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ABSTRACT 

 

A new technique for sending a baseband pulse signal from its 

band-pass spectral information is presented. It is advanta-

geous if the pulse low-pass spectral information is not avail-

able or even if only a band-pass window of the pulse spectral 

information is available. This will help in sending any base-

band pulse over a band limited channel. The new technique 

is expected to be very efficient compared to other well-

known pulse transmission techniques for which the major 

part of the signal spectral power is unavailable. The present-

ed technique utilizes the pulse signal available spectral pow-

er provided by the available band-pass spectrum which must 

be measured rather accurately. A new recovery algorithm has 

been used for reconstructing the baseband pulse signal. This 

algorithm is run for different segments and different itera-

tions and showed a good performance for recovering more 

than 90% of signal’s energy. The new technique is imple-

mented on a MATLAB platform. It has been applied for a 

base band pulse signal and should find applications in high-

data-rate vehicle to vehicle wireless communications.  

 

Keywords: Pulse Transmission, Band limited channel, 

Wireless Automotive communications, Vehicle-to-vehicle 

communications. 

1. INTRODUCTION 

A classical tool for characterizing the frequency components 

of a signal 𝑓(𝑡) whose domain is the finite-extent time inter-

val (−𝜏/2 , 𝜏/2) is that of Fourier analysis. In particular, such 

an analysis is begun by first evaluating the Fourier Transform 

(FT) integral [1] 

𝐹(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞
      (1) 

In which is taken to be a real frequency variable with values 

in the range (−  ,). The Fourier spectrum associated with 

signal 𝑓(𝑡) is then defined to be the magnitude quantity 

|F(ω)| and its behavior as a function of   often yields useful 

information relative to the signal 𝑓(𝑡).  

 

Conceptually, the evaluation of this transform integral is 

straightforward, and its utility is well known. 

 

In any real-world application, however, it must be realized 

that only a finite frequency observation of the signal to be 

inverse transformed is ever available (e.g. due to measuring 

devices limitations) which means that the signal under con-

sideration has a spectrum which is known to fall within a giv-

en frequency band as specified by the set  

Ω = {𝜔: 𝜔𝑠 ≤ |𝜔| ≤ 𝜔𝑒}     (2) 

where 𝜔𝑠 and 𝜔𝑒 are positive frequency starting and end of 

measurement respectively which identify the known (meas-

ured) band pass interval of the signal. 

 

Clearly, since only the partial spectral behaviour of the signal 

𝑓(𝑡)isspecified by  

𝐹()  for 𝜔𝑠 ≤ |𝜔| ≤ 𝜔𝑒     (3) 

is given, one is unable to evaluate the Inverse Fourier Trans-

form (IFT) [1] 

𝑓(𝑡) =
1

2𝜋
∫ 𝐹(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔

∞

−∞
     (4) 

In such practical situations, it is then necessary to find suita-

bly good estimates of the IFT based on this partial infor-

mation. In this paper, we shall be concerned with developing 

a new technique for extrapolating a finite- frequency segment 

of a time-limited baseband pulse signal.  

 

This will help to send a baseband pulse signal over any band-

limited channel. The basis of such a technique is the fact that 

if the signal spectrum 𝐹() is known within an arbitrarily 

small neighbourhood centred at 𝜔 = 𝜔0, then we can com-

pute the value of the function and all its derivatives at 𝜔0, and 

generate a Taylor series about 𝜔 = 𝜔0which can be used for 

the extrapolation [2]. 

𝐹(𝜔) =
∑ (𝜔−𝜔𝑜)𝑛∞

𝑛=−∞ 𝐹(𝑛)(𝜔)

𝑛!
      (5) 
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where 𝐹(𝑛)(𝜔𝑜) is the nth derivative of  𝐹() at 𝜔 = 𝜔𝑜. In 

practice this can be done to an approximation. We could, for 

example, empirically determine 𝐹(0)(𝜔𝑜)and 𝐹(1)(𝜔𝑜) and 

maybe even 𝐹(2)(𝜔𝑜). But the higher order derivative deter-

mination will become critically muddled by measurement in 

exactitude.  

 

Thus, at best case, one could best fit a quadratic to the signal 

at 𝜔 = 𝜔𝑜, so it is clear that this procedure is not practical 

and subject to an extremely unpredicted error due to approx-

imations. Time-domain signal reconstruction algorithms and 

schemes for different applications have been discussed in [3] 
– [7].  

