitor the test

environment

Analyze APK file

Analyze the
AndroidManifest file

Analyze Java source code Analyze Java source code

Lai Van Duong et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3494 – 3499

3496

3.2 Malware analysis technique in an Android application
is based on Manifest Files analysis

An Android application consists of the following
components:
AndroidManifest.xml: The file provides information
necessary for the application to work properly with the
Android system, in which the system will read this file before
it can run other application code. Some of the information
obtained includes the permissions that the application
requires, the minimum APIs for the application to function,
the list of libraries that application need, etc.
Classes.dex: Java source code is compiled to run in the
Dalvik virtual machine.
Resources: consists of two main parts, a res directory
containing the resources are not pre-compiled such as images,
String, etc. and the resources.arsc file containing the
pre-compiled resources.

META-INF: This directory contains some metadata such as
the certificate of the application, the manifest file of the java
application.
Lib: The libraries are precompiled to suit each hardware
platform.

Assets: contains resources that the application can access
through AssetManager.
Each Android application must have a manifest file, which
presents essential information about the application. Our
proposed method in this paper is based on the specific
analysis of the Android manifest file and is effective for
detecting known and unknown malware. Moreover, the cost
of this method is very low because this method only analyzes
the manifest file. The manifest file is very small compared to
the size of the file like Resource or Smali. This method uses
reverse engineering to extract information from the
application's manifest file. In this study, we will focus on
learning how to detect malicious apps on Android based on
the manifest file characteristics.

Figure 3: Model of an Android malicious app detection method using machine learning

4. MODEL OF DETECTING MALICIOUS ON
ANDROID USING MACHINE LEARNING

4.1 Detection model
Figure 3 depicts a model of the malware detection method on
the android application using the machine learning algorithm
proposed in the article. Where:
- The input file is an application file in the form of APK. It

will be analysed by tools to reverse. The static analysis
process will extract specific features contained in the
original file such as resource files, manifest files,
smalifiles, Java source code, etc. These results are used for
data feature extraction module.

- The data feature extraction module selects data and builds
it into a feature vector including the permissions described
in 4.2.

- Data classification: After constructing the feature vector,
this feature vector will be used for a malicious analysis
module using the machine learning algorithm. The result
of the system is an assessment of the file's malicious level.

In this paper, we will perform malicious detection in the
Android application based on the manifest file and the details
of the Java source file, the required permissions, the file's
hash value.

4.2 Select and extract feature
Permission: Selecting permissions is essential in identifying
and classifying malware. As we know, each Android
application needs permissions to be able to access data on the
device. Android has a total of 324 permissions [7] which is
divided into Normal Permission and Dangerous Permisson.
When Normal Permission is required, it will be automatically
licensed by the system without asking the user. On the
contrary, with Dangerous Permission, when the application
needs to use it, the system will ask the user whether to license
this permission or not. However, based on the characteristics
of Normal Permission that the system does not ask the user
about licensing for it, attackers can exploit it to steal

APK file Static analysis

Feature extraction

Classification Machine Learning

Malware Clean

Lai Van Duong et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3494 – 3499

3497

information. Therefore, this research will take all permissions
contained in that .apk file.
API_Calls: According to [8], the authors analyzed and
extracted features related to the behavior of malware via API
and evaluated different classifications using the self-created
feature set. Thereby, the results are up to 99% accurate and
2.2% error rate after using the KNN classification algorithm.
After analyzing based on API levels, the team proposed
features that malware regularly used and classified APIs by
resources. Document [9] also listed the APIs which are often
called during analysis in CuckooDroid.
Strings: In Android applications, unique strings are used to
define a specific structure for Android to specify the files and
IP addresses that an application uses and to list the classes and
methods that are called through [8]. Therefore, the IPs will be
selected as the feature to that .apk file. In addition, the object
string also includes intents, which may or may not be in the
"intent" object, so they will also be selected to avoid missing
in the selection process.
Intent: There are 2 types of Intent: Explicit Intent and
Implicit Intent. When the developer knows exactly which
component uses which action, Explicit Intent will be used
[10]. Explicit Intent is used for Intra-application and
Inter-application. The developers use this type of Intent to
navigate from one activity to other activities in the
application, like transferring messages between two
applications. For example, developers use Explicit Intent to
request Android to open a link and use Google Chrome. On
the other hand, the developers use Implicit Intent and request
Android to open a link but don't specify an application. The
intent has 3 components: Event, Classification, and Data. The
Event section describes the type of action handled by Intents
such as MAIN, CALL, BATTERY LOW, SCREEN ON, and
EDIT. The Classification section consists of LAUNCHER,
BROWABLE, and GADGET. The Data section provides the
necessary data for the application. For example, the CALL
event requires a phone number, and the EDIT event needs a
document or an HTTP URL to complete the event. Thereby,
we can see that the Intent is also a feature because it can be
exploited to steal user information through the Event,
Classifications, and Data components. In the intent object
that was extracted as described in the previous section, all of
them will be selected because the intent isn't classified as
malicious or normal intent and all intents can be exploited for
the bad purposes of malware.
Activity: As presented, the activity includes intents. If the
intent is used in the malicious application, it means that the
activity is also used. According to the criteria that select all
the intents included in that application, all the activities will
also be selected as features.