 

Pulse signal recovery has been widely explored in different 

research fields including optical, X-ray, image processing, 

antenna, radar, magnetic and biological systems [8] – [11]. 

Practically, extrapolation has been a good solution for a varie-

ty of low-pass reconstruction problems [12] – [14].  

 

The new technique presented in this contribution extends the 

extrapolation techniques and applies it to the case of 

baseband pulse transmission to be transmitted over any band-

limited channel. In the following sections, our discussions 

will be based on the assumptions that it is required to send 

the baseband pulse signal over a noiseless channel.  

 

This is for illustrating the new baseband pulse transmission 

concept and in further coming papers, we will consider the 

case of noisy channels. 

2. THE NEW TECHNIQUE FOR BASEBAND PULSE 

TRANSMISSION 

2.1 Introduction 

Transmission of data may be either baseband or passband. 

Many commercial communication systems use baseband 

transmission directly such as T1 carrier systems, integrated 

services digital network (ISDN), coaxial cable and optical 

fiber local area networks (LANs), ultra-wideband (UWB) 

networks and radar applications [15] , [16].  

 

First, we define the  rectangular pulse with an amplitude of A 

and width of 𝜏 to be 𝐴 𝑟𝑒𝑐𝑡(𝑡/𝜏)). Assume that  𝑥(𝑡) is 

𝑥(𝑡) = 𝐴 𝑟𝑒𝑐𝑡 (𝑡/𝜏)        (6) 

By using the definition in (1), the FT of 𝑥(𝑡) is  

𝑋(𝑓) = 𝐴𝜏 𝑠𝑖𝑛𝑐 (𝑓𝜏)        (7) 

𝑥(𝑡) and X(𝑓)areshown in Figure 1. The maximum value of 

𝑋(𝑓) is 𝐴𝜏 and occurs at 𝑓 = 0. The frequencies of zero 

crossings are 𝑓 = 𝑘/𝜏 where 𝑘 = ±1, ±2, … , ∞. The spec-

trum shows that the largest values occur at frequencies close 

to 𝑓 = 0 (main lobe) and other side lobes around it.  

 

Then, the largest energy of the pulse spectrum exists in the 

main lobe (around 90%) and the remaining energy is spread 

into the side lobes. So, the bandwidth ∆𝑓 of the pulse spec-

trum is the distance from 0 Hz to the first spectral null (1/𝜏). 

At the receiver side, a low-pass filter (LPF) is designed with 

a bandwidth of 1/𝜏 to extract the original pulse signal [17]. 

 

 

Figure 1:  𝑥(𝑡) and its Fourier Transform 𝑋(𝑓). 

 

2.2 The New Technique Concept 

Consider the suggested communication system (Transmitter 

and Receiver) shown in Figure 2 whereas a baseband pulse 

source transmitter is available. The baseband pulse signal 

will be assumed to be 𝑓(𝑡).  

 

Generally, sending a baseband pulse depends on the pulse 

duration and the available channel bandwidth. If the channel 

bandwidth is smaller than the pulse spectral information 

main lobe, then a complete pulse distortion will occur, and 

the pulse information will be lost.  

 

The presented new technique concept for baseband pulse 

transmission using a window from its spectrum is shown in 

Figure 3. The concept is based on taking the IFT of the given 

spectrum and then multiplying the distorted pulse by a pulse 

𝑝(𝑡) of duration 𝜏, which is the same as the main pulse to be 

reconstructed. 

 

The band range of the BPF can be freely selected to pass a 

spectral window taken from the pulse spectral information. 

This spectral window can be freely selected from a starting 

frequency 𝜔𝑠 to an end frequency 𝜔𝑒.  

 

The selected window from the pulse spectral information 

will be sent through any band-limited channel that is availa-

ble to pass the selected window from the baseband pulse. 

The transmitted window from the pulse spectral information 

will result to in a distorted pulse signal 𝑔(𝑡) and even lost 

information.  

 

At the receiving side, the distorted pulse signal 𝑔0(𝑡) will 

first pass through the new pulse reconstruction technique 

which is the main concept of this research. The new recon-

struction technique will be fed with a priori information 

about the transmitted pulse duration.  