4.3 Classification algorithm
In this paper, we use the Convolutional Neural Network
(CNN) model to classify normal and malicious applications.
CNN is a Deep Neural Network Architecture and a type of
Artificial Neural Network, a Multiplayer Perceptron but
bringing some improvements which are Convolution and
Pooling. The operating principle of CNN is as follows [11]:
Feature:
- CNN compares the images in pieces, the pieces which it

finds called features.
- Each feature is like a mini image, a small two-dimensional

array.
- Features match the general aspects of the images.
- For example with image X, the features include diagonals

and crosses which will capture most of the important
characteristics of most image X and these features will
match the edges and the middle center of any image X.

Convolution:
- Convolution consists of two other concepts: Convolution

Filter and Convolutional Layer.
- Convolutional Layer is also a hidden layer. Especially, it is

a set of feature maps. Each of these feature maps is a scan
of the original input, meaning the result of extracting to
specific features. After scanning, they are put into the
Convolution Filter or Kernel.

- This is a matrix that will scan the input data matrix, from
left to right, top to bottom, and multiply each value of the
input matrix and kernel matrix respectively and then sum
it up, put it into activation function (such as sigmoid,
relu, elu, etc.). The results are specific numbers. The set
of these numbers is a matrix, which is the feature map.

Pooling: The purpose of Pooling is to reduce the number of
hyperparameters that need to be calculated, thereby reducing
computation time and avoiding overfitting.
- Hyperparameter is a special type of parameter (everything

of the model is used to calculate the output).
Hyperparameter is a conventional and relative concept. It
is usually a slightly default parameter. For polynomial
functions, the degree of polynomials can be considered as
a hyperparameter.

- The most common type of pooling is max pooling which is
the largest value in a pooling window.

- Pooling works similarly to Convolution, it also has a
sliding window called a pooling window. This window
slides through each value of the input data matrix 1 (is
usually the feature map in Convolutional Layer), pick out
a value from the values in the sliding window (with max
pooling, we will get the maximum value).

Rectified Linear Units: Keeping values unbroken by
adjusting each value a little. Relu's algorithm will change the
negative values to 0.
Fully Connected Cayers: Fully connected layers will take
the filtered images at a high level and convert them into votes.
Fully connected layers is a major block in traditional neuron

Lai Van Duong et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3494 – 3499

3498

networks. Instead of being treated as a two-dimensional array,
they are treated as a simple list and are all handled the same
way. Each voting value (probability of falling into each class)
is representative of an existing image.

5. EXPRIMENTS AND EVALUATE

5.1 Hardware requirements
- Ram 4GB.
- Hard drive capacity 8 GB.

5.2 Hardware requirements Software requirements
- Operating system: Windows 10.
- Python programming language version 2.7.
- Programming library: Scikit-learning [12].
- MobSF open-source application [6].
- Oracle JDK 1.7.
- Androguard

5.3 Experimental results
Testing with a set of 700 samples including 199 clean samples
and 501 malicious samples on 7-layer, 6-layer, 5-layer, and
4-layer models, we have evaluation parameters.
- 7-Layer Model: consist of 7 convolutional layer, 7 max

pooling layer, and 2 fully connected layer.
- 6-Layer Model: consist of 6 convolutional layer, 6 max

pooling layer, and 2 fully connected layer.
- 5-Layer Model: consist of 5 convolutional layer, 5 max

pooling layer, and 2 fully connected layer.
- 4-Layer Model: consist of 4 convolutional layer, 4 max

pooling layer, and 2 fully connected layer.

Table 1: Experimental results
Model 7-Layer 6-Layer 5-Layer 4-Layer

TP 501 501 500 495
FP 0 0 0 0
TN 199 199 199 199
FN 0 0 1 6

Precision 1.0 1.0 1.0 1.0
Recall 1.0 1.0 0.998 0.988

F1_score 1.0 1.0 0.999 0.9939
Acc(%) 96.51 96.42 96.00 91.21

Looking at the above statistics table, we can see that 7-layer
and 6-layer models have high accuracy (above 96%), do not
miss positive samples, and have high F1_score (achieved
absolute value). With the 5-layer and 4-layer models, we see
that the model misses some positive samples. This can cause
harm when we classify in reality because we can mistake the
malicious sample into a clean sample. The number of samples
which were mistaken is more with the 4-layer model.
Comparing the 6-layer model with the 7-layer model, we can
see that both models have good results but the 6-layer model
will be simpler than the 7-layer model. This makes the 6-layer
model will be more outstanding than the 7-layer model.

The following is a detailed accuracy statistics table on train,
val and test sets of 6-layer model(table 2):

Table 2: The accuracy of 6-layer model

The number of samples including 3000 clean codes
and 4000 malicious codes

The ratio of
Train/Test/Validation

80/10/10

Train_acc 99.60%
Val_acc 96.00%
Test_acc 96.42%

6. CONCLUSION

In this paper, we have proposed a system model to detect
malicious applications on the Android operating system based
on static analysis techniques and machine learning
algorithms. The experimental results in the paper have shown
the approach that based on static analysis to extract rules and
CNN algorithms to detect abnormal behaviors is right and
reasonable for the early detection of malicious applications.
The science of our paper is not only expressed in the use of
machine learning algorithms for unique application detection
but also proposed the use of properties that are not too
complex in terms of calculation and extraction but still bring
highly effective in detecting malicious application abnormal
behavior. The science of our paper expresses not only in the
use of machine learning algorithms to detect malicious code,
but only in the proposal to use features which aren't too
complicated to calculate and extract but still being highly
effective in detecting abnormal behavior of a malicious
application. In subsequent studies, we will conduct research
and use some new machine learning algorithms in
combination with dynamic analysis to obtain faster and more
accurate results.

REFERENCES
[1] Yajin Zhou, Xuxian Jiang. Dissecting Android

Malware: Characterization and Evolution,
Proceedings of the 33rd IEEE Symposium on Security
and Privacy, San Francisco, CA, May 2012.

[2] McAfee Mobile Threat Report.
https://www.mcafee.com/enterprise/en-us/assets/repo
rts/rp-mobile-threat-report-2019.pdf. [access date
1/4/2020]

[3] Tiwari, Suman. (2019). An Android Malware
Detection Technique Based on Optimized
Permissions and API.
10.1109/ICIRCA.2018.8597225..

[4] Enck W.; McDaniel P.; Ongtang M. On Lightweight
Mobile Phone Application Certification.
Proceedings of the 16th ACM conference on
Computer and communications security. November
2009 Pages 235–245.
https://doi.org/10.1145/1653662.1653691

Lai Van Duong et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3494 – 3499

3499

[5] D. Wu, C. Mao, T. Wei, H. Lee and K. Wu.
DroidMat: Android Malware Detection through
Manifest and API Calls Tracing, 2012 Seventh
Asia Joint Conference on Information Security,
Tokyo, 2012, pp. 62-69,
doi: 10.1109/AsiaJCIS.2012.18.

[6] Mobile Security Framework:
https://github.com/MobSF/Mobile-Security-Framewo
rk-MobSF [access date 1/4/2020]

[7] Dataset android malware permission:
https://www.kaggle.com/xwolf12/datasetandroidper
missions. [access date 1/4/2020]

[8] Feizollah, Ali & Anuar, Nor & Salleh, Rosli &
Suarez-Tangil, Guillermo & Furnell, Steven. (2017).
AndroDialysis: Analysis of Android Intent
Effectiveness in Malware Detection. Computers &
Security. 65. 121-134. 10.1016/j.cose.2016.11.007.

[9] Faruki, Parvez & Ganmoor, Vijay & Laxmi, Vijay &
Gaur, Manoj & Bharmal, Ammar. (2013).
AndroSimilar: robust statistical feature signature
for Android malware detection. SIN 2013 -
Proceedings of the 6th International Conference on
Security of Information and Networks. 152-159.
10.1145/2523514.2523539.

[10] Shabtai, A., Kanonov, U., Elovici, Y. et al.
“Andromaly”: a behavioral malware detection
framework for android devices. J Intell Inf Syst 38,
161–190 (2012).
https://doi.org/10.1007/s10844-010-0148-x.

[11] Krizhevsky, Alex & Sutskever, Ilya & Hinton,
Geoffrey. (2012). ImageNet Classification with Deep
Convolutional Neural Networks. Neural Information
Processing Systems. 25. 10.1145/3065386.

[12] Scikit-learn Machine Learning in Python:
http://scikit-learn.org/ [access date 1/4/2020]