 

The new baseband pulse reconstruction technique will be 

explained in the next section. 
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Figure 2:  Baseband Pulse Transmission New Technique 

 

2.3 Baseband Pulse Reconstruction Technique 

Assume that the pulse source transmitter in Figure 2 trans-

mits a pulse signal 𝑓(𝑡) as shown in Figure 4 (a). Its Fourier 

Transform F(𝑓) is shown in Figure 4 (b). Assume that the 

transmitted window spectrum taken from the pulse is 𝐺(𝑓) 

as shown in Figure 4 (d). The spectral window frequency 

range extends from 𝑓𝑠 [Hz] to 𝑓𝑒 [Hz].  

 

At the receiver side, the presented reconstruction technique 

goal is to determine the IFT 𝑓(𝑡) in terms of a finite segment 

𝐺(𝑓) of 𝐹(𝑓) and then it extrapolates the original pulse spec-

trum making use of only the transmitted spectrum segment 

𝐺(𝑓) and the a priori information about the temporal extent 

of the signal.  

 

The received distorted pulse signal 𝑔(𝑡) due to the limited 

available spectrum is shown in Figure 4 (c). 

 

 

 

 
Figure 3:  The New Technique concept and its software implementation. 

 

Figure 3 illustrates the detailed steps of the pulse reconstruc-

tion technique, where the first step incorporates an IFT of the 

given baseband pulse selected band-pass spectrum 𝐺𝑜(𝑓), 

which results in the non-time limited signal 𝑔0(𝑡). 
 

The pulse reconstruction technique reinforces the time limit-

ing operation by simply multiplying 𝑔𝑜(𝑡)by a gate function 

𝑟𝑒𝑐𝑡(𝑡/τ), where τ is the time extent of the signal to be re-

constructed as shown in step 2. Step 3 is simply the FT back 

to the frequency domain, and as shown, the spectrum 𝐿(𝑓) is 

neither band limited nor equal to 𝐺0(𝑓)within the interval 

window Ω = {𝜔: 𝜔𝑠 ≤ |𝜔| ≤ 𝜔𝑒}. The spectrum 𝐿(𝑓)is next 

applied to a band-reject-filter (BRF) with its pass-band ex-

tending from 𝑓𝑠 to 𝑓𝑒 as shown in step 4. This results in a 

spectrum 𝐶(𝑓).  

 

Finally in step 5, the known portion of the signal, which is 

𝐺0(𝑓), is inserted in the dead spectrum space 𝐶(𝑓), giving 

rise to the first spectrum estimate 𝐹1(𝑓) which is principally 

a discontinuous function and hence doesn’t represent a time-

limited signal.  
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The reconstruction technique will re-impose the criterion of 

time limitation again as before, which is the beginning of the 

next iteration. We will denote the results of Nth iteration by 

𝐹𝑁(𝑓) ↔ 𝑓𝑛(𝑡). 

 

 

        (a) 

 

        (b) 

 

        (c) 

 

         (d) 

 

Figure 4:  Baseband Pulse Spectrum Reconstruction Problem  

(a) The original pulse signal (b) FT of the original pulse signal  

(c) Transmitted distorted pulse signal (d) Transmitted window spec-

trum. 

2.4 Mathematical Modeling of Baseband Pulse Recon-

struction New Algorithm 

From Figure 3, steps 1, 2, and 3 are simply a duration limit-

ing operation, so let the duration limiting operator 𝐷𝑇be de-

fined as 

𝐷𝑇{ℎ(𝑡)} = ℎ(𝑡)𝑟𝑒𝑐𝑡 (
𝑡

τ
)      (8) 

where 𝑟𝑒𝑐𝑡(𝑡/τ) is a gate function adjusted with a durartion 

equal to the time extent of the time limited signal to be re-

constructed, and τ/2 is the positive time extent of that signal.  

 

The given segment of the spectrum can be considered as an 

output of a system composed of two low pass filters connect-

ed as shown in Figure 5, where the end frequency  𝜔𝑒 > 𝜔𝑠  

 

.  
 

Figure 5:  Modeling of the band pass signal 𝑔(𝑡) 

 

An LPF operator is defined to be 𝐵𝜔𝑥{ℎ(𝑡)} where 

𝐵𝜔𝑥{ℎ(𝑡)} = ℎ(𝑡) ∗
𝜔𝑥

𝜋
𝑠𝑖𝑛𝑐 (

𝜔𝑥

𝜋
𝑡)     (9) 

Now, the operation of rejecting the band starting from 𝑓𝑠 to 

𝑓𝑒 by using the BRF in step 4, can be modeled by the band 

reject operator 𝐵𝐵𝑅𝐹  where 

𝐵𝐵𝑅𝐹{ℎ(𝑡)} = [𝐵𝜔𝑠 + (1 − 𝐵𝜔𝑒)]ℎ(𝑡)    (10) 

where 𝑠 and 𝑒 are the start and end measuring frequency 

of 𝐺(). 

 

With the above described notations, assume that the time 

limited function to be reconstructed is 𝑓(𝑡) with positive 

time extent τ/2, and by making use of the identity  

𝐷𝑇{𝑓(𝑡)} = 𝑓(𝑡)        (11) 

This follows from the time limitedness of 𝑓(𝑡). Define 𝑔(𝑡) 

to be the given inverse Fourier transformation of the given 

spectrum 𝐺(𝜔), so 𝑔(𝑡) can be described by 

𝑔(𝑡) = 𝐵𝜔𝑒{𝑓(𝑡)} − 𝐵𝜔𝑠{𝑓(𝑡)}     (12) 

Equation (12), can be re-written in the form 

𝑔(𝑡) = [1 − 1 + (𝐵𝜔𝑒 − 𝐵𝜔𝑠)𝐷𝑇]𝑓(𝑡)   (13) 

If the operator in square brackets can be inverted, then we 

have 

𝑓(𝑡) = [1 − (1 − (𝐵𝜔𝑒 − 𝐵𝜔𝑠) 𝐷𝑇  ](−1)𝑔(𝑡) (14) 

For inversion, we can generalize the geometric series and 

writing (14) as follows 

𝑓(𝑡) = ∑ [1 − (𝐵𝜔𝑒 − 𝐵𝜔𝑠)𝐷𝑇]𝑛𝑔(𝑡)∞
𝑛=0   (15) 

From which we have:  

𝑓𝑁(𝑡) = ∑ [1 − (𝐵𝜔𝑒 − 𝐵𝜔𝑠)𝐷𝑇]𝑛𝑔(𝑡)𝑁
𝑛=0   (16) 

Equation (16) can be rearranged to obtain our Algorithm   

𝑓𝑁+1(𝑡) = 𝑔(𝑡) + [1 − (𝐵𝜔𝑒 − 𝐵𝜔𝑠)𝐷𝑇]𝑓𝑁(𝑡)   (17) 

with initialization 

𝑓0(𝑡) = 𝑔(𝑡)        (18) 

In the following section, we will introduce a numerical vali-

dation example for the baseband pulse reconstruction from 

its selected band pass spectral information window.  

 

This will prove that the baseband pulse can be transmitted 

over any band-limited communication channel. 

 

 

LPF 

Cutoff =e 

 

LPF 

Cutoff = s 

 

 

 

+ 

 

- 

 

𝒈(𝒕) 
 

𝒇(𝒕) 
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3. RESULTS AND DISCUSSION 

3.1 Baseband Pulse Reconstruction Numerical Validation 

Consider the transmitter and receiver system shown in Figure 

2. Let the transmitted baseband pulse signal be a rectangular 

function as in (6). Then, the baseband pulse signal will be 

modeled as 

𝑓(𝑡) = 𝑟𝑒𝑐𝑡 (𝑡/2)        (19) 

where the amplitude 𝐴 = 1 and pulse duration 𝜏 = 2 𝑠𝑒𝑐. 

The FT associated of this pulse can be easily evaluated using 

(7) to be 

𝐹(𝑓) = 2 𝑠𝑖𝑛𝑐 (2𝑓)       (20) 

Consider Figure 4 and assume that the given pulse duration 

is equal to τ =  2 [𝑠𝑒𝑐]. Assume that the transmitted band-

pass spectrum 𝐺(𝑓) from the pulse spectrum is known be-

tween the starting frequency 𝑓𝑠 = 0.3 [Hz] to 𝑓𝑒 = 3 [Hz]. It 

was clear that the associated IFT, which is 𝑔(𝑡) is a severely 

a distorted version of the main function 𝑓(𝑡)as shown in 

Figure 3.  

 

This is due to the small   finite sent segment of 𝑓(𝑡). After 

receiving 𝐺(𝑓), shown in Figure 4 (d), the receiver will ap-

ply the presented new baseband pulse reconstruction tech-

nique shown in Figure 3 which is explained in section II.  

 

The presented technique will be fed with a priori information 

about the pulse duration (here τ = 2 [sec.]) and will be run 

for a number of N-iterations.  

 

Firstly, we divided the main lobe of 𝐹(𝑓) to start from start-

ing frequency 𝑓𝑠= 0 [Hz] up to an end frequency 𝑓𝑒= 0.5 [Hz] 

of the pulse’s spectrum as shown in Figure 4 (b) into four 

quadrants.  

 

Figure 6 shows different transmitted signals after windowing 

the main lobe of the original pulse spectrum. Figure 7 shows 

the reconstructed spectrum 𝑔(𝑡) after N=1, 5, 10, 50 and 500 

iterations and the corresponding pulse signal in time domain. 

 

By increasing the number of iterations to N = 1000, the 

baseband pulse spectrum is completely reconstructed and 

consequently the baseband clean pulse signal is reconstruct-

ed with the well-known Gibbs effect [2]. 

 

Further constructed Spectrum, it is clear that the spectrum is 

approximately similar to the original 𝐹(𝑓) (Figure 4), so that 

the time domain pulse is approximately reconstructed well at 

the receiver side. This means that the baseband pulse signal 

can be sent over a bandlimited channel by freely selecting a 

spectral window from its baseband spectrum.  

 

Figure 8 shows a summary of the reconstructed pulse with 

iterations from N=1 up to N=500.  

 

Figure 9 shows the new technique’s energy efficiency 

(EReceived/ETransmitted) % for different windows of transmitted 

spectrum.  
 

 

Figure 6:  Transmitted signals for different spectrum windows 

 

The efficiency is measured when sending four different win-

dows of the main lobe spectrum and the algorithm is run for 

5000 iterations. At 𝑁 = 1, the efficiency of the new tech-

nique is around 90% which is the same as the conventional 

method of filtering the main lobe.  

 

By increasing 𝑁 to be 30 iterations for the same window, 

more than 94% of the signal’s energy can be received. By 

decreasing the window to (0.125-0.5) [Hz], around 100 itera-

tions are needed to receive the same energy of the main lobe 

window.  
 

 

                               (a)                                                          (b) 

Figure 7:  (a) Reconstructed baseband pulse for different iterations 

(b) Spectrum of the reconstructed baseband pulse in part (a) 
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If we decrease the window to be (0.25-0.5) [Hz], around 

93% of the signal’s energy can be recovered for 500 itera-

tions.  

 

If we decrease the window to be (0.375-0.5) [Hz], around 

92% of the system’s energy may be received for 1000 itera-

tions and increased for more signal energy recovery. Thus, 

saving 75% of signal’s bandwidth compared to conventional 

method. 

 

 

Figure 8:  The Reconstructed pulse 𝑓(𝑡) for different iterations. 

 

 

Figure 9:  The efficiency of the new algorithm for different trans-

mitted spectrum windows and different iterations. 

4. CONCLUSION 

We proposed a new concept for baseband pulse transmission 

over a bandlimited channel. The concept is based on select-

ing any band-pass window from the baseband pulse main 

spectrum. The selected pulse spectral window should pass 

through the given channel bandwidth. At the receiving side, 

a new algorithm based on band reject filtering is used for 

reconstructing the baseband pulse given only a segment of its 

spectrum. This segment represents the measurement done on 

the spectrum of a time limited pulse function 𝑓(𝑡) from a 

starting measuring frequency 𝑓𝑠 up to an end frequency 𝑓𝑒. It 

should be noted that as the starting measuring frequency in-

creases, due to limitation of measuring devices for example, 

the only effect on our proposed algorithm is the increase in 

number of iterations.  

 

Therefore, we will be still be able to reconstruct the original 

spectrum (at the receiver side) of the signal, thus the time 

limited baseband pulse function can be easily reconstructed. 

The new presented concept and technique for baseband pulse 

transmission should find applications for Mobile Communi-

cations and microwave measurements with instrumental 

limitations. 
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